Research Article
BibTex RIS Cite
Year 2019, , 225 - 236, 15.06.2019
https://doi.org/10.18596/jotcsa.512360

Abstract

References

  • 1. Erdoğan MK, Karakişla M, Saçak M. Preparation, Characterization and Electromagnetic Shielding Effectiveness of Conductive Polythiophene/Poly(ethylene terephthalate) Composite Fibers. Journal of Macromolecular Science, Part A. 2012;49(6):473-82.
  • 2. Saini P, Choudhary V. Conducting polymer coated textile based multilayered shields for suppression of microwave radiations in 8.2–12.4 GHz range. Journal of Applied Polymer Science. 2013;129(5):2832-9.
  • 3. Saini P, Choudhary V, Dhawan SK. Improved microwave absorption and electrostatic charge dissipation efficiencies of conducting polymer grafted fabrics prepared via in situ polymerization. Polymers for Advanced Technologies. 2012;23(3):343-9.
  • 4. Bhat NV, Seshadri DT, Nate MM, Gore AV. Development of conductive cotton fabrics for heating devices. Journal of Applied Polymer Science. 2006;102(5):4690-5.
  • 5. Oh KW, Park HJ, Kim SH. Stretchable conductive fabric for electrotherapy. Journal of Applied Polymer Science. 2003;88(5):1225-9.
  • 6. Li Y, Cheng XY, Leung MY, Tsang J, Tao XM, Yuen MCW. A flexible strain sensor from polypyrrole-coated fabrics. Synthetic Metals. 2005;155(1):89-94.
  • 7. Acar H, Karakisla M, Sacak M. Potassium persulfate-mediated preparation of conducting polypyrrole/polyacrylonitrile composite fibers: Humidity and temperature-sensing properties. Journal of Applied Polymer Science. 2012;125(5):3977-85.
  • 8. Hamedi M, Forchheimer R, Inganäs O. Towards woven logic from organic electronic fibres. Nature Materials. 2007;6:357.
  • 9. Kelly FM, Meunier L, Cochrane C, Koncar V. Evaluation of Solid or Liquid Phase Conducting Polymers Within a Flexible Textile Electrochromic Device. Display Technology, Journal of. 2013;9(8):626-31.
  • 10. Erdoğan MK, Karakışla M, Saçak M. Polypyrrole and silver particles coated poly(ethylene terephthalate) nonwoven composite for electromagnetic interference shielding. Journal of Composite Materials.0(0):0021998317724859.
  • 11. Firoz Babu K, Dhandapani P, Maruthamuthu S, Anbu Kulandainathan M. One pot synthesis of polypyrrole silver nanocomposite on cotton fabrics for multifunctional property. Carbohydrate Polymers. 2012;90(4):1557-63.
  • 12. Erdoğan MK, Karakışla M, Saçak M. Fabrication of poly(o‐Anisidine)/Ag particles coated poly(ethylene terephthalate) nonwoven composite and investigation of antibacterial activity. Polymer Composites.0(0).
  • 13. Mondal S, Rana U, Malik S. Facile Decoration of Polyaniline Fiber with Ag Nanoparticles for Recyclable SERS Substrate. ACS Applied Materials & Interfaces. 2015;7(19):10457-65.
  • 14. Bu Y, Chen Z. Role of Polyaniline on the Photocatalytic Degradation and Stability Performance of the Polyaniline/Silver/Silver Phosphate Composite under Visible Light. ACS Applied Materials & Interfaces. 2014;6(20):17589-98.
  • 15. Blinova NV, Stejskal J, Trchová M, Sapurina I, Ćirić-Marjanović G. The oxidation of aniline with silver nitrate to polyaniline–silver composites. Polymer. 2009;50(1):50-6.
  • 16. Bober P, Stejskal J, Trchová M, Hromádková J, Prokeš J. Polyaniline-coated silver nanowires. Reactive and Functional Polymers. 2010;70(9):656-62.
  • 17. Blinova NV, Bober P, Hromádková J, Trchová M, Stejskal J, Prokeš J. Polyaniline–silver composites prepared by the oxidation of aniline with silver nitrate in acetic acid solutions. Polymer International. 2010;59(4):437-46.
  • 18. Attia MF, Azib T, Salmi Z, Singh A, Decorse P, Battaglini N, et al. One-step UV-induced modification of cellulose fabrics by polypyrrole/silver nanocomposite films. Journal of Colloid and Interface Science. 2013;393:130-7.
  • 19. Gashti M, Ghehi S, Arekhloo S, Mirsmaeeli A, Kiumarsi A. Electromagnetic shielding response of UV-induced polypyrrole/silver coated wool. Fibers Polym. 2015;16(3):585-92.
  • 20. Bober P, Stejskal J, Trchová M, Prokeš J. Polyaniline–silver composites prepared by the oxidation of aniline with mixed oxidants, silver nitrate and ammonium peroxydisulfate: The control of silver content. Polymer. 2011;52(26):5947-52.
