Research Article
BibTex RIS Cite
Year 2016, , 683 - 706, 08.01.2017
https://doi.org/10.18596/jotcsa.287303

Abstract

References

  • McKeown NB. Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press 1998. ISBN:9780521496230
  • Leznoff CC, Lever ABP. Phthalocyanines: Properties and Applications, vols. 1-4, VCH, Weinheim, 1998. ISBN: 978-0-471-18720-2 ; ISBN: 978-0-471-18828-5; ISBN: 978-0-471-18863-6; ISBN: 978-0-471-18629-8
  • Wörhle D. Phthalocyanines in macromolecular phases-methods of synthesis and properties of the materials. Macromol. Rapid Comm. 2001 Feb;22:2;68-97. DOI: 10.1002/1521-3927(20010201)22:2<68::AID-MARC68>3.0.CO;2-Z
  • Duro JA, Torre G, Barbera J, Serrano JL, Torres T. Synthesis and Liquid-Crystal Behavior of Metal-Free and Metal-Containing Phthalocyanines Substituted with Long-Chain Amide Groups. Chem. Mater. 1996 May; 8:5;1061–6. DOI: 10.1021/cm950478f
  • Yakuphanoglu F, Durmuş M, Okutan M, Köysal O, Ahsen V. The refractive Index dispersion and theoptical constants of metal-free and nickel(II) phthalocyanines liquid crystals. Physica B: 2006 Mar;373:262–6. DOI:10.1016/j.physb.2005.11.153
  • Xia H, Nogami M. Copper phthalocyanine bonding with gel and their optical properties. Opt. Mater. 2000 Nov;15:2;93-8. DOI:10.1016/S0925-3467(00)00024-0
  • Makhseed S, Al-Sawah M, Samuel J, Manaa H. Synthesis, characterization and nonlinear optical properties of non aggregating hexadeca-substituted phthalocyanines. Tetrahedron Lett. 2009 Jan;50:2;165-8. DOI:10.1016/j.tetlet.2008.10.102
  • Ben-Hur E, Otjen J, Horowitz B. Silicon Phthalocyanine Pc 4 and Red Light Causes Apoptosis in HIV-infected Cells. Photochem Photobiol. 1997 Mar;65:3;456-460. DOI: 10.1111/j.1751-1097.1997.tb08589.x
  • Margolis-Nunno H, Ben-Hur E, Gottlieb P, Robinson R, Oetjen J, Horowitz B. Inactivation by phthalocyanine photosensitization of multiple forms of human immuno deficiency virus in red cell concentrates. Transfusion. 1996 Aug;36:8;743-750. DOI:10.1046/j.1537-2995.1996.36896374381.x
  • Krasnov YS, Kolbasov GY, Tretyakoya IN, Tomachynska LA, Chernii YY, Volkov SV. Dynamics of redox processes and electrochromism of films of zirconium (IV) phthalocyanines without-of-plane β-dicarbonylligands. Solid State Ionics. 2009 Jun;180:14-16;928-933. DOI:10.1016/j.ssi.2009.03.019
  • Monk PMS, Mortimer RJ, Rosseinsky DR. Electrochromism: Fundamentals and Applications. VCH, Weinheim, 2008. ISBN: 978-3-527-61536-0
  • Ikeuchi T, Nomoto H, Masaki N, Griffith MJ, Mori S, Kimura M. Molecular engineering of zinc phthalocyanine sensitizers for efficient dye-sensitized solar cells. Chem. Commun. 2014;50:1941-3. DOI: 10.1039/C3CC47714B
  • Kimura M, Nomoto H, Suzuki H, Ikeuchi T, Matsuzaki H, Murakami TN, Furube A, Masaki N, Griffith MJ, Mori S. Molecular Design Rule of Phthalocyanine Dyes for Highly Efficient Near-IR Performance in Dye-Sensitized Solar Cells. Chem Eur J. 2013 Jun;19;23;7496-7502. DOI: 10.1002/chem.201300716
  • Basova TV, Taşaltın C, Gürek AG, Ebeoğlu MA, Öztürk ZZ, Ahsen V. Mesomorphic phthalocyanine as chemically sensitive coatings for chemical sensors. Sensors and Actuators B: Chemical. 2003 Nov;96:1-2;70-5. DOI:10.1016/S0925-4005(03)00487-8
  • Valli L. Phthalocyanine-based Langmuir–Blodgett films as chemical sensors. Advances in Colloid and Interface Science. 2005 Nov;116:1-3;13-44. doi:10.1016/j.cis.2005.04.008
  • Zhang Y, Cai X, Bian Y, Jiang J. Organic Semiconductors of Phthalocyanine Compounds for Field Effect Transistors (FETs). Structure and Bonding. 2009 Dec;135: 275-321.ISBN: 978-3-642-04751-0
  • Bouvet M. Phthalocyanine-basedfield-effect transistors as gas sensors. Analytical and Bioanalytical Chemistry. 2006 Jan;384:2;366-373. ISSN:1618-2642
