BibTex RIS Cite

NITROAROMATIC COMPOUND SENSING APPLICATION OF HEXA-ARMED DANSYL END-CAPPED POLY(epsilon-CAPROLACTONE) STAR POLYMER WITH PHOSPHAZENE CORE

Year 2016, , 501 - 514, 08.01.2017
https://doi.org/10.18596/jotcsa.36573

Abstract

Hexa-armed dansyl end-capped poly(ε-caprolactone) star polymer with phosphazene core (N3P3-(PCL-Dansyl)6) was prepared in a two-step synthetic procedure including ring opening polymerization (ROP) of ε-caprolactone (ε-CL) and esterification reactions. The obtained fluorescence-active polymer was employed as a fluorescent probe towards certain nitroaromatic compounds (2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene, 2,6-dinitrotoluene, 2-nitrotoluene, 3-nitrotoluene, 2,4,6-trinitrophenol (picric acid), 2,4-dinitrophenol, 4-nitrophenol, and 1,2-dinitrobenzene). Fluorescence intensity of N3P3-(PCL-Dansyl)6 was decreased gradually upon the addition of nitroaromatic compounds and the highest quenching efficiency was found to be 100% with TNT. Besides, N3P3-(PCL-Dansyl)6 gave exceptionally selective response toward nitroaromatic compounds, even in the presence of toxic metal cations such as Pb2+, Co2+, Hg2+, Mn2+, Cd2+ and Zn2+.

