Research Article
BibTex RIS Cite
Year 2017, , 739 - 774, 31.07.2017
https://doi.org/10.18596/jotcsa.304584

Abstract

References

  • 1. McCormick D A, Contreras D. On the cellular and network bases of epileptic seizures Annu. Rev. Physiol. 2001 March; 63: 815-846. DOI: 10.1146/annurev.physiol.63.1.815
  • 2. Bohdan MM. Seizures-what is the mechanism underlying clinical manifestation of seizure activity as seen in epilepsy? American college of emerging physicians’ news. 2007 http://www.acep.org/clinical-practice Retrieved on December 2nd 2016 at 4.03 am.
  • 3. Gavernet L, Barrios IA, Sella CM, Bruno-Blanch LE. Design, synthesis, and anticonvulsant activity of some sulfamides. Bioorganic & Medicinal Chemistry. 2007; 15:5604–5614. http://dx.doi.org/10.1016/j.bmc.2007.05.024.
  • 4. Estrada E, Pena A. In Silico studies for the rational discovery of anticonvulsant compounds. Bioorg. Med.Chem. 2000 December; 8:2755- 2770. DOI: 10.1016/S0968-0896(00)00204-2.
  • 5. Reijs R, Aldenkamp AP, De Krom M. Mood effects of antiepilepsy drug. Epilepsy Behav. 2004 Febuary; 5(1):66-76. DOI: http://dx.doi.org/10.1016/j.yebeh.2003.11.009
  • 6. Bialer M, Johannessen SI, Kupferberg HJ, Levy RH, Perucca E, Tomson T. Progress report on new antiepileptic drugs: a summary of the Seventh Eilat Conference (EILAT VII). Epilepsy Res. 2004 September- October; 61(1-3) 1-48. DOI: 10.1016/j.eplepsyres.2004.07.010
  • 7. Edafiogho IO, Ananthalakshmi KV, Kombian SB. Anticonvulsant evaluation and mechanism of action of benzylamino enaminones. Bioorg. Med. Chem. 2006 March 14(150):15566-5272. Dio:10.1016/j.bmc.2006.03.049
  • 8. Eddington ND, Cox DS, Khurana M, Salama NN, Stables JP, Harrison SJ, Negussie A, Taylor RS, Tran UQ, Moore JA. Synthesis and anticonvulsant activity of enaminones. Part 7. Synthesis and anticonvulsant evaluation of ethyl 4-[(substituted phenyl)amino]-6-methyl-2-oxocyclohex-3-ene-1-carboxylates and their corresponding 5-methylcyclohex-2-enone derivatives. Eur J Med Chem. 2003 March; 38: 49–64. Doi:10.1016/S0223-5234(02)00006-5
  • 9. Malawska B, Kulig K, S’Piewaka A, Stables J. Investigation into new anticonvulsant derivatives of α-substituted N-benzylamides of γ-hydroxy- and γ-acetoxybutyric acid. Part5. Search for new anticonvulsant compounds. Bioorg Med Chem. 2004 Febuary; 12: 625-632. DOI: 10.1016/j.bmc.2003.10.036 10. White HS. Comparative anticonvulsant and mechanistic profile of the established and newer antiepileptic drugs. Epilepsia. 1999; 40 (Suppl.): S2-10. https://www.ncbi.nlm.nih.gov/pubmed/ 10530688
  • 11. Rogawski MA, Porter RJ. Antiepileptic drugs: pharmacological mechanisms and clinical efficacy with consideration of promising developmental stage compounds. Pharmacol. Rev. 1990 September; 42: 223-286. http://pharmrev.aspetjournals.org/content/42/3/223.long
  • 12. Leppik IE. Antiepileptic drugs in development: prospects for the near future. Epilepsia 1994 August, 35, 29-40. DOI: 10.1111/j.1528-1157.1994.tb05953.
  • 13. Perucca E. The new generation of antiepileptic drugs: advantages and disadvantages Br. J. Clin. Pharmacol. 1996 November; 42: 531-543. DOI: 10.1111/j.1365-2125.1996.tb00107.x
  • 14. Loscher W, Schmidt D. Strategies in antiepileptic drug development: is rational drug design superior to random screening and structural variation? Epilepsy Res. 1994, 17(2): 95-134. https://www.ncbi.nlm.nih.gov/pubmed/8194514
  • 15. Ibezim EC, Duchowicz PR, Ibezim NE, Mullen LMA, Onyishi IV, Brown SA, Castro EA. Computer - aided linear modeling employing QSAR for drug discovery. Scientific Research and Essay. 2009 December;4(13):1559-1564.http://www.idosi.org/abjas/abjas1(3-4)09/7pdf
  • 16. Cox B, Nobbs MS, Shah GP, Edney DD, Loft MS. Pyrazine compounds- Patent WO9838174. Exp.Opin.Ther.Patents. 1999; 9(10):1431-1436 http://dx.doi.org/10.1517/13543776.9.10.1431
  • 17. Bhutoria S, Ghoshal N. A Novel Approach for the Identification of Selective Anticonvulsants Based on Differential Molecular Properties for TBPS Displacement and Anticonvulsant Activity: An Integrated QSAR Modelling, QSAR Comb. Sci. 2008 May; 27(7): 876 – 889. DOI: 10.1002/qsar.20086000
  • 18. Macchiarulo A, De luca L, Costantino et al. QSAR study of anticonvulsant negative allosteric modulator of the AMPA receptor. J med. chem. 2004 March; 47:1860-1863. doi/abs/10.1021/jm0310838
  • 19. Abdulfatai U, Uzairu A, Uba S. Quantitative structure activity relationship study of anticonvulsant activity of α_substituted acetamido-N-benzylacetamide derivatives, Cogent Chemistry. 2016 April ;(2):1-12. http://dx.doi.org/10.1080/23312009.2016.1166538
  • 20. Lesk AM. Introduction to bioinformatics. Oxford University Press; 2002. 207p. ISBN: (pbk)0199251967
  • 21. Pedro JB, John BOM. A machine learning approach to predicting protein–ligand binding affinity with applications to molecular docking. Bioinformatics. 2010 May; 26(9): 1169-1175. doi:10.1093/bioinformatics/btq112
  • 22. Kornet MJ, Chu JYR. Synthesis and anticonvulsant testing of 4-phenylsemicarbazides J. Pharm. Sci. 1983 October; 72:1213-1215. DOI: 10.1002/chin.198414170
  • 23. Pajouhesh H, Parson R, Popp FD. Potential Anticonvulsants VI: Condensation of Isatins with Cyclohexanone and other Cyclic Ketones. J. Pharm. Sci. 1983 March; 72:318-321. doi: 10.1002/jps.2600720330
  • 24. Popp, F. D.; Pajouhesh, H. Potential anticonvulsants IV: Condensation of isatin with benzoylacetone and isopropyl methyl ketone. J. Pharm. Sci. 1982 September;71:1052-1054. DOI: http://dx.doi.org/10.1002/jps.2600710924
  • 25. Haj-Yehia A, Bialer M. Structure-pharmacokinetic relationships in a series of short fatty acid amides that possess anticonvulsant activity. J. Pharm. Sci. 1990 August, 79, 719-724.DOI: http://dx.doi.org/10.1002/jps.2600790814
  • 26. Hernandez-Gallegos Z, Lebmann PA. Partition Coefficients of three new anticonvulsants. J. Pharm. Sci. 1990 November; 79:1032-1033.DOI : http://dx.doi.org/10.1002/jps.2600791118