  • Durmuş M, Ahsen V. Water-soluble cationic gallium(III) and indium(III) phthalocyanines for photodynamictherapy. Journal of Inorganic Biochemistry 2010 Mar;104:3;297-309. DOI:10.1016/j.jinorgbio.2009.12.011
  • Çakır D, Çakır V, Bıyıklıoğlu Z, Durmuş M, Kantekin H. New water soluble cationic zinc phthalocyanines as potential for photodynamic therapy of cancer. J Orgonomet. Chem. 2013 Nov; 745-746:423-431. DOI:10.1016/j.jorganchem.2013.08.025
  • Ranyuk E, Cauchon, Klarskov, Guerin B, van Lier. Phthalocyanine–Peptide Conjugates: Receptor-Targeting Bifunctional Agents for Imaging and Photodynamic Therapy. J. Med. Chem. 2013 Jan; 56:4;1520–1534. DOI: 10.1021/jm301311c
  • Eberhardt W, Hanack M. Synthesis of Hexadecaalkyl-Substituted Metal Phthalocyanines. Synthesis. 1998;12:1760-4. DOI: 10.1055/s-1998-2218
  • Akdemir N, Gümrükcüoğlu İE, Ağar E. Synthesis and Characterization of Novel Phthalocyanines Containing N-(n-Octyl)mercaptoAcetamid Substituents. Synth. React. Inorg. Met.-Org. Chem. 2005;35:10:819-824. DOI:10.1080/15533170500360297
  • Gürel E, Pişkin M, Altun S, Odabaş Z, Durmuş M. Synthesis, characterization and investigation of the photophysical and photochemical properties of highly soluble novel metal-free, zinc(II), and indium(III) phthalocyanines substituted with 2,3,6-trimethylphenoxy moieties. Dalton Trans. 2015;44:6202-6211. DOI:10.1039/C5DT00304K
  • Ağar E, Şaşmaz S, Akdemir N, Keskin İ. Synthesis and Characterization of New Phthalocyanines Containing Four 15-Membered Tetrathiaoxa Macrocycles. Synth. React. Inorg. Met.-Org. Chem. 1999;29:3;473-485. DOI:10.1080/00945719909349463
  • Şaşmaz S, Ağar E, Akdemir N, Keskin İ. Synthesis and Characterization of New Phthalocyanines Containing Thio-Oxa-Ether Moieties. Dyes and Pigments. 1998 May;37:3;223-230. DOI:10.1016/S0143-7208(97)00061-2
  • Ağar E, Şaşmaz S, Akdemir N, Keskin İ. Synthesis and Characterization of Novel Phthalocyanines Containing Four 15-Membered Oxathiadiaza Mixed-donor Macrocycles. Dalton Trans. 1997;2087-2090. DOI: 10.1039/A607349B
  • Özil M, Ağar E, Şaşmaz S, Kahveci B, Akdemir N, Gümrükçüoğlu İE. Microwave-assisted synthesis and characterization of the monomeric phthalocyanines containing naphthalene-amide group moieties and the polymeric phthalocyanines containing oxa-azabridge. Dyes and Pigments. 2007;75:3;732-740. DOI:10.1016/j.dyepig.2006.07.026
  • Kantar C, Akdemir N, Ağar E, Ocak N, Şaşmaz S. Microwave-assisted synthesis and characterization of differently substituted phthalocyanines containing 3,5-dimethoxyphenol and octanethiol moieties. Dyes and Pigments. 2007;76:1;7-12. DOI:10.1016/j.dyepig.2006.08.005
  • Akbal T, Akdemir N, Ağar E, Kantar C, Erdönmez A. 4-(2,3,5-trimethylphenoxy)phthalonitrile. Acta Cryst. E 2005 Aug;E61:8;o2630-o2631. DOI: 10.1107/S1600536805022592.
  • Young JG, Onyebuagu, W. Synthesis and characterization of di-disubstitutedphthalocyanines. J. Org. Chem. 1990 Mar;55:7;2155-9. DOI:10.1021/jo00294a032
  • Armarego WLF, Perrin DD., Purification of Laboratory chemicals, 6nd ed.; Elsevier: Burlington, 2009. ISBN: 978-1-85617-567-8
  • a) Becke A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. J. Chem. Phys. 1988 Sep;38:3098-3100. DOI:10.1103/PhysRevA.38.3098.
  • b) Becke AD. Density-Functional Thermochemistry. I. The Effect of the Exchange-Only Gradient Correction. J. Chem. Phys. 1992 Feb;96:2155-2160. DOI: 10.1063/1.462066.
  • c) Becke AD. Density functional thermochemistry III.The role of exact exchange. J. Chem. Phys. 1993 Apr;98:5648-5652. DOI:10.1063/1.464913.
  • Ditchfield R, Hehre WJ, Pople JA. Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian Type Basis for Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1971 Jan; 54:724-728. DOI:10.1063/1.1674902.