References

  • Ju K-S, Parales RE. Nitroaromatic Compounds, from Synthesis to Biodegradation. Microbiology and Molecular Biology Reviews. 2010, 74 (2): 250-72. DOI: 10.1128/mmbr.00006-10.
  • Yang X, Wang J, Su D, Xia Q, Chai F, Wang C, Qu F. Fluorescent detection of TNT and 4-nitrophenol by BSA Au nanoclusters. Dalton Transactions. 2014, 43 (26): 10057-63. DOI: 10.1039/C4DT00490F.
  • Dasary SSR, Senapati D, Singh AK, Anjaneyulu Y, Yu H, Ray PC. Highly Sensitive and Selective Dynamic Light-Scattering Assay for TNT Detection Using p-ATP Attached Gold Nanoparticle. ACS Applied Materials & Interfaces. 2010, 2 (12): 3455-60. DOI: 10.1021/am1005139.
  • Shanmugaraju S, Joshi SA, Mukherjee PS. Fluorescence and visual sensing of nitroaromatic explosives using electron rich discrete fluorophores. Journal of Materials Chemistry. 2011, 21 (25): 9130-8. DOI: 10.1039/C1JM10406C.
  • Agency for Toxic Substances and Disease Registry (ATSDR). 1995. Toxicological profile for 2,4,6-Trinitrotoluene (TNT). Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
  • Roy B, Bar AK, Gole B, Mukherjee PS. Fluorescent Tris-Imidazolium Sensors for Picric Acid Explosive. The Journal of Organic Chemistry. 2013, 78 (3): 1306-10. DOI: 10.1021/jo302585a.
  • Niaz A, Fischer J, Barek J, Yosypchuk B, Sirajuddin, Bhanger MI. Voltammetric Determination of 4-Nitrophenol Using a Novel Type of Silver Amalgam Paste Electrode. Electroanalysis. 2009, 21 (16): 1786-91. DOI: 10.1002/elan.200904622.
  • Pedrosa VdA, Codognoto L, Avaca LA. Electroanalytical determination of 4-nitrophenol by square wave voltammetry on diamond electrodes. Journal of the Brazilian Chemical Society. 2003, 14: 530-5.
  • Hu S, Xu C, Wang G, Cui D. Voltammetric determination of 4-nitrophenol at a sodium montmorillonite-anthraquinone chemically modified glassy carbon electrode. Talanta. 2001, 54 (1): 115-23. DOI: http://dx.doi.org/10.1016/S0039-9140(00)00658-5.
  • Lipczynska-Kochany E. Degradation of aqueous nitrophenols and nitrobenzene by means of the Fenton reaction. Chemosphere. 1991, 22 (5): 529-36. DOI: http://dx.doi.org/10.1016/0045-6535(91)90064-K.
  • Alizadeh T, Ganjali MR, Norouzi P, Zare M, Zeraatkar A. A novel high selective and sensitive para-nitrophenol voltammetric sensor, based on a molecularly imprinted polymer–carbon paste electrode. Talanta. 2009, 79 (5): 1197-203. DOI: http://dx.doi.org/10.1016/j.talanta.2009.02.051.
  • Chen J-C, Shih J-L, Liu C-H, Kuo M-Y, Zen J-M. Disposable Electrochemical Sensor for Determination of Nitroaromatic Compounds by a Single-Run Approach. Analytical Chemistry. 2006, 78 (11): 3752-7. DOI: 10.1021/ac060002n.
  • Nie H, Zhao Y, Zhang M, Ma Y, Baumgarten M, Mullen K. Detection of TNT explosives with a new fluorescent conjugated polycarbazole polymer. Chemical Communications. 2011, 47 (4): 1234-6. DOI: 10.1039/C0CC03659E.
  • Sun X, Wang Y, Lei Y. Fluorescence based explosive detection: from mechanisms to sensory materials. Chemical Society Reviews. 2015, 44 (22): 8019-61. DOI: 10.1039/C5CS00496A.
  • Ojida A, Takashima I, Kohira T, Nonaka H, Hamachi I. Turn-On Fluorescence Sensing of Nucleoside Polyphosphates Using a Xanthene-Based Zn(II) Complex Chemosensor. Journal of the American Chemical Society. 2008, 130 (36): 12095-101. DOI: 10.1021/ja803262w.
  • Li D, Li H, Liu M, Chen J, Ding J, Huang X, Wu H. A Novel D-π-A Conjugated Polymer Chemosensor Based on Benzo[c][1,2,5]selenadiazole for Highly Selective and Sensitive Recognition of Mercury (II) Ions. Macromolecular Chemistry and Physics. 2014, 215 (1): 82-9. DOI: 10.1002/macp.201300542.
  • Liu Y, Miao Q, Zhang S, Huang X, Zheng L, Cheng Y. A Fluorescent Chemosensor for Transition-Metal Ions Based on Optically Active Polybinaphthyl and 2,2′-Bipyridine. Macromolecular Chemistry and Physics. 2008, 209 (7): 685-94. DOI: 10.1002/macp.200700460.
  • Gorur M, Doganci E, Yilmaz F, Isci U. Synthesis, characterization, and Pb2+ ion sensing application of hexa-armed dansyl end-capped poly(ε-caprolactone) star polymer with phosphazene core. Journal of Applied Polymer Science. 2015, 132 (32): n/a-n/a. DOI: 10.1002/app.42380.
  • Silva AJC, Silva Jr JG, Alves Jr S, Tonholo J, Ribeiro AS. Dansyl-based fluorescent films prepared by chemical and electrochemical methods: cyclic voltammetry, afm and spectrofluorimetry characterization. Journal of the Brazilian Chemical Society. 2011, 22: 1808-15.
  • Wanichacheva N, Watpathomsub S, Lee VS, Grudpan K. Synthesis of a Novel Fluorescent Sensor Bearing Dansyl Fluorophores for the Highly Selective Detection of Mercury (II) Ions. Molecules. 2010, 15 (3): 1798.