  • 27. Crider AM, Kolczynski TM, Miskell DL. Synthesis and anticonvulsant activity of racemic 2-amino-N-substituted succinimide derivatives. J. Pharm. Sci. 1981 Febuary, 70:192-195. DOI: http://dx.doi.org/10.1002/jps.2600700220
  • 28. Darling CM, Pryor P. Anticonvulsant activity of alkyl-substituted N-benzylcyanoacetamides J. Pharm. Sci. 1979 January; 68, 108-110. DOI:10.1002/jps.2600680137
  • 29. Kelley JL, Linn JA, Bankston DD, Burchall CJ, Soroko FE, Cooper BR. 8-Amino-3-benzyl-1,2,4-triazolo[4,3-a]pyrazines. Synthesis and anticonvulsant activity. J. Med. Chem. 1995 September; 38: 3676-3679.DOI: 10.1021/jm00018a029
  • 30. Kelley JL, Davis RG, McLean EW, Glen RC, Soroko FE, Cooper BR. Synthesis and anticonvulsant activity of N-Benzylpyrrolo[2,3-d]-, -pyrazolo[3,4-d]-, and -triazolo[4,5-d]pyrimidines: imidazole ring-modified analogs of 9-(2-Fluorobenzyl)-6-(methylamino)-9H-purine. J. Med. Chem.1995 September; 38 (19): 3884–3888.DOI: 10.1021/jm00019a019
  • 31. Kelley JL, Koble CS, Davis RG, McLean EW, Soroko FE, Cooper BR. l-(Fluorobenzyl)-4-amino-1H 1,2,3-triazolo[4,5-c]pyridines:Synthesis and Anticonvulsant ActivityJ. Med. Chem. 1995 September;38 (20): 4131–4134. DOI: 10.1021/jm00020a030 32. Dimmock JR, Puthucode RN, Smith JM, Hetherington M, Quail JW, Pugazhenthi U, Lechier T, Stables JP.(Aryloxy)aryl semicarbazones and related compounds: a novel class of anticonvulsant agents possessing high activity in the maximal electroshock screen. J Med Chem. 1996 September; 39(20):3984-97. DOI:10.1021/jm9603025
  • 33. Puthucode RN, Pugazhenthi U, Quail JW, Stables JP, Dimmock JR. Anticonvulsant activity of various aryl, arylidene and aryloxyaryl semicarbazones Eur. J. Med. Chem. 1998 July-August; 33: 595-607. http://dx.doi.org/10.1016/S0223-5234(98)80018-4
  • 34. Unverferth K, Engel J, Hofgen N, Rostock A, Gunther R, Lankau HJ, Menzer M, Rolfs A, Liebscher J, Mu¨ ller B, et al. Synthesis, anticonvulsant activity, and structure-activity relationships of sodium channel blocking 3-aminopyrroles. J Med Chem.1998 January; 41:63–73. DOI: 10.1021/jm970327j
  • 35. Shao Y, Molnar LF, Jung Y, Kussmann J, Ochsenfeld C, Brown ST, Gilbert ATB, Slipchenko LV, Levchenko SV, O’Neill DP, DiStasio RA, Lochan RC, Wang T, Beran GJO, Besley NA, Herbert JM, Lin CY, Van Voorhis T, Chien SH, Sodt A, Steele RP, Rassolov VA, Maslen PE, Korambath PP, Adamson RD, Austin B, Baker J, Byrd EFC, Dachsel H, Doerksen RH, Dreuw A, Dunietz BD, Dutoi AD, Furlani TR, Gwaltney SR, Heyden A, Hirata S, Hsu CP, Kedziora G, Khalliulin RZ, Klunzinger P, Lee AM, Lee MS, Liang WZ, Lotan I, Nair N, Peters B, Proynov EI, Pieniazek PA, Rhee YM, Ritchie J, Rosta E, Sherril CD, Simmonett AC, Subotnik JE, Woodcock III HL, Zhang W, Bell AT, Chakraborty AK, Chipman DM, Keil FJ, Warshel A, Hehre WJ, Schaefer HF, Kong J, Krylov AI, Gill PMW, Head-Gordon M. Advances in methods and algorithms in modern quantum chemistry program package. Phys. Chem. Chem. Phys., 2006 June; 8, 3172. DOI: 10.1039/B517914A
  • 36. Singh P. Quantitative structure-activity relationship study of substituted-[1,2,4] oxadiazoles as S1P1 agonists. Journal of Current Chemical and Pharmaceutical Sciences. 2013 Febuary; 3(1), .64-67. www.sadgurupublications.com/ContentPaper/2013/9192JCCPS3(1)2013P.pdf
  • 37. Ambur P, Aher RB, Gajewicz A, Pyzyt WRK, “NanoBRIDGES” software:open acess tools to perform QSAR and nano-QSAR modeling. Chem. Intel. Lab. Syst, 2015 Octomber; 147, 1-13. http://dx.doi.org/10.1016/j.chemolab.2015.07.007
  • 38. Kennard RW, Stone LA. Computer aided design of experiments. Technometrics. 1969 Febuary; 11:137–148. doi:10.2307/1266770
  • 39. Melagraki G, Afantitis A, Makridima K, Sarimveis H, Igglessi- Markopoulou O. Prediction of toxicity using a novel RBF neural network training methodology. J Mol Model. 2006 Febuary; 12:297–305. doi:10.1007/s00894-005-0032-8
  • 40. Afantitis A, Melagraki G, Sarimveis H, Koutentis PA, Markopoulos J, Igglessi-Markopoulou O. A novel QSAR model forpredicting induction of apoptosis by 4-aryl-4H-chromenes. Bioorg Med Chem. 2006 May; 14:6686–6694. doi:10.1016/j.bmc.2006.05.061
  • 41. Chakraborti AK, Gopalakrishnan B, Sobhia ME, Malde A. 3D-QSAR studies of indole derivatives as phosphodiesterase IV inhibitors. Eur J Med Chem. 2003 September; 38:975–982. doi:10.1016/j.ejmech. 2003.09.001
  • 42. Wu W, Walczak B, Massart DL,Heuerding S, Erni F, Last IR, Prebble KA. Artificial neural networks in classification of NIR spectral data: design of the training set. Chemom Intell Lab Syst. 1996 May; 33:35–46. doi:10.1016/0169-7439(95)00077-1
  • 43. Material studio 7.0 modeling and simulation software. Accerlys software Inc. 2007 available online at http//:accerlys.com/product/
  • 44. Rogers D, Hopfinger AJ. Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships. J.Chem. Inf. Comp. Sci.1994 July; 34, 854-866. DOI: 10.1021/ci00020a020
  • 45. Allison PD. Multiple regression: a primer. London: Pine Forge Press; 1999. 10-147p. ISBN-10: 0761985336
  • 46. Larose TD. Data mining methods and models. Wiley Interscience; 2002.114p. ISBN-13 978-0-471-66656-1.
  • 47. Golbraikh A, Tropsha A. Beware of q2!. J Mol Graphics Mod 2002 January; 20, 269–276. http://dx.doi.org/10.1016/S1093-3263(01)00123-1
  • 48. Roy K, Mitra I, Kar S, Ojha PK, Das RN, Kabir H. Comparative studies on some metrics for external validation of QSPR models. J Chem Inf Model. 2012 Febuary; 52:396–408. DOI:10.1021/ci200520g
  • 49. Tropsha A, Gramatica P, Gombar VK. The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci. 2003 Apil; 22:69–77. doi:10.1002/qsar.200390007
  • 50. Minovski N, Zuperl S, Drgan V, Novi M. Assessment of applicability domain for multivariate counter-propagation artificial neural network predictive models by minimum Euclidean distance space analysis: A case study. Analytica Chimica Acta. 2013 January;759:28–42. DOI: 10.1016/j.aca.2012.11.002