  • Lee C, Yang C.W, Parr R. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. 1988 Jan;37:785–789. DOI:10.1103/PhysRevB.37.785.
  • Merrick J.P, Moran D, Radom L. An Evaluation of Harmonic Vibrational Frequency Scale Factors. J. Phys. Chem. A. 2007 Oct;111:11683-11700. DOI:10.1021/jp073974n.
  • a) Wolinski K, Hilton J.F, Pulay P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J. Am. Chem. Soc. 1990 Nov;112:8251-8260. DOI:10.1021/ja00179a005
  • b) Cheeseman J.R, Trucks G.W, Keith T.A, Frisch M.J.A comparison of models for calculating nuclear magnetic resonance shielding tensors. J Chem Phys 1996 Apr;104:5497-5509. DOI:10.1063/1.471789.
  • Gaussian 09, Revision E.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
  • GaussView, Version 5, Dennington, Roy; Keith, Todd; Millam, John. Semichem Inc., Shawnee Mission, KS, 2009.
  • Brannon JH, Magde D. Picosecond laser photophysics. Group 3A phthalocyanines. J. Am. Chem. Soc. 1980 Jan;102:1;62-5. DOI: 10.1021/ja00521a011.
  • Ogunsipe A, Nyokong T. Photophysical and photochemical studies of sulphonated non-transition metal phthalocyanines in aqueous and non-aqueous media. J. Photochem. Photobiol. A: Chem. 2005 Jul;173:2;211-220. DOI:10.1016/j.jphotochem.2005.03.001.
  • Hasan M, Shalaby M. Synthesis, click reaction, molecular structure, spectroscopic and DFT computational studies on 3-(2,6-bis(trifluoromethyl)phenoxy)-6- (prop-2-yn-1-yloxy)phthalonitrile. J. Mol. Struc. 2016 Jun;1113:88-98. DOI:10.1016/j.molstruc.2016.01.078.
  • Tereci H, Askeroğlu İ, Akdemir N, Uçar İ, Büyükgüngör O. Combined experimental and theoretical approaches to the molecular structure of 4-(1-formylnaphthalen-2-yloxy)phthalonitrile. Spectro Chimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2012 Oct;96:569–577. DOI:10.1016/j.saa.2012.07.005.
  • Akçay H. T, Bayrak R, Şahin E, Karaoğlu K, Demirbaş Ü. Experimental and computational studies on 4-[(3,5-dimethyl-1H-pyrazol-1-yl)methoxy]phthalonitrile and synthesis and spectroscopic characterization of its novel phthalocyanine magnesium(II) and tin(II) metal complexes. Spectro Chimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2013 Oct;114:531-540. DOI:10.1016/j.saa.2013.05.042.
  • Tanak H. Molecular structure, spectroscopic and DFT computational studies on 4,5-bis(tert-butylsulfanyl)phthalonitrile. J. Mol. Struct. 2015 Nov;1090:86-92. DOI:10.1016/j.molstruc.2014.11.025.
  • Ferraro J.R, Basile L.J, Editors. Fourier Transform Infrared Spectroscopy: Applications to Chemical Systems (Vol. 1). Academic Press, USA;1978. 311p. ISBN: 978-0122541018.
  • Socrates G.Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd Edition. John Wiley&Sons LTD, UK; 2004. 366 p. ISBN: 978-0-470-09307-8.
  • Tanak H, Köysal Y, Işık Ş, Yaman H, Ahsen V. Experimental and Computational Approaches to the Molecular Structure of 3-(2-Mercaptopyridine)phthalonitrile. Bull. Korean Chem. Soc. 2011 Feb; 32:673-680. DOI: 10.5012/bkcs.2011.32.2.673.
  • Zhang X-F, Jia D, Song A, Liu Q. 3-(2-Nitrophenoxy)phthalonitrile. Acta Cryst. E. 2008 Feb; E64:2;356. DOI: 10.1107/S1600536807067797.
  • Halls, M.D, Aroca R, Terekhov D.S, D’Ascanio, A, Leznoff, C.C. Vibrational spectra of halophthalonitriles. Spectro Chimica Acta Part A: Molecular and Biomolecular Spectroscopy 1998 Feb, 54:2;305-317. DOI:10.1016/S1386-1425(97)00236-9.
  • Erdik E. Organik Kimyada Spektroskopik Yöntemler. Ankara, Türkiye: Gazi Kitabevi; 2008. ISBN: 975-7373-04-1.
  • Kalinowski H.O, Berger S, Braun S. Carbon-13 NMR Spectroscopy. Chichester, UK John Wiley&Sons; 1988. 792 p. ISBN: 978-0-471-91306-1.
  • Balcı M. Nükleer Manyetik Rezonans Spektroskopisi. Ankara, Türkiye: ODTÜ Yayıncılık, 2004. 452p. ISBN:975-7064-23-8