  • Wanichacheva N, Kumsorn P, Sangsuwan R, Kamkaew A, Lee VS, Grudpan K. A new fluorescent sensor bearing three dansyl fluorophores for highly sensitive and selective detection of mercury(II) ions. Tetrahedron Letters. 2011, 52 (46): 6133-6. DOI: http://dx.doi.org/10.1016/j.tetlet.2011.09.033.
  • Murariu M, Buruiana EC. Synthesis and characterization of new optically active poly(acrylamide/methacrylurea-co-vinyl acetate) copolymers with dansyl units. Designed Monomers and Polymers. 2015, 18 (2): 118-28. DOI: 10.1080/15685551.2014.971391.
  • Buruiana EC, Chibac AL, Buruiana T. Polyacrylates containing dansyl semicarbazide units sensitive for some structures in solution and film. Journal of Photochemistry and Photobiology A: Chemistry. 2010, 213 (2–3): 107-13. DOI: http://dx.doi.org/10.1016/j.jphotochem.2010.05.008.
  • Hadjichristidis N. Synthesis of miktoarm star (μ-star) polymers. Journal of Polymer Science Part A: Polymer Chemistry. 1999, 37 (7): 857-71. DOI: 10.1002/(SICI)1099-0518(19990401)37:7<857::AID-POLA1>3.0.CO;2-P.
  • Lapienis G. Star-shaped polymers having PEO arms. Progress in Polymer Science. 2009, 34 (9): 852-92. DOI: http://dx.doi.org/10.1016/j.progpolymsci.2009.04.006.
  • Ren JM, McKenzie TG, Fu Q, Wong EHH, Xu J, An Z, Shanmugam S, Davis TP, Boyer C, Qiao GG. Star Polymers. Chemical Reviews. 2016, 116 (12): 6743-836. DOI: 10.1021/acs.chemrev.6b00008.
  • Aydin M, Uyar T, Tasdelen MA, Yagci Y. Polymer/clay nanocomposites through multiple hydrogen-bonding interactions. Journal of Polymer Science Part A: Polymer Chemistry. 2015, 53 (5): 650-8. DOI: 10.1002/pola.27487.
  • Gorur M, Yilmaz F, Kilic A, Demirci A, Ozdemir Y, Kosemen A, Eren San S. Synthesis, characterization, electrochromic properties, and electrochromic device application of a novel star polymer consisting of thiophene end-capped poly(ε-caprolactone) arms emanating from a hexafunctional cyclotriphosphazene core. Journal of Polymer Science Part A: Polymer Chemistry. 2010, 48 (16): 3668-82. DOI: 10.1002/pola.24151.
  • Gorur M, Yilmaz F, Kilic A, Sahin ZM, Demirci A. Synthesis of pyrene end-capped A6 dendrimer and star polymer with phosphazene core via “click chemistry”. Journal of Polymer Science Part A: Polymer Chemistry. 2011, 49 (14): 3193-206. DOI: 10.1002/pola.24756.
  • Doganci E, Gorur M, Uyanik C, Yilmaz F. Synthesis of AB3-type miktoarm star polymers with steroid core via a combination of “Click” chemistry and ring opening polymerization techniques. Journal of Polymer Science Part A: Polymer Chemistry. 2014, 52 (23): 3390-9. DOI: 10.1002/pola.27406.
  • Doganci E, Tasdelen MA, Yilmaz F. Synthesis of Miktoarm Star-Shaped Polymers with POSS Core via a Combination of CuAAC Click Chemistry, ATRP, and ROP Techniques. Macromolecular Chemistry and Physics. 2015, 216 (17): 1823-30. DOI: 10.1002/macp.201500199.
  • Eren O, Gorur M, Keskin B, Yilmaz F. Synthesis and characterization of ferrocene end-capped poly(ε-caprolactone)s by a combination of ring-opening polymerization and “click” chemistry techniques. Reactive and Functional Polymers. 2013, 73 (1): 244-53. DOI: http://dx.doi.org/10.1016/j.reactfunctpolym.2012.10.009.
  • Wu Z-M, Liang H, Lu J, Deng W-L. Miktoarm star copolymers via combination of RAFT arm-first technique and aldehyde–aminooxy click reaction. Journal of Polymer Science Part A: Polymer Chemistry. 2010, 48 (15): 3323-30. DOI: 10.1002/pola.24116.
  • Rele SM, Cui W, Wang L, Hou S, Barr-Zarse G, Tatton D, Gnanou Y, Esko JD, Chaikof EL. Dendrimer-like PEO Glycopolymers Exhibit Anti-Inflammatory Properties. Journal of the American Chemical Society. 2005, 127 (29): 10132-3. DOI: 10.1021/ja0511974.
  • de Almeida AKA, Dias JMM, Silva AJC, Navarro M, Junior SA, Tonholo J, Ribeiro AS. Synthesis and characterization of a dansyl-based fluorescent conjugated polymer. Synthetic Metals. 2013, 171: 45-50. DOI: http://dx.doi.org/10.1016/j.synthmet.2013.03.015.
  • Tang M, Huang J, Weng X, Yang L, Liu M, Zhou M, Wang X, Gao J, Yi W, Zeng W, Sun L, Cao Y. Evaluation of a dansyl-based amino acid DNSBA as an imaging probe for apoptosis detection. Apoptosis. 2015, 20 (3): 410-20. DOI: 10.1007/s10495-014-1075-z.
  • Zeng W, Miao W, Kabalka G, Puil ML, Biggerstaff J, Townsend D. Design, synthesis, and biological evaluation of a dansyled amino acid derivative as an imaging agent for apoptosis. Tetrahedron Letters. 2008, 49 (45): 6429-32. DOI: http://dx.doi.org/10.1016/j.tetlet.2008.08.091.
Year 2016, , 501 - 514, 08.01.2017
https://doi.org/10.18596/jotcsa.36573