  • 51. Netzeva TI, Worth AP, Aldenberg T, Benigni R, Cronin MTD, Gramatica P, Jaworska JS, Kahn S, Klopman G, Marchant CA, Myatt G, Nikolova-Jeliazkova N, Patlewicz GY, Perkins R, Roberts DW, Schultz TW, Stanton DT, Van De Sandt JJM, Tong W, Veith G, Yang C. Current status of methods for defining the applicability domain of (quantitative) structure–activity relationships. Altern. Lab. Anim. 2005 April; 33, 155–173. http://www.atla.org.uk/current-status
  • 52. Topliss JG, Costello RJ. Chance correlations in structure– activity studies using multiple regression analysis. J Med Chem. 1972 Octomber; 15, 1066–1068 DOI: 10.1021/jm00280a017
  • 53. Motta LF, Gaudio AC, Takahata Y. Quantitative Structure–Activity Relationships of a Series of Chalcone Derivatives (1,3–Diphenyl–2–propen–1–one) as Anti Plasmodium falciparum Agents (Anti Malaria Agents), Internet Electron. J. Mol. Des. 2006, 5, 555–569, http://www.biochempress.com.
  • 54. David AB, Edwin K, Roy EW. Regression diagnostics: indentifying influential data and source of collinearity. Wiley-interscience: John Wiley & Sons, lnc., Hoboken, New Jersey, 2004. 85-93p. ISBN 0-47 1-69 1 17-8
  • 55. Ibezim EC, Duchowicz PR, Ibezim NE, Mullen LMA, Onyishi IV, Brown SA, Castro EA. Computer-Aided Linear Modeling Employing Qsar for Drug Discovery. African Journal of Basic and Applied Sciences. 2006; 1 (3-4), 76-82. https://www.idosi.org/ajbas/ajbas1(3-4)09/7.pdf
  • 56. Shapiro S, Guggenheim B. Inhibition of oral bacteria by phenolic compounds. Part 1 QSAR analysis using molecular connectivity. Quant. Struct.-Act. Relat. 1998 August; 17, 327–33. DOI: 10.1002/(SICI)1521-3838(199808)17:04<327::AID-QSAR327>3.0.CO;2-O
  • 57. Noolvi MN, Patel HM, Bhardwaj V. 2D qsar studies on a series of 4-anilino quinazoline derivatives as tyrosine kinase (egfr) inhibitor: an approach to design anticancer agents. Digest Journal of Nonmaterial and Biostructures. 2010 April; 5(20):387–401. http/:www.researchgate.net/262187015
  • 58. Habibi-Yangjeh A, Danandeh-Jenagharad M. Application of a genetic algorithm and an artificial neural network for global prediction of the toxicity of phenols to Tetrahymena pyriformis. Monatsh Chemistry 2009 October; 140, 1279–1288. doi: 10.1007/s00706-009-0185-8
  • 59. Tropsha A. Best practices for QSAR model development, validation, and exploitation. Mol Inf. 2010 July; 29, 476–488. DOI: 10.1002/minf.201000061
  • 60. Warren H, Sean O. Spartan 14 for windows, machintosh and linux tutorial and user's Guide. 18401 Von Karman Avenue, Suite 370 Irvine, CA 92612 U.S.A: Wavefunction Incoorperated; 2014. 289-291p. ISBN: 978-1-890661-42-2
  • 61. Stenberg P, Luthman K, Ellens H, Lee CP, Smith PL, Lago A, Elliot JD, Artursson P. Prediction of the intestinal absorption of endothelin receptor antagonists using three theoretical methods of increasing complexity. Pharm. Res. 1999 Octomber; 16:1520–1526. doi:10.1023/A:1015092201811
  • 62. Clark, DE. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 1. Prediction of intestinal absorption. J. Pharm. Sci. 1999 August; 88:807–816. DOI:10.1021/js980402t
  • 63. Franke, R. Theoretical Drug Design Methods. Elsevier: Amsterdam. 1984.115-123p.
  • 64. Osmialowski K, Halkiewicz J, Radecki A, Kaliszan, R. Quantum chemical parameters in correlation analysis of gas liquid chromatographic retention indices of amines J. Chromatography. 1985 December, 346, 53-60. DOI: 10.1016/S0021-9673(00)90493-X
  • 65. Fleming, I. Frontier Orbitals and Organic Chemical Reactions. Somerset New Jersey: John Wiley and Sons; 1976. 308p. ISBN 10: 0471018198
  • 66. Todeschini R, Consonni V, Mannhold R. Handbook of molecular descriptors. Wiley-VCH, Weinheim; 2000. 1-688p. ISBN 3-52-29913-0
  • 67. Cartier A, Rivail, JL. Electronic Descriptors in Quantitative Structure-Activity Relationship. Chemom. Intell. Lab. Sys. 1987 October, 1, 335-347. DOI: 10.1016/0169-7439(87)80039-4
  • 68. Bodor N, Gabanyi Z, Wong CK. A new method for the estimation of partition coefficient J. Am. Chem. Soc. 1989 May; 111: 3783-3786. DOI: 10.1021/ja00193a003
  • 69. Buydens L, Massart D, Geerlings P. Prediction of gas chromatographic retention indexes with topological, physicochemical, and quantum chemical parameters Anal. Chem. 1983 April, 55, 738-744. DOI: 10.1021/ac00255a034
  • 70. Klopman G, Iroff LD. Calculation of partition coefficients by the charge density method. J. Comput. Chem. 1981 June; 2: 157-160 DOI: 10.1002/jcc.540020204
  • 71. Ruslin N, Syamsudin. Quantitative Structure-Activity Relationship Analysis of Antimalarial Compound of Mangostin Derivatives Using Regression Linear Approach. Asian Journal of Chemistry. 2013 September; 25(11): 6136-6140. https://www.researchgate.net/.../260600323
  • 72. Clare, B. W.; Supuran, C. T. Carbonic anhydrase activators. 3: structure-activity correlations for a series of isozyme II activators. J. Pharm. Sci. 1994 June; 83:768. DOI: http://dx.doi.org/10.1002/jps.2600830603
  • 73. Ordorica MAV, Velázquez MLM, Ordorica JGV, Escobar JLV, Lehmann PAF. A Principal Component and Cluster Significance Analysis of the Antiparasitic Potency of Praziquantel and some Analogues. Quant. Struct.-Act. Relat. 1993; 12: 246–250. doi:10.1002/qsar.19930120305
  • 74. Milouser VZ, Leven JA, Arbing MA, Hunt JF, Put GS, Palmer AG. Solution structure of the NaV1.2 C-terminal EF-hand domain. J boil chemistry. 2009; 284: 6646-6654. DOI: 10.1074/jbc.M807401200
  • 75. Discovery studio visualization tool and modeling environment, BIOVIA discovery studio 2016 client: Accerlys software Inc. avilalable online at accelrys.com/resource-center/.../updates/discovery-studio/dstudio2016/latest.htm
  • 76. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, Journal of Computational Chemistry. 2010 January; 31: 455-461 Doi 10.1002/jcc-21334.