Synthesis, characterization and investigation of the spectroscopic properties of novel peripherally 2,3,5-trimethylphenoxy substituted Cu and Co phthalocyanines, the computational and experimental studies of the 4-(2,3,5-trimethylphenoxy)phthalonitrile

Year 2016, , 683 - 706, 08.01.2017
https://doi.org/10.18596/jotcsa.287303

Abstract

4-(2,3,5-trimethylphenoxy)phthalonitrile (3) was firstly prepared via aromatic nucleophilic substitution reaction and characterized by FT-IR, mass spectrometry, 1H and 13C NMR techniques. The molecular structure of the compound (3) was optimized using Density Functional Theory (DFT/B3LYP) method with 6-311G(d,p) basis set in the ground state. The molecular geometric parameters which were obtained by X-ray single crystal diffraction method and the spectral results were compared with computed bond lengths and angles, vibrational frequencies and 1H, 13C NMR chemical shifts values of the compound (3). Also, Cu(II) and Co(II) phthalocyanines were synthesized by the treatment of dinitrile derivative with anhydrous CuCl2 or CoCl2 under N2 atmosphere in dry n-pentanol at 140oC. The new compounds have been determined by elemental analysis, FT-IR and electronic absorption. The UV-Vis spectra of the Cu(II) and Co(II) phthalocyanines were recorded with different concentration in THF and also with different solvents as DMF, DMSO, DCM, CHCl3, toluene.