  • 21. Bober P, Stejskal J, Trchová M, Prokeš J, Sapurina I. Oxidation of Aniline with Silver Nitrate Accelerated by p-Phenylenediamine: A New Route to Conducting Composites. Macromolecules. 2010;43(24):10406-13.
  • 22. Erdoğan MK, Karakışla M, Saçak M. Morphologically different silver particles decorated- conductive poly(o-anisidine)/wool fabric composites and investigation of catalytic activity in reduction of methylene blue. Materials Chemistry and Physics. 2019;225:72-83.
  • 23. Vidhu VK, Philip D. Catalytic degradation of organic dyes using biosynthesized silver nanoparticles. Micron. 2014;56:54-62.
  • 24. Kulkarni MV, Viswanath AK, Khanna PK. Synthesis and characterization of poly(N-methyl aniline) doped with sulphonic acids: Their application as humidity sensors. Journal of Applied Polymer Science. 2006;99(3):812-20.
  • 25. Babazadeh M. Aqueous dispersions of DBSA-doped polyaniline: One-pot preparation, characterization, and properties study. Journal of Applied Polymer Science. 2009;113(6):3980-4.
  • 26. Ichinohe D, Aral T, Kise H. Synthesis of soluble polyaniline in reversed micellar systems. Synthetic Metals. 1997;84(1–3):75-6.
  • 27. Bober P, Trchová M, Prokeš J, Varga M, Stejskal J. Polyaniline–silver composites prepared by the oxidation of aniline with silver nitrate in solutions of sulfonic acids. Electrochimica Acta. 2011;56(10):3580-5.
  • 28. Cao Y, Smith P, Heeger AJ. Counter-ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers. Synthetic Metals. 1992;48(1):91-7.
  • 29. Long Y, Chen Z, Wang N, Zhang Z, Wan M. Resistivity study of polyaniline doped with protonic acids. Physica B: Condensed Matter. 2003;325:208-13.
  • 30. Guthrie JP. Hydrolysis of esters of oxy acids: pKa values for strong acids; Brønsted relationship for attack of water at methyl; free energies of hydrolysis of esters of oxy acids; and a linear relationship between free energy of hydrolysis and pKa holding over a range of 20 pK units. Canadian Journal of Chemistry. 1978;56(17):2342-54.
  • 31. Yang H, Ren Y-y, Wang T, Wang C. Preparation and antibacterial activities of Ag/Ag+/Ag3+ nanoparticle composites made by pomegranate (Punica granatum) rind extract. Results in Physics. 2016;6:299-304.
  • 32. Patil D, Patil P, Seo Y-K, Hwang YK. Poly(o-anisidine)–tin oxide nanocomposite: Synthesis, characterization and application to humidity sensing. Sensors and Actuators B: Chemical. 2010;148(1):41-8.
  • 33. Lovejoy KS, Lou AJ, Davis LE, Sanchez TC, Iyer S, Corley CA, et al. Single-Pot Extraction-Analysis of Dyed Wool Fibers with Ionic Liquids. Analytical Chemistry. 2012;84(21):9169-75.
  • 34. Dhibar S, Das CK. Silver Nanoparticles Decorated Polyaniline/Multiwalled Carbon Nanotubes Nanocomposite for High-Performance Supercapacitor Electrode. Industrial & Engineering Chemistry Research. 2014;53(9):3495-508.
  • 35. Nadagouda MN, Desai I, Cruz C, Yang DJ. Novel Pd based catalyst for the removal of organic and emerging contaminants. RSC Advances. 2012;2(19):7540-8.
  • 36. Ganapuram BR, Alle M, Dadigala R, Dasari A, Maragoni V, Guttena V. Catalytic reduction of methylene blue and Congo red dyes using green synthesized gold nanoparticles capped by salmalia malabarica gum. International Nano Letters. 2015;5(4):215-22.
  • 37. Kariuki VM, Yazgan I, Akgul A, Kowal A, Parlinska M, Sadik OA. Synthesis and catalytic, antimicrobial and cytotoxicity evaluation of gold and silver nanoparticles using biodegradable, [capital Pi]-conjugated polyamic acid. Environmental Science: Nano. 2015;2(5):518-27.
  • 38. Gupta N, Singh HP, Sharma RK. Metal nanoparticles with high catalytic activity in degradation of methyl orange: An electron relay effect. Journal of Molecular Catalysis A: Chemical. 2011;335(1):248-52.
  • 39. Zielińska-Jurek A, Wei Z, Wysocka I, Szweda P, Kowalska E. The effect of nanoparticles size on photocatalytic and antimicrobial properties of Ag-Pt/TiO2 photocatalysts. Applied Surface Science. 2015;353:317-25.
  • 40. Height MJ, Pratsinis SE, Mekasuwandumrong O, Praserthdam P. Ag-ZnO catalysts for UV-photodegradation of methylene blue. Applied Catalysis B: Environmental. 2006;63(3):305-12.