A novel QSAR model for designing, evaluating, and predicting the antiMES activity of new 1H-pyrazole-5-carboxylic acid derivatives

Year 2017, , 739 - 774, 31.07.2017
https://doi.org/10.18596/jotcsa.304584

Abstract

A quantitative
structure–activity relationship (QSAR) study was performed to develop a model
that relates the structures of 62 compounds, which have activity against
maximal electroshock induced seizure (MES), with their anti-MES activity.
Molecular structures of the compounds were geometrically optimized and
energetically minimized using a combination of modified Merck force field
(MMFF) molecular mechanics, Austin model 1 (AM1) semi-empirical quantum
mechanical and density functional theory (DFT) quantum mechanical method using
the Becke’s three parameter exchange functional (B3) hybrid with Lee, Yang and
Parr correlation functional (LYP) and basis set of the double zeta split
valence plus polarization quality 6-31G** i.e. B3LYP/6-31G**. Theoretically
derived descriptors were obtained from the optimized structures, a genetic
function approximation (GFA) algorithm was also applied to select the optimal
descriptors and multiple linear regression (MLR) was used to establish a relationship
between the anti-MES activity of the compounds and the optimal molecular
descriptors. A six-parametric equation containing dipole moment (μ), energy of
the lowest unoccupied molecular orbital (
ϵLUMO), polar surface area (PSA),
accessible surface area derived from wave function (WAA), sum of the square
root of square of the charge on all atom of the molecule (QA) and sum of the
square root of square of the charge on all fluorine atom in the molecule was
obtained as the QSAR model in the present study with good statistical qualities
(R
2=0.937, R2adj=0.928, F=104.11, R2pred=0.929
and  Q
2=0.913). The QSAR model
was used to study estimate the anti-MES activities of 1H-pyrazole-5-carboxylic acid derivatives not yet synthesized. 10
out of the 101 screened compounds had improved anti-MES activity when compared
to the template (i.e. ethyl
4-(4-chlorophenyl)-3-morpholino-1H-pyrrole-2-carboxylate, which is compound
number 61 in the dataset) used to design the 101 derivatives. These 10
compounds were docked with voltage-gated sodium channel (PDB code: 2KaV) and
there binding affinity were found to were found to be comparable to that of
phenytoin (a standard drug known to possess anti-MES activity).

