Editorial
BibTex RIS Cite
Year 2016, , 565 - 582, 08.01.2017
https://doi.org/10.18596/jotcsa.28202

Abstract

References

  • Gorur M, Doganci E, Yilmaz F, Isci U. Synthesis, characterization, and Pb2+ ion sensing application of hexa-armed dansyl end-capped poly(ε-caprolactone) star polymer with phosphazene core. Journal of Applied Polymer Science. 2015, 132 (32). DOI: 10.1002/app.42380.
  • Long F, Zhu A, Shi H, Wang H, Liu J. Rapid on-site/in-situ detection of heavy metal ions in environmental water using a structure-switching DNA optical biosensor. Scientific Reports. 2013, 3: 2308. DOI: 10.1038/srep02308.
  • Aragay G, Pons J, Merkoçi A. Recent Trends in Macro-, Micro-, and Nanomaterial-Based Tools and Strategies for Heavy-Metal Detection. Chemical Reviews. 2011, 111 (5): 3433-58. DOI: 10.1021/cr100383r.
  • Rizescu C-Z, Stoian E-V, Poinescu A-A, Teodorescu S, Heavy metals in suspended powders from steelmaking. Proceedings of the 3rd WSEAS international conference on Engineering mechanics, structures, engineering geology, World Scientific and Engineering Academy and Society (WSEAS): Corfu Island, Greece. 2010: 48-50.
  • Bitto A, Pizzino G, Irrera N, Galfo F, Squadrito F. Epigenetic Modifications Due to Heavy Metals Exposure in Children Living in Polluted Areas. Current Genomics. 2014, 15 (6): 464-8. DOI: 10.2174/138920291506150106153336.
  • Sharma B, Singh S, Siddiqi NJ. Biomedical Implications of Heavy Metals Induced Imbalances in Redox Systems. BioMed Research International. 2014, 2014: 640754. DOI: 10.1155/2014/640754.
  • Fu F, Wang Q. Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management. 2011, 92 (3): 407-18. DOI: http://dx.doi.org/10.1016/j.jenvman.2010.11.011.
  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy Metals Toxicity and the Environment. EXS. 2012, 101: 133-64. DOI: 10.1007/978-3-7643-8340-4_6.
  • Huang M, Zhou S, Sun B, Zhao Q. Heavy metals in wheat grain: Assessment of potential health risk for inhabitants in Kunshan, China. Science of The Total Environment. 2008, 405 (1–3): 54-61. DOI: http://dx.doi.org/10.1016/j.scitotenv.2008.07.004.
  • Li Z, Ge Y, Wan L. Fabrication of a green porous lignin-based sphere for the removal of lead ions from aqueous media. Journal of Hazardous Materials. 2015, 285: 77-83. DOI: http://dx.doi.org/10.1016/j.jhazmat.2014.11.033.
  • Fu J, Wang X, Li J, Ding Y, Chen L. Synthesis of multi-ion imprinted polymers based on dithizone chelation for simultaneous removal of Hg2+, Cd2+, Ni2+ and Cu2+ from aqueous solutions. RSC Advances. 2016, 6 (50): 44087-95. DOI: 10.1039/C6RA07785D.
  • Chen J, Tong P, Lin Y, Lu W, He Y, Lu M, Zhang L, Chen G. Highly sensitive fluorescent sensor for mercury based on hyperbranched rolling circle amplification. Analyst. 2015, 140 (3): 907-11. DOI: 10.1039/C4AN01769B.