Abstract

References

  • Ju K-S, Parales RE. Nitroaromatic Compounds, from Synthesis to Biodegradation. Microbiology and Molecular Biology Reviews. 2010, 74 (2): 250-72. DOI: 10.1128/mmbr.00006-10.
  • Yang X, Wang J, Su D, Xia Q, Chai F, Wang C, Qu F. Fluorescent detection of TNT and 4-nitrophenol by BSA Au nanoclusters. Dalton Transactions. 2014, 43 (26): 10057-63. DOI: 10.1039/C4DT00490F.
  • Dasary SSR, Senapati D, Singh AK, Anjaneyulu Y, Yu H, Ray PC. Highly Sensitive and Selective Dynamic Light-Scattering Assay for TNT Detection Using p-ATP Attached Gold Nanoparticle. ACS Applied Materials & Interfaces. 2010, 2 (12): 3455-60. DOI: 10.1021/am1005139.
  • Shanmugaraju S, Joshi SA, Mukherjee PS. Fluorescence and visual sensing of nitroaromatic explosives using electron rich discrete fluorophores. Journal of Materials Chemistry. 2011, 21 (25): 9130-8. DOI: 10.1039/C1JM10406C.
  • Agency for Toxic Substances and Disease Registry (ATSDR). 1995. Toxicological profile for 2,4,6-Trinitrotoluene (TNT). Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
  • Roy B, Bar AK, Gole B, Mukherjee PS. Fluorescent Tris-Imidazolium Sensors for Picric Acid Explosive. The Journal of Organic Chemistry. 2013, 78 (3): 1306-10. DOI: 10.1021/jo302585a.
  • Niaz A, Fischer J, Barek J, Yosypchuk B, Sirajuddin, Bhanger MI. Voltammetric Determination of 4-Nitrophenol Using a Novel Type of Silver Amalgam Paste Electrode. Electroanalysis. 2009, 21 (16): 1786-91. DOI: 10.1002/elan.200904622.
  • Pedrosa VdA, Codognoto L, Avaca LA. Electroanalytical determination of 4-nitrophenol by square wave voltammetry on diamond electrodes. Journal of the Brazilian Chemical Society. 2003, 14: 530-5.
  • Hu S, Xu C, Wang G, Cui D. Voltammetric determination of 4-nitrophenol at a sodium montmorillonite-anthraquinone chemically modified glassy carbon electrode. Talanta. 2001, 54 (1): 115-23. DOI: http://dx.doi.org/10.1016/S0039-9140(00)00658-5.
  • Lipczynska-Kochany E. Degradation of aqueous nitrophenols and nitrobenzene by means of the Fenton reaction. Chemosphere. 1991, 22 (5): 529-36. DOI: http://dx.doi.org/10.1016/0045-6535(91)90064-K.
  • Alizadeh T, Ganjali MR, Norouzi P, Zare M, Zeraatkar A. A novel high selective and sensitive para-nitrophenol voltammetric sensor, based on a molecularly imprinted polymer–carbon paste electrode. Talanta. 2009, 79 (5): 1197-203. DOI: http://dx.doi.org/10.1016/j.talanta.2009.02.051.
  • Chen J-C, Shih J-L, Liu C-H, Kuo M-Y, Zen J-M. Disposable Electrochemical Sensor for Determination of Nitroaromatic Compounds by a Single-Run Approach. Analytical Chemistry. 2006, 78 (11): 3752-7. DOI: 10.1021/ac060002n.
  • Nie H, Zhao Y, Zhang M, Ma Y, Baumgarten M, Mullen K. Detection of TNT explosives with a new fluorescent conjugated polycarbazole polymer. Chemical Communications. 2011, 47 (4): 1234-6. DOI: 10.1039/C0CC03659E.
  • Sun X, Wang Y, Lei Y. Fluorescence based explosive detection: from mechanisms to sensory materials. Chemical Society Reviews. 2015, 44 (22): 8019-61. DOI: 10.1039/C5CS00496A.
  • Ojida A, Takashima I, Kohira T, Nonaka H, Hamachi I. Turn-On Fluorescence Sensing of Nucleoside Polyphosphates Using a Xanthene-Based Zn(II) Complex Chemosensor. Journal of the American Chemical Society. 2008, 130 (36): 12095-101. DOI: 10.1021/ja803262w.