References

  • 1. McCormick D A, Contreras D. On the cellular and network bases of epileptic seizures Annu. Rev. Physiol. 2001 March; 63: 815-846. DOI: 10.1146/annurev.physiol.63.1.815
  • 2. Bohdan MM. Seizures-what is the mechanism underlying clinical manifestation of seizure activity as seen in epilepsy? American college of emerging physicians’ news. 2007 http://www.acep.org/clinical-practice Retrieved on December 2nd 2016 at 4.03 am.
  • 3. Gavernet L, Barrios IA, Sella CM, Bruno-Blanch LE. Design, synthesis, and anticonvulsant activity of some sulfamides. Bioorganic & Medicinal Chemistry. 2007; 15:5604–5614. http://dx.doi.org/10.1016/j.bmc.2007.05.024.
  • 4. Estrada E, Pena A. In Silico studies for the rational discovery of anticonvulsant compounds. Bioorg. Med.Chem. 2000 December; 8:2755- 2770. DOI: 10.1016/S0968-0896(00)00204-2.
  • 5. Reijs R, Aldenkamp AP, De Krom M. Mood effects of antiepilepsy drug. Epilepsy Behav. 2004 Febuary; 5(1):66-76. DOI: http://dx.doi.org/10.1016/j.yebeh.2003.11.009
  • 6. Bialer M, Johannessen SI, Kupferberg HJ, Levy RH, Perucca E, Tomson T. Progress report on new antiepileptic drugs: a summary of the Seventh Eilat Conference (EILAT VII). Epilepsy Res. 2004 September- October; 61(1-3) 1-48. DOI: 10.1016/j.eplepsyres.2004.07.010
  • 7. Edafiogho IO, Ananthalakshmi KV, Kombian SB. Anticonvulsant evaluation and mechanism of action of benzylamino enaminones. Bioorg. Med. Chem. 2006 March 14(150):15566-5272. Dio:10.1016/j.bmc.2006.03.049
  • 8. Eddington ND, Cox DS, Khurana M, Salama NN, Stables JP, Harrison SJ, Negussie A, Taylor RS, Tran UQ, Moore JA. Synthesis and anticonvulsant activity of enaminones. Part 7. Synthesis and anticonvulsant evaluation of ethyl 4-[(substituted phenyl)amino]-6-methyl-2-oxocyclohex-3-ene-1-carboxylates and their corresponding 5-methylcyclohex-2-enone derivatives. Eur J Med Chem. 2003 March; 38: 49–64. Doi:10.1016/S0223-5234(02)00006-5
  • 9. Malawska B, Kulig K, S’Piewaka A, Stables J. Investigation into new anticonvulsant derivatives of α-substituted N-benzylamides of γ-hydroxy- and γ-acetoxybutyric acid. Part5. Search for new anticonvulsant compounds. Bioorg Med Chem. 2004 Febuary; 12: 625-632. DOI: 10.1016/j.bmc.2003.10.036 10. White HS. Comparative anticonvulsant and mechanistic profile of the established and newer antiepileptic drugs. Epilepsia. 1999; 40 (Suppl.): S2-10. https://www.ncbi.nlm.nih.gov/pubmed/ 10530688
  • 11. Rogawski MA, Porter RJ. Antiepileptic drugs: pharmacological mechanisms and clinical efficacy with consideration of promising developmental stage compounds. Pharmacol. Rev. 1990 September; 42: 223-286. http://pharmrev.aspetjournals.org/content/42/3/223.long
  • 12. Leppik IE. Antiepileptic drugs in development: prospects for the near future. Epilepsia 1994 August, 35, 29-40. DOI: 10.1111/j.1528-1157.1994.tb05953.
  • 13. Perucca E. The new generation of antiepileptic drugs: advantages and disadvantages Br. J. Clin. Pharmacol. 1996 November; 42: 531-543. DOI: 10.1111/j.1365-2125.1996.tb00107.x
  • 14. Loscher W, Schmidt D. Strategies in antiepileptic drug development: is rational drug design superior to random screening and structural variation? Epilepsy Res. 1994, 17(2): 95-134. https://www.ncbi.nlm.nih.gov/pubmed/8194514
  • 15. Ibezim EC, Duchowicz PR, Ibezim NE, Mullen LMA, Onyishi IV, Brown SA, Castro EA. Computer - aided linear modeling employing QSAR for drug discovery. Scientific Research and Essay. 2009 December;4(13):1559-1564.http://www.idosi.org/abjas/abjas1(3-4)09/7pdf
  • 16. Cox B, Nobbs MS, Shah GP, Edney DD, Loft MS. Pyrazine compounds- Patent WO9838174. Exp.Opin.Ther.Patents. 1999; 9(10):1431-1436 http://dx.doi.org/10.1517/13543776.9.10.1431
  • 17. Bhutoria S, Ghoshal N. A Novel Approach for the Identification of Selective Anticonvulsants Based on Differential Molecular Properties for TBPS Displacement and Anticonvulsant Activity: An Integrated QSAR Modelling, QSAR Comb. Sci. 2008 May; 27(7): 876 – 889. DOI: 10.1002/qsar.20086000
  • 18. Macchiarulo A, De luca L, Costantino et al. QSAR study of anticonvulsant negative allosteric modulator of the AMPA receptor. J med. chem. 2004 March; 47:1860-1863. doi/abs/10.1021/jm0310838
  • 19. Abdulfatai U, Uzairu A, Uba S. Quantitative structure activity relationship study of anticonvulsant activity of α_substituted acetamido-N-benzylacetamide derivatives, Cogent Chemistry. 2016 April ;(2):1-12. http://dx.doi.org/10.1080/23312009.2016.1166538