  • Sedghi R, Heidari B, Behbahani M. Synthesis, characterization and application of poly(acrylamide-co-methylenbisacrylamide) nanocomposite as a colorimetric chemosensor for visual detection of trace levels of Hg and Pb ions. Journal of Hazardous Materials. 2015, 285: 109-16. DOI: http://dx.doi.org/10.1016/j.jhazmat.2014.11.049.
  • Azzazy H, Shahat A, Hassan MAH, Chemosensors, compositions and uses thereof. T.A.U.O. Cairo, 2014.
  • Ojida A, Takashima I, Kohira T, Nonaka H, Hamachi I. Turn-On Fluorescence Sensing of Nucleoside Polyphosphates Using a Xanthene-Based Zn(II) Complex Chemosensor. Journal of the American Chemical Society. 2008, 130 (36): 12095-101. DOI: 10.1021/ja803262w.
  • Güney O, Cebeci FÇ. Molecularly imprinted fluorescent polymers as chemosensors for the detection of mercury ions in aqueous media. Journal of Applied Polymer Science. 2010, 117 (4): 2373-9. DOI: 10.1002/app.32077.
  • Jeong Y, Yoon J. Recent progress on fluorescent chemosensors for metal ions. Inorganica Chimica Acta. 2012, 381: 2-14. DOI: http://dx.doi.org/10.1016/j.ica.2011.09.011.
  • Chen Q-Y, Chen C-F. A new Hg2+-selective fluorescent sensor based on a dansyl amide-armed calix[4]-aza-crown. Tetrahedron Letters. 2005, 46 (1): 165-8. DOI: http://dx.doi.org/10.1016/j.tetlet.2004.10.169.
  • Silva AJC, Silva Jr JG, Alves Jr S, Tonholo J, Ribeiro AS. Dansyl-based fluorescent films prepared by chemical and electrochemical methods: cyclic voltammetry, afm and spectrofluorimetry characterization. Journal of the Brazilian Chemical Society. 2011, 22: 1808-15.
  • Parola AJ, Lima JC, Pina F, Pina J, Melo JSd, Soriano C, García-España E, Aucejo R, Alarcón J. Synthesis and photophysical properties of dansyl-based polyamine ligands and their Zn(II) complexes. Inorganica Chimica Acta. 2007, 360 (3): 1200-8. DOI: http://dx.doi.org/10.1016/j.ica.2006.11.006.
  • Tharmaraj V, Pitchumani K. An acyclic, dansyl based colorimetric and fluorescent chemosensor for Hg(II) via twisted intramolecular charge transfer (TICT). Analytica Chimica Acta. 2012, 751: 171-5. DOI: http://dx.doi.org/10.1016/j.aca.2012.09.016.
  • Talanova GG, Talanov VS. Dansyl-containing fluorogenic calixarenes as optical chemosensors of hazardous metal ions: a mini-review. Supramolecular Chemistry. 2010, 22 (11-12): 838-52. DOI: 10.1080/10610278.2010.514612.
  • Horie K, Yamada S, Machida S, Takahashi S, Isono Y, Kawaguchi H. Dansyl Fluorescence and Local Structure of Dansyl-Labeled Core-Shell and Core-Hair Type Microspheres in Solution. Macromolecular Chemistry and Physics. 2003, 204 (1): 131-8. DOI: 10.1002/macp.200290064.
  • González-Benito J, Mikeš F, Baselga J, Lemetyinemm H. Fluorescence method using labeled chromophores to study the curing kinetics of a polyurethane system. Journal of Applied Polymer Science. 2002, 86 (12): 2992-3000. DOI: 10.1002/app.11281.
  • Buruiana EC, Chibac AL, Buruiana T. Polyacrylates containing dansyl semicarbazide units sensitive for some structures in solution and film. Journal of Photochemistry and Photobiology A: Chemistry. 2010, 213 (2–3): 107-13. DOI: http://dx.doi.org/10.1016/j.jphotochem.2010.05.008.