  • Li D, Li H, Liu M, Chen J, Ding J, Huang X, Wu H. A Novel D-π-A Conjugated Polymer Chemosensor Based on Benzo[c][1,2,5]selenadiazole for Highly Selective and Sensitive Recognition of Mercury (II) Ions. Macromolecular Chemistry and Physics. 2014, 215 (1): 82-9. DOI: 10.1002/macp.201300542.
  • Liu Y, Miao Q, Zhang S, Huang X, Zheng L, Cheng Y. A Fluorescent Chemosensor for Transition-Metal Ions Based on Optically Active Polybinaphthyl and 2,2′-Bipyridine. Macromolecular Chemistry and Physics. 2008, 209 (7): 685-94. DOI: 10.1002/macp.200700460.
  • Gorur M, Doganci E, Yilmaz F, Isci U. Synthesis, characterization, and Pb2+ ion sensing application of hexa-armed dansyl end-capped poly(ε-caprolactone) star polymer with phosphazene core. Journal of Applied Polymer Science. 2015, 132 (32): n/a-n/a. DOI: 10.1002/app.42380.
  • Silva AJC, Silva Jr JG, Alves Jr S, Tonholo J, Ribeiro AS. Dansyl-based fluorescent films prepared by chemical and electrochemical methods: cyclic voltammetry, afm and spectrofluorimetry characterization. Journal of the Brazilian Chemical Society. 2011, 22: 1808-15.
  • Wanichacheva N, Watpathomsub S, Lee VS, Grudpan K. Synthesis of a Novel Fluorescent Sensor Bearing Dansyl Fluorophores for the Highly Selective Detection of Mercury (II) Ions. Molecules. 2010, 15 (3): 1798.
  • Wanichacheva N, Kumsorn P, Sangsuwan R, Kamkaew A, Lee VS, Grudpan K. A new fluorescent sensor bearing three dansyl fluorophores for highly sensitive and selective detection of mercury(II) ions. Tetrahedron Letters. 2011, 52 (46): 6133-6. DOI: http://dx.doi.org/10.1016/j.tetlet.2011.09.033.
  • Murariu M, Buruiana EC. Synthesis and characterization of new optically active poly(acrylamide/methacrylurea-co-vinyl acetate) copolymers with dansyl units. Designed Monomers and Polymers. 2015, 18 (2): 118-28. DOI: 10.1080/15685551.2014.971391.
  • Buruiana EC, Chibac AL, Buruiana T. Polyacrylates containing dansyl semicarbazide units sensitive for some structures in solution and film. Journal of Photochemistry and Photobiology A: Chemistry. 2010, 213 (2–3): 107-13. DOI: http://dx.doi.org/10.1016/j.jphotochem.2010.05.008.
  • Hadjichristidis N. Synthesis of miktoarm star (μ-star) polymers. Journal of Polymer Science Part A: Polymer Chemistry. 1999, 37 (7): 857-71. DOI: 10.1002/(SICI)1099-0518(19990401)37:7<857::AID-POLA1>3.0.CO;2-P.
  • Lapienis G. Star-shaped polymers having PEO arms. Progress in Polymer Science. 2009, 34 (9): 852-92. DOI: http://dx.doi.org/10.1016/j.progpolymsci.2009.04.006.
  • Ren JM, McKenzie TG, Fu Q, Wong EHH, Xu J, An Z, Shanmugam S, Davis TP, Boyer C, Qiao GG. Star Polymers. Chemical Reviews. 2016, 116 (12): 6743-836. DOI: 10.1021/acs.chemrev.6b00008.
  • Aydin M, Uyar T, Tasdelen MA, Yagci Y. Polymer/clay nanocomposites through multiple hydrogen-bonding interactions. Journal of Polymer Science Part A: Polymer Chemistry. 2015, 53 (5): 650-8. DOI: 10.1002/pola.27487.