  • 20. Lesk AM. Introduction to bioinformatics. Oxford University Press; 2002. 207p. ISBN: (pbk)0199251967
  • 21. Pedro JB, John BOM. A machine learning approach to predicting protein–ligand binding affinity with applications to molecular docking. Bioinformatics. 2010 May; 26(9): 1169-1175. doi:10.1093/bioinformatics/btq112
  • 22. Kornet MJ, Chu JYR. Synthesis and anticonvulsant testing of 4-phenylsemicarbazides J. Pharm. Sci. 1983 October; 72:1213-1215. DOI: 10.1002/chin.198414170
  • 23. Pajouhesh H, Parson R, Popp FD. Potential Anticonvulsants VI: Condensation of Isatins with Cyclohexanone and other Cyclic Ketones. J. Pharm. Sci. 1983 March; 72:318-321. doi: 10.1002/jps.2600720330
  • 24. Popp, F. D.; Pajouhesh, H. Potential anticonvulsants IV: Condensation of isatin with benzoylacetone and isopropyl methyl ketone. J. Pharm. Sci. 1982 September;71:1052-1054. DOI: http://dx.doi.org/10.1002/jps.2600710924
  • 25. Haj-Yehia A, Bialer M. Structure-pharmacokinetic relationships in a series of short fatty acid amides that possess anticonvulsant activity. J. Pharm. Sci. 1990 August, 79, 719-724.DOI: http://dx.doi.org/10.1002/jps.2600790814
  • 26. Hernandez-Gallegos Z, Lebmann PA. Partition Coefficients of three new anticonvulsants. J. Pharm. Sci. 1990 November; 79:1032-1033.DOI : http://dx.doi.org/10.1002/jps.2600791118
  • 27. Crider AM, Kolczynski TM, Miskell DL. Synthesis and anticonvulsant activity of racemic 2-amino-N-substituted succinimide derivatives. J. Pharm. Sci. 1981 Febuary, 70:192-195. DOI: http://dx.doi.org/10.1002/jps.2600700220
  • 28. Darling CM, Pryor P. Anticonvulsant activity of alkyl-substituted N-benzylcyanoacetamides J. Pharm. Sci. 1979 January; 68, 108-110. DOI:10.1002/jps.2600680137
  • 29. Kelley JL, Linn JA, Bankston DD, Burchall CJ, Soroko FE, Cooper BR. 8-Amino-3-benzyl-1,2,4-triazolo[4,3-a]pyrazines. Synthesis and anticonvulsant activity. J. Med. Chem. 1995 September; 38: 3676-3679.DOI: 10.1021/jm00018a029
  • 30. Kelley JL, Davis RG, McLean EW, Glen RC, Soroko FE, Cooper BR. Synthesis and anticonvulsant activity of N-Benzylpyrrolo[2,3-d]-, -pyrazolo[3,4-d]-, and -triazolo[4,5-d]pyrimidines: imidazole ring-modified analogs of 9-(2-Fluorobenzyl)-6-(methylamino)-9H-purine. J. Med. Chem.1995 September; 38 (19): 3884–3888.DOI: 10.1021/jm00019a019
  • 31. Kelley JL, Koble CS, Davis RG, McLean EW, Soroko FE, Cooper BR. l-(Fluorobenzyl)-4-amino-1H 1,2,3-triazolo[4,5-c]pyridines:Synthesis and Anticonvulsant ActivityJ. Med. Chem. 1995 September;38 (20): 4131–4134. DOI: 10.1021/jm00020a030 32. Dimmock JR, Puthucode RN, Smith JM, Hetherington M, Quail JW, Pugazhenthi U, Lechier T, Stables JP.(Aryloxy)aryl semicarbazones and related compounds: a novel class of anticonvulsant agents possessing high activity in the maximal electroshock screen. J Med Chem. 1996 September; 39(20):3984-97. DOI:10.1021/jm9603025
  • 33. Puthucode RN, Pugazhenthi U, Quail JW, Stables JP, Dimmock JR. Anticonvulsant activity of various aryl, arylidene and aryloxyaryl semicarbazones Eur. J. Med. Chem. 1998 July-August; 33: 595-607. http://dx.doi.org/10.1016/S0223-5234(98)80018-4
  • 34. Unverferth K, Engel J, Hofgen N, Rostock A, Gunther R, Lankau HJ, Menzer M, Rolfs A, Liebscher J, Mu¨ ller B, et al. Synthesis, anticonvulsant activity, and structure-activity relationships of sodium channel blocking 3-aminopyrroles. J Med Chem.1998 January; 41:63–73. DOI: 10.1021/jm970327j
  • 35. Shao Y, Molnar LF, Jung Y, Kussmann J, Ochsenfeld C, Brown ST, Gilbert ATB, Slipchenko LV, Levchenko SV, O’Neill DP, DiStasio RA, Lochan RC, Wang T, Beran GJO, Besley NA, Herbert JM, Lin CY, Van Voorhis T, Chien SH, Sodt A, Steele RP, Rassolov VA, Maslen PE, Korambath PP, Adamson RD, Austin B, Baker J, Byrd EFC, Dachsel H, Doerksen RH, Dreuw A, Dunietz BD, Dutoi AD, Furlani TR, Gwaltney SR, Heyden A, Hirata S, Hsu CP, Kedziora G, Khalliulin RZ, Klunzinger P, Lee AM, Lee MS, Liang WZ, Lotan I, Nair N, Peters B, Proynov EI, Pieniazek PA, Rhee YM, Ritchie J, Rosta E, Sherril CD, Simmonett AC, Subotnik JE, Woodcock III HL, Zhang W, Bell AT, Chakraborty AK, Chipman DM, Keil FJ, Warshel A, Hehre WJ, Schaefer HF, Kong J, Krylov AI, Gill PMW, Head-Gordon M. Advances in methods and algorithms in modern quantum chemistry program package. Phys. Chem. Chem. Phys., 2006 June; 8, 3172. DOI: 10.1039/B517914A
  • 36. Singh P. Quantitative structure-activity relationship study of substituted-[1,2,4] oxadiazoles as S1P1 agonists. Journal of Current Chemical and Pharmaceutical Sciences. 2013 Febuary; 3(1), .64-67. www.sadgurupublications.com/ContentPaper/2013/9192JCCPS3(1)2013P.pdf