  • Zhou S, Zhou Z-Q, Zhao X-X, Xiao Y-H, Xi G, Liu J-T, Zhao B-X. A dansyl based fluorescence chemosensor for Hg2+ and its application in the complicated environment samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015, 148: 348-54. DOI: http://dx.doi.org/10.1016/j.saa.2015.03.126.
  • Jisha VS, Thomas AJ, Ramaiah D. Fluorescence Ratiometric Selective Recognition of Cu2+ Ions by Dansyl−Naphthalimide Dyads. The Journal of Organic Chemistry. 2009, 74 (17): 6667-73. DOI: 10.1021/jo901164w.
  • Liu S-Y, He Y-B, Qing G-y, Xu K-X, Qin H-J. Fluorescent sensors for amino acid anions based on calix[4]arenes bearing two dansyl groups. Tetrahedron: Asymmetry. 2005, 16 (8): 1527-34. DOI: http://dx.doi.org/10.1016/j.tetasy.2005.02.032.
  • Yin J, Guan X, Wang D, Liu S. Metal-Chelating and Dansyl-Labeled Poly(N-isopropylacrylamide) Microgels as Fluorescent Cu2+ Sensors with Thermo-Enhanced Detection Sensitivity. Langmuir. 2009, 25 (19): 11367-74. DOI: 10.1021/la901377h.
  • Murariu M, Buruiana EC. Synthesis and characterization of new optically active poly(acrylamide/methacrylurea-co-vinyl acetate) copolymers with dansyl units. Designed Monomers and Polymers. 2015, 18 (2): 118-28. DOI: 10.1080/15685551.2014.971391.
  • Joshi BP, Park J, Lee WI, Lee K-H. Ratiometric and turn-on monitoring for heavy and transition metal ions in aqueous solution with a fluorescent peptide sensor. Talanta. 2009, 78 (3): 903-9. DOI: http://dx.doi.org/10.1016/j.talanta.2008.12.062.
  • Wanichacheva N, Watpathomsub S, Lee VS, Grudpan K. Synthesis of a Novel Fluorescent Sensor Bearing Dansyl Fluorophores for the Highly Selective Detection of Mercury (II) Ions. Molecules. 2010, 15 (3): 1798.
  • Beck MT, Nagypal L, Chemistry of Complex Equilibria. 1990, NewYork: Halsted Press.
  • Senthamizhan A, Celebioglu A, Bayir S, Gorur M, Doganci E, Yilmaz F, Uyar T. Highly Fluorescent Pyrene-Functional Polystyrene Copolymer Nanofibers for Enhanced Sensing Performance of TNT. ACS Applied Materials & Interfaces. 2015, 7 (38): 21038-46. DOI: 10.1021/acsami.5b07184.
  • Hasegawa S, Takeshita H, Yoshii F, Sasaki T, Makuuchi K, Nishimoto S. Thermal degradation behavior of gamma-irradiated acetyloxy end-capped poly(oxymethylene). Polymer. 2000, 41 (1): 111-20. DOI: http://dx.doi.org/10.1016/S0032-3861(99)00131-7.
  • Flink S, C. J. M. van Veggel F, N. Reinhoudt D. A self-assembled monolayer of a fluorescent guest for the screening of host molecules. Chemical Communications. 1999 (21): 2229-30. DOI: 10.1039/A906563F.
  • Ding L, Fang Y, Jiang L, Gao L, Yin X. Twisted intra-molecular electron transfer phenomenon of dansyl immobilized on chitosan film and its sensing property to the composition of ethanol–water mixtures. Thin Solid Films. 2005, 478 (1–2): 318-25. DOI: http://dx.doi.org/10.1016/j.tsf.2004.07.013.