  • Gorur M, Yilmaz F, Kilic A, Demirci A, Ozdemir Y, Kosemen A, Eren San S. Synthesis, characterization, electrochromic properties, and electrochromic device application of a novel star polymer consisting of thiophene end-capped poly(ε-caprolactone) arms emanating from a hexafunctional cyclotriphosphazene core. Journal of Polymer Science Part A: Polymer Chemistry. 2010, 48 (16): 3668-82. DOI: 10.1002/pola.24151.
  • Gorur M, Yilmaz F, Kilic A, Sahin ZM, Demirci A. Synthesis of pyrene end-capped A6 dendrimer and star polymer with phosphazene core via “click chemistry”. Journal of Polymer Science Part A: Polymer Chemistry. 2011, 49 (14): 3193-206. DOI: 10.1002/pola.24756.
  • Doganci E, Gorur M, Uyanik C, Yilmaz F. Synthesis of AB3-type miktoarm star polymers with steroid core via a combination of “Click” chemistry and ring opening polymerization techniques. Journal of Polymer Science Part A: Polymer Chemistry. 2014, 52 (23): 3390-9. DOI: 10.1002/pola.27406.
  • Doganci E, Tasdelen MA, Yilmaz F. Synthesis of Miktoarm Star-Shaped Polymers with POSS Core via a Combination of CuAAC Click Chemistry, ATRP, and ROP Techniques. Macromolecular Chemistry and Physics. 2015, 216 (17): 1823-30. DOI: 10.1002/macp.201500199.
  • Eren O, Gorur M, Keskin B, Yilmaz F. Synthesis and characterization of ferrocene end-capped poly(ε-caprolactone)s by a combination of ring-opening polymerization and “click” chemistry techniques. Reactive and Functional Polymers. 2013, 73 (1): 244-53. DOI: http://dx.doi.org/10.1016/j.reactfunctpolym.2012.10.009.
  • Wu Z-M, Liang H, Lu J, Deng W-L. Miktoarm star copolymers via combination of RAFT arm-first technique and aldehyde–aminooxy click reaction. Journal of Polymer Science Part A: Polymer Chemistry. 2010, 48 (15): 3323-30. DOI: 10.1002/pola.24116.
  • Rele SM, Cui W, Wang L, Hou S, Barr-Zarse G, Tatton D, Gnanou Y, Esko JD, Chaikof EL. Dendrimer-like PEO Glycopolymers Exhibit Anti-Inflammatory Properties. Journal of the American Chemical Society. 2005, 127 (29): 10132-3. DOI: 10.1021/ja0511974.
  • de Almeida AKA, Dias JMM, Silva AJC, Navarro M, Junior SA, Tonholo J, Ribeiro AS. Synthesis and characterization of a dansyl-based fluorescent conjugated polymer. Synthetic Metals. 2013, 171: 45-50. DOI: http://dx.doi.org/10.1016/j.synthmet.2013.03.015.
  • Tang M, Huang J, Weng X, Yang L, Liu M, Zhou M, Wang X, Gao J, Yi W, Zeng W, Sun L, Cao Y. Evaluation of a dansyl-based amino acid DNSBA as an imaging probe for apoptosis detection. Apoptosis. 2015, 20 (3): 410-20. DOI: 10.1007/s10495-014-1075-z.
  • Zeng W, Miao W, Kabalka G, Puil ML, Biggerstaff J, Townsend D. Design, synthesis, and biological evaluation of a dansyled amino acid derivative as an imaging agent for apoptosis. Tetrahedron Letters. 2008, 49 (45): 6429-32. DOI: http://dx.doi.org/10.1016/j.tetlet.2008.08.091.
There are 37 citations in total.

Details

Journal Section Articles
Authors

Merve Dandan Dogancı

Sümeyra Bayır This is me

Erdinç Dogancı

Mesut Gorur This is me

Faruk Yılmaz This is me

Publication Date January 8, 2017
Submission Date July 22, 2016
Published in Issue Year 2016

Cite

Vancouver Dandan Dogancı M, Bayır S, Dogancı E, Gorur M, Yılmaz F. NITROAROMATIC COMPOUND SENSING APPLICATION OF HEXA-ARMED DANSYL END-CAPPED POLY(epsilon-CAPROLACTONE) STAR POLYMER WITH PHOSPHAZENE CORE. JOTCSA. 2017;3(3):501-14.