  • 37. Ambur P, Aher RB, Gajewicz A, Pyzyt WRK, “NanoBRIDGES” software:open acess tools to perform QSAR and nano-QSAR modeling. Chem. Intel. Lab. Syst, 2015 Octomber; 147, 1-13. http://dx.doi.org/10.1016/j.chemolab.2015.07.007
  • 38. Kennard RW, Stone LA. Computer aided design of experiments. Technometrics. 1969 Febuary; 11:137–148. doi:10.2307/1266770
  • 39. Melagraki G, Afantitis A, Makridima K, Sarimveis H, Igglessi- Markopoulou O. Prediction of toxicity using a novel RBF neural network training methodology. J Mol Model. 2006 Febuary; 12:297–305. doi:10.1007/s00894-005-0032-8
  • 40. Afantitis A, Melagraki G, Sarimveis H, Koutentis PA, Markopoulos J, Igglessi-Markopoulou O. A novel QSAR model forpredicting induction of apoptosis by 4-aryl-4H-chromenes. Bioorg Med Chem. 2006 May; 14:6686–6694. doi:10.1016/j.bmc.2006.05.061
  • 41. Chakraborti AK, Gopalakrishnan B, Sobhia ME, Malde A. 3D-QSAR studies of indole derivatives as phosphodiesterase IV inhibitors. Eur J Med Chem. 2003 September; 38:975–982. doi:10.1016/j.ejmech. 2003.09.001
  • 42. Wu W, Walczak B, Massart DL,Heuerding S, Erni F, Last IR, Prebble KA. Artificial neural networks in classification of NIR spectral data: design of the training set. Chemom Intell Lab Syst. 1996 May; 33:35–46. doi:10.1016/0169-7439(95)00077-1
  • 43. Material studio 7.0 modeling and simulation software. Accerlys software Inc. 2007 available online at http//:accerlys.com/product/
  • 44. Rogers D, Hopfinger AJ. Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships. J.Chem. Inf. Comp. Sci.1994 July; 34, 854-866. DOI: 10.1021/ci00020a020
  • 45. Allison PD. Multiple regression: a primer. London: Pine Forge Press; 1999. 10-147p. ISBN-10: 0761985336
  • 46. Larose TD. Data mining methods and models. Wiley Interscience; 2002.114p. ISBN-13 978-0-471-66656-1.
  • 47. Golbraikh A, Tropsha A. Beware of q2!. J Mol Graphics Mod 2002 January; 20, 269–276. http://dx.doi.org/10.1016/S1093-3263(01)00123-1
  • 48. Roy K, Mitra I, Kar S, Ojha PK, Das RN, Kabir H. Comparative studies on some metrics for external validation of QSPR models. J Chem Inf Model. 2012 Febuary; 52:396–408. DOI:10.1021/ci200520g
  • 49. Tropsha A, Gramatica P, Gombar VK. The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci. 2003 Apil; 22:69–77. doi:10.1002/qsar.200390007
  • 50. Minovski N, Zuperl S, Drgan V, Novi M. Assessment of applicability domain for multivariate counter-propagation artificial neural network predictive models by minimum Euclidean distance space analysis: A case study. Analytica Chimica Acta. 2013 January;759:28–42. DOI: 10.1016/j.aca.2012.11.002
  • 51. Netzeva TI, Worth AP, Aldenberg T, Benigni R, Cronin MTD, Gramatica P, Jaworska JS, Kahn S, Klopman G, Marchant CA, Myatt G, Nikolova-Jeliazkova N, Patlewicz GY, Perkins R, Roberts DW, Schultz TW, Stanton DT, Van De Sandt JJM, Tong W, Veith G, Yang C. Current status of methods for defining the applicability domain of (quantitative) structure–activity relationships. Altern. Lab. Anim. 2005 April; 33, 155–173. http://www.atla.org.uk/current-status
  • 52. Topliss JG, Costello RJ. Chance correlations in structure– activity studies using multiple regression analysis. J Med Chem. 1972 Octomber; 15, 1066–1068 DOI: 10.1021/jm00280a017
  • 53. Motta LF, Gaudio AC, Takahata Y. Quantitative Structure–Activity Relationships of a Series of Chalcone Derivatives (1,3–Diphenyl–2–propen–1–one) as Anti Plasmodium falciparum Agents (Anti Malaria Agents), Internet Electron. J. Mol. Des. 2006, 5, 555–569, http://www.biochempress.com.
  • 54. David AB, Edwin K, Roy EW. Regression diagnostics: indentifying influential data and source of collinearity. Wiley-interscience: John Wiley & Sons, lnc., Hoboken, New Jersey, 2004. 85-93p. ISBN 0-47 1-69 1 17-8
  • 55. Ibezim EC, Duchowicz PR, Ibezim NE, Mullen LMA, Onyishi IV, Brown SA, Castro EA. Computer-Aided Linear Modeling Employing Qsar for Drug Discovery. African Journal of Basic and Applied Sciences. 2006; 1 (3-4), 76-82. https://www.idosi.org/ajbas/ajbas1(3-4)09/7.pdf
  • 56. Shapiro S, Guggenheim B. Inhibition of oral bacteria by phenolic compounds. Part 1 QSAR analysis using molecular connectivity. Quant. Struct.-Act. Relat. 1998 August; 17, 327–33. DOI: 10.1002/(SICI)1521-3838(199808)17:04<327::AID-QSAR327>3.0.CO;2-O
  • 57. Noolvi MN, Patel HM, Bhardwaj V. 2D qsar studies on a series of 4-anilino quinazoline derivatives as tyrosine kinase (egfr) inhibitor: an approach to design anticancer agents. Digest Journal of Nonmaterial and Biostructures. 2010 April; 5(20):387–401. http/:www.researchgate.net/262187015