SYNTHESIS, CHARACTERIZATION, AND CHEMOSENSING APPLICATION OF POLY(METHYL METHACRYLATE-CO-HYDROXYETHYL METHACRYLATE) WITH DANSYL SIDE GROUP

Year 2016, , 565 - 582, 08.01.2017
https://doi.org/10.18596/jotcsa.28202

Abstract

A novel dansyl side-functional polymer (P2) was prepared and employed as the metal cation sensing chemical probe. The synthesis of P2 was performed via free radical polymerization and esterification reactions in a two-step reaction sequence. P2 showed characteristic UV-vis and fluorescence emission bands for the dansyl unit. The fluorescence emission intensity of P2 gradually decreased as the concentrations of the added metal ions were increased. The highest quenching efficiencies (QE) were observed for Pb2+ (84.56%) and Co2+ (83.69%). Besides, the responses of P2 to the addition of Pb2+ cation were quite linear up to 50 equivalent. The presence of Cd2+, Hg2+, Mn2+, and Zn2+ cations did not pose significant interferences. Thus, P2 is a potential candidate for the fluorescence chemical sensor for Pb2+ cation.

References

  • Gorur M, Doganci E, Yilmaz F, Isci U. Synthesis, characterization, and Pb2+ ion sensing application of hexa-armed dansyl end-capped poly(ε-caprolactone) star polymer with phosphazene core. Journal of Applied Polymer Science. 2015, 132 (32). DOI: 10.1002/app.42380.
  • Long F, Zhu A, Shi H, Wang H, Liu J. Rapid on-site/in-situ detection of heavy metal ions in environmental water using a structure-switching DNA optical biosensor. Scientific Reports. 2013, 3: 2308. DOI: 10.1038/srep02308.
  • Aragay G, Pons J, Merkoçi A. Recent Trends in Macro-, Micro-, and Nanomaterial-Based Tools and Strategies for Heavy-Metal Detection. Chemical Reviews. 2011, 111 (5): 3433-58. DOI: 10.1021/cr100383r.
  • Rizescu C-Z, Stoian E-V, Poinescu A-A, Teodorescu S, Heavy metals in suspended powders from steelmaking. Proceedings of the 3rd WSEAS international conference on Engineering mechanics, structures, engineering geology, World Scientific and Engineering Academy and Society (WSEAS): Corfu Island, Greece. 2010: 48-50.
  • Bitto A, Pizzino G, Irrera N, Galfo F, Squadrito F. Epigenetic Modifications Due to Heavy Metals Exposure in Children Living in Polluted Areas. Current Genomics. 2014, 15 (6): 464-8. DOI: 10.2174/138920291506150106153336.
  • Sharma B, Singh S, Siddiqi NJ. Biomedical Implications of Heavy Metals Induced Imbalances in Redox Systems. BioMed Research International. 2014, 2014: 640754. DOI: 10.1155/2014/640754.
  • Fu F, Wang Q. Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management. 2011, 92 (3): 407-18. DOI: http://dx.doi.org/10.1016/j.jenvman.2010.11.011.
  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy Metals Toxicity and the Environment. EXS. 2012, 101: 133-64. DOI: 10.1007/978-3-7643-8340-4_6.
  • Huang M, Zhou S, Sun B, Zhao Q. Heavy metals in wheat grain: Assessment of potential health risk for inhabitants in Kunshan, China. Science of The Total Environment. 2008, 405 (1–3): 54-61. DOI: http://dx.doi.org/10.1016/j.scitotenv.2008.07.004.
  • Li Z, Ge Y, Wan L. Fabrication of a green porous lignin-based sphere for the removal of lead ions from aqueous media. Journal of Hazardous Materials. 2015, 285: 77-83. DOI: http://dx.doi.org/10.1016/j.jhazmat.2014.11.033.