References

  • McKeown NB. Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press 1998. ISBN:9780521496230
  • Leznoff CC, Lever ABP. Phthalocyanines: Properties and Applications, vols. 1-4, VCH, Weinheim, 1998. ISBN: 978-0-471-18720-2 ; ISBN: 978-0-471-18828-5; ISBN: 978-0-471-18863-6; ISBN: 978-0-471-18629-8
  • Wörhle D. Phthalocyanines in macromolecular phases-methods of synthesis and properties of the materials. Macromol. Rapid Comm. 2001 Feb;22:2;68-97. DOI: 10.1002/1521-3927(20010201)22:2<68::AID-MARC68>3.0.CO;2-Z
  • Duro JA, Torre G, Barbera J, Serrano JL, Torres T. Synthesis and Liquid-Crystal Behavior of Metal-Free and Metal-Containing Phthalocyanines Substituted with Long-Chain Amide Groups. Chem. Mater. 1996 May; 8:5;1061–6. DOI: 10.1021/cm950478f
  • Yakuphanoglu F, Durmuş M, Okutan M, Köysal O, Ahsen V. The refractive Index dispersion and theoptical constants of metal-free and nickel(II) phthalocyanines liquid crystals. Physica B: 2006 Mar;373:262–6. DOI:10.1016/j.physb.2005.11.153
  • Xia H, Nogami M. Copper phthalocyanine bonding with gel and their optical properties. Opt. Mater. 2000 Nov;15:2;93-8. DOI:10.1016/S0925-3467(00)00024-0
  • Makhseed S, Al-Sawah M, Samuel J, Manaa H. Synthesis, characterization and nonlinear optical properties of non aggregating hexadeca-substituted phthalocyanines. Tetrahedron Lett. 2009 Jan;50:2;165-8. DOI:10.1016/j.tetlet.2008.10.102
  • Ben-Hur E, Otjen J, Horowitz B. Silicon Phthalocyanine Pc 4 and Red Light Causes Apoptosis in HIV-infected Cells. Photochem Photobiol. 1997 Mar;65:3;456-460. DOI: 10.1111/j.1751-1097.1997.tb08589.x
  • Margolis-Nunno H, Ben-Hur E, Gottlieb P, Robinson R, Oetjen J, Horowitz B. Inactivation by phthalocyanine photosensitization of multiple forms of human immuno deficiency virus in red cell concentrates. Transfusion. 1996 Aug;36:8;743-750. DOI:10.1046/j.1537-2995.1996.36896374381.x
  • Krasnov YS, Kolbasov GY, Tretyakoya IN, Tomachynska LA, Chernii YY, Volkov SV. Dynamics of redox processes and electrochromism of films of zirconium (IV) phthalocyanines without-of-plane β-dicarbonylligands. Solid State Ionics. 2009 Jun;180:14-16;928-933. DOI:10.1016/j.ssi.2009.03.019
  • Monk PMS, Mortimer RJ, Rosseinsky DR. Electrochromism: Fundamentals and Applications. VCH, Weinheim, 2008. ISBN: 978-3-527-61536-0
  • Ikeuchi T, Nomoto H, Masaki N, Griffith MJ, Mori S, Kimura M. Molecular engineering of zinc phthalocyanine sensitizers for efficient dye-sensitized solar cells. Chem. Commun. 2014;50:1941-3. DOI: 10.1039/C3CC47714B
  • Kimura M, Nomoto H, Suzuki H, Ikeuchi T, Matsuzaki H, Murakami TN, Furube A, Masaki N, Griffith MJ, Mori S. Molecular Design Rule of Phthalocyanine Dyes for Highly Efficient Near-IR Performance in Dye-Sensitized Solar Cells. Chem Eur J. 2013 Jun;19;23;7496-7502. DOI: 10.1002/chem.201300716