  • 58. Habibi-Yangjeh A, Danandeh-Jenagharad M. Application of a genetic algorithm and an artificial neural network for global prediction of the toxicity of phenols to Tetrahymena pyriformis. Monatsh Chemistry 2009 October; 140, 1279–1288. doi: 10.1007/s00706-009-0185-8
  • 59. Tropsha A. Best practices for QSAR model development, validation, and exploitation. Mol Inf. 2010 July; 29, 476–488. DOI: 10.1002/minf.201000061
  • 60. Warren H, Sean O. Spartan 14 for windows, machintosh and linux tutorial and user's Guide. 18401 Von Karman Avenue, Suite 370 Irvine, CA 92612 U.S.A: Wavefunction Incoorperated; 2014. 289-291p. ISBN: 978-1-890661-42-2
  • 61. Stenberg P, Luthman K, Ellens H, Lee CP, Smith PL, Lago A, Elliot JD, Artursson P. Prediction of the intestinal absorption of endothelin receptor antagonists using three theoretical methods of increasing complexity. Pharm. Res. 1999 Octomber; 16:1520–1526. doi:10.1023/A:1015092201811
  • 62. Clark, DE. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 1. Prediction of intestinal absorption. J. Pharm. Sci. 1999 August; 88:807–816. DOI:10.1021/js980402t
  • 63. Franke, R. Theoretical Drug Design Methods. Elsevier: Amsterdam. 1984.115-123p.
  • 64. Osmialowski K, Halkiewicz J, Radecki A, Kaliszan, R. Quantum chemical parameters in correlation analysis of gas liquid chromatographic retention indices of amines J. Chromatography. 1985 December, 346, 53-60. DOI: 10.1016/S0021-9673(00)90493-X
  • 65. Fleming, I. Frontier Orbitals and Organic Chemical Reactions. Somerset New Jersey: John Wiley and Sons; 1976. 308p. ISBN 10: 0471018198
  • 66. Todeschini R, Consonni V, Mannhold R. Handbook of molecular descriptors. Wiley-VCH, Weinheim; 2000. 1-688p. ISBN 3-52-29913-0
  • 67. Cartier A, Rivail, JL. Electronic Descriptors in Quantitative Structure-Activity Relationship. Chemom. Intell. Lab. Sys. 1987 October, 1, 335-347. DOI: 10.1016/0169-7439(87)80039-4
  • 68. Bodor N, Gabanyi Z, Wong CK. A new method for the estimation of partition coefficient J. Am. Chem. Soc. 1989 May; 111: 3783-3786. DOI: 10.1021/ja00193a003
  • 69. Buydens L, Massart D, Geerlings P. Prediction of gas chromatographic retention indexes with topological, physicochemical, and quantum chemical parameters Anal. Chem. 1983 April, 55, 738-744. DOI: 10.1021/ac00255a034
  • 70. Klopman G, Iroff LD. Calculation of partition coefficients by the charge density method. J. Comput. Chem. 1981 June; 2: 157-160 DOI: 10.1002/jcc.540020204
  • 71. Ruslin N, Syamsudin. Quantitative Structure-Activity Relationship Analysis of Antimalarial Compound of Mangostin Derivatives Using Regression Linear Approach. Asian Journal of Chemistry. 2013 September; 25(11): 6136-6140. https://www.researchgate.net/.../260600323
  • 72. Clare, B. W.; Supuran, C. T. Carbonic anhydrase activators. 3: structure-activity correlations for a series of isozyme II activators. J. Pharm. Sci. 1994 June; 83:768. DOI: http://dx.doi.org/10.1002/jps.2600830603
  • 73. Ordorica MAV, Velázquez MLM, Ordorica JGV, Escobar JLV, Lehmann PAF. A Principal Component and Cluster Significance Analysis of the Antiparasitic Potency of Praziquantel and some Analogues. Quant. Struct.-Act. Relat. 1993; 12: 246–250. doi:10.1002/qsar.19930120305
  • 74. Milouser VZ, Leven JA, Arbing MA, Hunt JF, Put GS, Palmer AG. Solution structure of the NaV1.2 C-terminal EF-hand domain. J boil chemistry. 2009; 284: 6646-6654. DOI: 10.1074/jbc.M807401200
  • 75. Discovery studio visualization tool and modeling environment, BIOVIA discovery studio 2016 client: Accerlys software Inc. avilalable online at accelrys.com/resource-center/.../updates/discovery-studio/dstudio2016/latest.htm
  • 76. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, Journal of Computational Chemistry. 2010 January; 31: 455-461 Doi 10.1002/jcc-21334.
There are 74 citations in total.

Details

Primary Language English
Subjects Electrochemistry
Journal Section Articles
Authors

Adedirin Oluwaseye

Adamu Uzairu This is me

Gideon A. Shallangwa

Stephen E. Abechi

Publication Date July 31, 2017
Submission Date April 8, 2017
Acceptance Date July 21, 2017
Published in Issue Year 2017

Cite

Vancouver Oluwaseye A, Uzairu A, A. Shallangwa G, E. Abechi S. A novel QSAR model for designing, evaluating, and predicting the antiMES activity of new 1H-pyrazole-5-carboxylic acid derivatives. JOTCSA. 2017;4(3):739-74.