  • Fu J, Wang X, Li J, Ding Y, Chen L. Synthesis of multi-ion imprinted polymers based on dithizone chelation for simultaneous removal of Hg2+, Cd2+, Ni2+ and Cu2+ from aqueous solutions. RSC Advances. 2016, 6 (50): 44087-95. DOI: 10.1039/C6RA07785D.
  • Chen J, Tong P, Lin Y, Lu W, He Y, Lu M, Zhang L, Chen G. Highly sensitive fluorescent sensor for mercury based on hyperbranched rolling circle amplification. Analyst. 2015, 140 (3): 907-11. DOI: 10.1039/C4AN01769B.
  • Sedghi R, Heidari B, Behbahani M. Synthesis, characterization and application of poly(acrylamide-co-methylenbisacrylamide) nanocomposite as a colorimetric chemosensor for visual detection of trace levels of Hg and Pb ions. Journal of Hazardous Materials. 2015, 285: 109-16. DOI: http://dx.doi.org/10.1016/j.jhazmat.2014.11.049.
  • Azzazy H, Shahat A, Hassan MAH, Chemosensors, compositions and uses thereof. T.A.U.O. Cairo, 2014.
  • Ojida A, Takashima I, Kohira T, Nonaka H, Hamachi I. Turn-On Fluorescence Sensing of Nucleoside Polyphosphates Using a Xanthene-Based Zn(II) Complex Chemosensor. Journal of the American Chemical Society. 2008, 130 (36): 12095-101. DOI: 10.1021/ja803262w.
  • Güney O, Cebeci FÇ. Molecularly imprinted fluorescent polymers as chemosensors for the detection of mercury ions in aqueous media. Journal of Applied Polymer Science. 2010, 117 (4): 2373-9. DOI: 10.1002/app.32077.
  • Jeong Y, Yoon J. Recent progress on fluorescent chemosensors for metal ions. Inorganica Chimica Acta. 2012, 381: 2-14. DOI: http://dx.doi.org/10.1016/j.ica.2011.09.011.
  • Chen Q-Y, Chen C-F. A new Hg2+-selective fluorescent sensor based on a dansyl amide-armed calix[4]-aza-crown. Tetrahedron Letters. 2005, 46 (1): 165-8. DOI: http://dx.doi.org/10.1016/j.tetlet.2004.10.169.
  • Silva AJC, Silva Jr JG, Alves Jr S, Tonholo J, Ribeiro AS. Dansyl-based fluorescent films prepared by chemical and electrochemical methods: cyclic voltammetry, afm and spectrofluorimetry characterization. Journal of the Brazilian Chemical Society. 2011, 22: 1808-15.
  • Parola AJ, Lima JC, Pina F, Pina J, Melo JSd, Soriano C, García-España E, Aucejo R, Alarcón J. Synthesis and photophysical properties of dansyl-based polyamine ligands and their Zn(II) complexes. Inorganica Chimica Acta. 2007, 360 (3): 1200-8. DOI: http://dx.doi.org/10.1016/j.ica.2006.11.006.
  • Tharmaraj V, Pitchumani K. An acyclic, dansyl based colorimetric and fluorescent chemosensor for Hg(II) via twisted intramolecular charge transfer (TICT). Analytica Chimica Acta. 2012, 751: 171-5. DOI: http://dx.doi.org/10.1016/j.aca.2012.09.016.
  • Talanova GG, Talanov VS. Dansyl-containing fluorogenic calixarenes as optical chemosensors of hazardous metal ions: a mini-review. Supramolecular Chemistry. 2010, 22 (11-12): 838-52. DOI: 10.1080/10610278.2010.514612.
  • Horie K, Yamada S, Machida S, Takahashi S, Isono Y, Kawaguchi H. Dansyl Fluorescence and Local Structure of Dansyl-Labeled Core-Shell and Core-Hair Type Microspheres in Solution. Macromolecular Chemistry and Physics. 2003, 204 (1): 131-8. DOI: 10.1002/macp.200290064.
  • González-Benito J, Mikeš F, Baselga J, Lemetyinemm H. Fluorescence method using labeled chromophores to study the curing kinetics of a polyurethane system. Journal of Applied Polymer Science. 2002, 86 (12): 2992-3000. DOI: 10.1002/app.11281.
  • Buruiana EC, Chibac AL, Buruiana T. Polyacrylates containing dansyl semicarbazide units sensitive for some structures in solution and film. Journal of Photochemistry and Photobiology A: Chemistry. 2010, 213 (2–3): 107-13. DOI: http://dx.doi.org/10.1016/j.jphotochem.2010.05.008.