  • Basova TV, Taşaltın C, Gürek AG, Ebeoğlu MA, Öztürk ZZ, Ahsen V. Mesomorphic phthalocyanine as chemically sensitive coatings for chemical sensors. Sensors and Actuators B: Chemical. 2003 Nov;96:1-2;70-5. DOI:10.1016/S0925-4005(03)00487-8
  • Valli L. Phthalocyanine-based Langmuir–Blodgett films as chemical sensors. Advances in Colloid and Interface Science. 2005 Nov;116:1-3;13-44. doi:10.1016/j.cis.2005.04.008
  • Zhang Y, Cai X, Bian Y, Jiang J. Organic Semiconductors of Phthalocyanine Compounds for Field Effect Transistors (FETs). Structure and Bonding. 2009 Dec;135: 275-321.ISBN: 978-3-642-04751-0
  • Bouvet M. Phthalocyanine-basedfield-effect transistors as gas sensors. Analytical and Bioanalytical Chemistry. 2006 Jan;384:2;366-373. ISSN:1618-2642
  • Durmuş M, Ahsen V. Water-soluble cationic gallium(III) and indium(III) phthalocyanines for photodynamictherapy. Journal of Inorganic Biochemistry 2010 Mar;104:3;297-309. DOI:10.1016/j.jinorgbio.2009.12.011
  • Çakır D, Çakır V, Bıyıklıoğlu Z, Durmuş M, Kantekin H. New water soluble cationic zinc phthalocyanines as potential for photodynamic therapy of cancer. J Orgonomet. Chem. 2013 Nov; 745-746:423-431. DOI:10.1016/j.jorganchem.2013.08.025
  • Ranyuk E, Cauchon, Klarskov, Guerin B, van Lier. Phthalocyanine–Peptide Conjugates: Receptor-Targeting Bifunctional Agents for Imaging and Photodynamic Therapy. J. Med. Chem. 2013 Jan; 56:4;1520–1534. DOI: 10.1021/jm301311c
  • Eberhardt W, Hanack M. Synthesis of Hexadecaalkyl-Substituted Metal Phthalocyanines. Synthesis. 1998;12:1760-4. DOI: 10.1055/s-1998-2218
  • Akdemir N, Gümrükcüoğlu İE, Ağar E. Synthesis and Characterization of Novel Phthalocyanines Containing N-(n-Octyl)mercaptoAcetamid Substituents. Synth. React. Inorg. Met.-Org. Chem. 2005;35:10:819-824. DOI:10.1080/15533170500360297
  • Gürel E, Pişkin M, Altun S, Odabaş Z, Durmuş M. Synthesis, characterization and investigation of the photophysical and photochemical properties of highly soluble novel metal-free, zinc(II), and indium(III) phthalocyanines substituted with 2,3,6-trimethylphenoxy moieties. Dalton Trans. 2015;44:6202-6211. DOI:10.1039/C5DT00304K
  • Ağar E, Şaşmaz S, Akdemir N, Keskin İ. Synthesis and Characterization of New Phthalocyanines Containing Four 15-Membered Tetrathiaoxa Macrocycles. Synth. React. Inorg. Met.-Org. Chem. 1999;29:3;473-485. DOI:10.1080/00945719909349463
  • Şaşmaz S, Ağar E, Akdemir N, Keskin İ. Synthesis and Characterization of New Phthalocyanines Containing Thio-Oxa-Ether Moieties. Dyes and Pigments. 1998 May;37:3;223-230. DOI:10.1016/S0143-7208(97)00061-2
  • Ağar E, Şaşmaz S, Akdemir N, Keskin İ. Synthesis and Characterization of Novel Phthalocyanines Containing Four 15-Membered Oxathiadiaza Mixed-donor Macrocycles. Dalton Trans. 1997;2087-2090. DOI: 10.1039/A607349B
  • Özil M, Ağar E, Şaşmaz S, Kahveci B, Akdemir N, Gümrükçüoğlu İE. Microwave-assisted synthesis and characterization of the monomeric phthalocyanines containing naphthalene-amide group moieties and the polymeric phthalocyanines containing oxa-azabridge. Dyes and Pigments. 2007;75:3;732-740. DOI:10.1016/j.dyepig.2006.07.026
  • Kantar C, Akdemir N, Ağar E, Ocak N, Şaşmaz S. Microwave-assisted synthesis and characterization of differently substituted phthalocyanines containing 3,5-dimethoxyphenol and octanethiol moieties. Dyes and Pigments. 2007;76:1;7-12. DOI:10.1016/j.dyepig.2006.08.005
  • Akbal T, Akdemir N, Ağar E, Kantar C, Erdönmez A. 4-(2,3,5-trimethylphenoxy)phthalonitrile. Acta Cryst. E 2005 Aug;E61:8;o2630-o2631. DOI: 10.1107/S1600536805022592.
  • Young JG, Onyebuagu, W. Synthesis and characterization of di-disubstitutedphthalocyanines. J. Org. Chem. 1990 Mar;55:7;2155-9. DOI:10.1021/jo00294a032
  • Armarego WLF, Perrin DD., Purification of Laboratory chemicals, 6nd ed.; Elsevier: Burlington, 2009. ISBN: 978-1-85617-567-8
  • a) Becke A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. J. Chem. Phys. 1988 Sep;38:3098-3100. DOI:10.1103/PhysRevA.38.3098.
  • b) Becke AD. Density-Functional Thermochemistry. I. The Effect of the Exchange-Only Gradient Correction. J. Chem. Phys. 1992 Feb;96:2155-2160. DOI: 10.1063/1.462066.
  • c) Becke AD. Density functional thermochemistry III.The role of exact exchange. J. Chem. Phys. 1993 Apr;98:5648-5652. DOI:10.1063/1.464913.
  • Ditchfield R, Hehre WJ, Pople JA. Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian Type Basis for Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1971 Jan; 54:724-728. DOI:10.1063/1.1674902.
  • Lee C, Yang C.W, Parr R. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. 1988 Jan;37:785–789. DOI:10.1103/PhysRevB.37.785.
  • Merrick J.P, Moran D, Radom L. An Evaluation of Harmonic Vibrational Frequency Scale Factors. J. Phys. Chem. A. 2007 Oct;111:11683-11700. DOI:10.1021/jp073974n.
  • a) Wolinski K, Hilton J.F, Pulay P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J. Am. Chem. Soc. 1990 Nov;112:8251-8260. DOI:10.1021/ja00179a005
  • b) Cheeseman J.R, Trucks G.W, Keith T.A, Frisch M.J.A comparison of models for calculating nuclear magnetic resonance shielding tensors. J Chem Phys 1996 Apr;104:5497-5509. DOI:10.1063/1.471789.
  • Gaussian 09, Revision E.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
  • GaussView, Version 5, Dennington, Roy; Keith, Todd; Millam, John. Semichem Inc., Shawnee Mission, KS, 2009.
  • Brannon JH, Magde D. Picosecond laser photophysics. Group 3A phthalocyanines. J. Am. Chem. Soc. 1980 Jan;102:1;62-5. DOI: 10.1021/ja00521a011.
  • Ogunsipe A, Nyokong T. Photophysical and photochemical studies of sulphonated non-transition metal phthalocyanines in aqueous and non-aqueous media. J. Photochem. Photobiol. A: Chem. 2005 Jul;173:2;211-220. DOI:10.1016/j.jphotochem.2005.03.001.