  • Zhou S, Zhou Z-Q, Zhao X-X, Xiao Y-H, Xi G, Liu J-T, Zhao B-X. A dansyl based fluorescence chemosensor for Hg2+ and its application in the complicated environment samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015, 148: 348-54. DOI: http://dx.doi.org/10.1016/j.saa.2015.03.126.
  • Jisha VS, Thomas AJ, Ramaiah D. Fluorescence Ratiometric Selective Recognition of Cu2+ Ions by Dansyl−Naphthalimide Dyads. The Journal of Organic Chemistry. 2009, 74 (17): 6667-73. DOI: 10.1021/jo901164w.
  • Liu S-Y, He Y-B, Qing G-y, Xu K-X, Qin H-J. Fluorescent sensors for amino acid anions based on calix[4]arenes bearing two dansyl groups. Tetrahedron: Asymmetry. 2005, 16 (8): 1527-34. DOI: http://dx.doi.org/10.1016/j.tetasy.2005.02.032.
  • Yin J, Guan X, Wang D, Liu S. Metal-Chelating and Dansyl-Labeled Poly(N-isopropylacrylamide) Microgels as Fluorescent Cu2+ Sensors with Thermo-Enhanced Detection Sensitivity. Langmuir. 2009, 25 (19): 11367-74. DOI: 10.1021/la901377h.
  • Murariu M, Buruiana EC. Synthesis and characterization of new optically active poly(acrylamide/methacrylurea-co-vinyl acetate) copolymers with dansyl units. Designed Monomers and Polymers. 2015, 18 (2): 118-28. DOI: 10.1080/15685551.2014.971391.
  • Joshi BP, Park J, Lee WI, Lee K-H. Ratiometric and turn-on monitoring for heavy and transition metal ions in aqueous solution with a fluorescent peptide sensor. Talanta. 2009, 78 (3): 903-9. DOI: http://dx.doi.org/10.1016/j.talanta.2008.12.062.
  • Wanichacheva N, Watpathomsub S, Lee VS, Grudpan K. Synthesis of a Novel Fluorescent Sensor Bearing Dansyl Fluorophores for the Highly Selective Detection of Mercury (II) Ions. Molecules. 2010, 15 (3): 1798.
  • Beck MT, Nagypal L, Chemistry of Complex Equilibria. 1990, NewYork: Halsted Press.
  • Senthamizhan A, Celebioglu A, Bayir S, Gorur M, Doganci E, Yilmaz F, Uyar T. Highly Fluorescent Pyrene-Functional Polystyrene Copolymer Nanofibers for Enhanced Sensing Performance of TNT. ACS Applied Materials & Interfaces. 2015, 7 (38): 21038-46. DOI: 10.1021/acsami.5b07184.
  • Hasegawa S, Takeshita H, Yoshii F, Sasaki T, Makuuchi K, Nishimoto S. Thermal degradation behavior of gamma-irradiated acetyloxy end-capped poly(oxymethylene). Polymer. 2000, 41 (1): 111-20. DOI: http://dx.doi.org/10.1016/S0032-3861(99)00131-7.
  • Flink S, C. J. M. van Veggel F, N. Reinhoudt D. A self-assembled monolayer of a fluorescent guest for the screening of host molecules. Chemical Communications. 1999 (21): 2229-30. DOI: 10.1039/A906563F.
  • Ding L, Fang Y, Jiang L, Gao L, Yin X. Twisted intra-molecular electron transfer phenomenon of dansyl immobilized on chitosan film and its sensing property to the composition of ethanol–water mixtures. Thin Solid Films. 2005, 478 (1–2): 318-25. DOI: http://dx.doi.org/10.1016/j.tsf.2004.07.013.
There are 37 citations in total.

Details

Primary Language English
Subjects Electrochemistry
Journal Section Articles
Authors

Erdinç Doğancı

Mesut Gorur This is me

Publication Date January 8, 2017
Submission Date July 28, 2016
Published in Issue Year 2016

Cite

Vancouver Doğancı E, Gorur M. SYNTHESIS, CHARACTERIZATION, AND CHEMOSENSING APPLICATION OF POLY(METHYL METHACRYLATE-CO-HYDROXYETHYL METHACRYLATE) WITH DANSYL SIDE GROUP. JOTCSA. 2017;3(3):565-82.