  • Hasan M, Shalaby M. Synthesis, click reaction, molecular structure, spectroscopic and DFT computational studies on 3-(2,6-bis(trifluoromethyl)phenoxy)-6- (prop-2-yn-1-yloxy)phthalonitrile. J. Mol. Struc. 2016 Jun;1113:88-98. DOI:10.1016/j.molstruc.2016.01.078.
  • Tereci H, Askeroğlu İ, Akdemir N, Uçar İ, Büyükgüngör O. Combined experimental and theoretical approaches to the molecular structure of 4-(1-formylnaphthalen-2-yloxy)phthalonitrile. Spectro Chimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2012 Oct;96:569–577. DOI:10.1016/j.saa.2012.07.005.
  • Akçay H. T, Bayrak R, Şahin E, Karaoğlu K, Demirbaş Ü. Experimental and computational studies on 4-[(3,5-dimethyl-1H-pyrazol-1-yl)methoxy]phthalonitrile and synthesis and spectroscopic characterization of its novel phthalocyanine magnesium(II) and tin(II) metal complexes. Spectro Chimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2013 Oct;114:531-540. DOI:10.1016/j.saa.2013.05.042.
  • Tanak H. Molecular structure, spectroscopic and DFT computational studies on 4,5-bis(tert-butylsulfanyl)phthalonitrile. J. Mol. Struct. 2015 Nov;1090:86-92. DOI:10.1016/j.molstruc.2014.11.025.
  • Ferraro J.R, Basile L.J, Editors. Fourier Transform Infrared Spectroscopy: Applications to Chemical Systems (Vol. 1). Academic Press, USA;1978. 311p. ISBN: 978-0122541018.
  • Socrates G.Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd Edition. John Wiley&Sons LTD, UK; 2004. 366 p. ISBN: 978-0-470-09307-8.
  • Tanak H, Köysal Y, Işık Ş, Yaman H, Ahsen V. Experimental and Computational Approaches to the Molecular Structure of 3-(2-Mercaptopyridine)phthalonitrile. Bull. Korean Chem. Soc. 2011 Feb; 32:673-680. DOI: 10.5012/bkcs.2011.32.2.673.
  • Zhang X-F, Jia D, Song A, Liu Q. 3-(2-Nitrophenoxy)phthalonitrile. Acta Cryst. E. 2008 Feb; E64:2;356. DOI: 10.1107/S1600536807067797.
  • Halls, M.D, Aroca R, Terekhov D.S, D’Ascanio, A, Leznoff, C.C. Vibrational spectra of halophthalonitriles. Spectro Chimica Acta Part A: Molecular and Biomolecular Spectroscopy 1998 Feb, 54:2;305-317. DOI:10.1016/S1386-1425(97)00236-9.
  • Erdik E. Organik Kimyada Spektroskopik Yöntemler. Ankara, Türkiye: Gazi Kitabevi; 2008. ISBN: 975-7373-04-1.
  • Kalinowski H.O, Berger S, Braun S. Carbon-13 NMR Spectroscopy. Chichester, UK John Wiley&Sons; 1988. 792 p. ISBN: 978-0-471-91306-1.
  • Balcı M. Nükleer Manyetik Rezonans Spektroskopisi. Ankara, Türkiye: ODTÜ Yayıncılık, 2004. 452p. ISBN:975-7064-23-8
There are 55 citations in total.

Details

Primary Language English
Subjects Electrochemistry
Journal Section Articles
Authors

Nesuhi Akdemir This is me

Publication Date January 8, 2017
Submission Date July 4, 2016
Published in Issue Year 2016

Cite

Vancouver Akdemir N. Synthesis, characterization and investigation of the spectroscopic properties of novel peripherally 2,3,5-trimethylphenoxy substituted Cu and Co phthalocyanines, the computational and experimental studies of the 4-(2,3,5-trimethylphenoxy)phthalonitrile. JOTCSA. 2017;3(3):683-706.