Simultaneous Deposition of Poly(o-anisidine) and Noble Ag Particles on Wool Fabric and The Evaluation of Its Performance as Catalyst in Dye Reduction

Year 2019, , 225 - 236, 15.06.2019
https://doi.org/10.18596/jotcsa.512360

Abstract

The conductive poly(o-anisidine) (POA) and noble Ag particles were simultaneously deposited on wool fabrics, by the polymerization of o-anisidine with the oxidant mixtures of silver nitrate and ammonium persulfate in different sulfonic acids media. The effect of concentrations of sulfonic acids was investigated on the contents of conductive components (POA/Ag%) and the volume resistivity of the composites. The change in the surface morphology of POA coating, distribution of Ag particles and conformance of noble Ag particles were identified with SEM, EDX, and XRD techniques, respectively. It was observed that the usage of sulfonic acids significantly increased the coating density of the POA/Ag, compared to a control sample prepared in 1.0 M HNO3 solution. The composites were tested in the catalytic reduction of a dye molecule (methylene blue) with the existence of excess sodium borohydride, and a relatively high catalytic activity (70%) was obtained at 75 min compared to a control POA/wool sample.

References

  • 1. Erdoğan MK, Karakişla M, Saçak M. Preparation, Characterization and Electromagnetic Shielding Effectiveness of Conductive Polythiophene/Poly(ethylene terephthalate) Composite Fibers. Journal of Macromolecular Science, Part A. 2012;49(6):473-82.
  • 2. Saini P, Choudhary V. Conducting polymer coated textile based multilayered shields for suppression of microwave radiations in 8.2–12.4 GHz range. Journal of Applied Polymer Science. 2013;129(5):2832-9.
  • 3. Saini P, Choudhary V, Dhawan SK. Improved microwave absorption and electrostatic charge dissipation efficiencies of conducting polymer grafted fabrics prepared via in situ polymerization. Polymers for Advanced Technologies. 2012;23(3):343-9.
  • 4. Bhat NV, Seshadri DT, Nate MM, Gore AV. Development of conductive cotton fabrics for heating devices. Journal of Applied Polymer Science. 2006;102(5):4690-5.
  • 5. Oh KW, Park HJ, Kim SH. Stretchable conductive fabric for electrotherapy. Journal of Applied Polymer Science. 2003;88(5):1225-9.
  • 6. Li Y, Cheng XY, Leung MY, Tsang J, Tao XM, Yuen MCW. A flexible strain sensor from polypyrrole-coated fabrics. Synthetic Metals. 2005;155(1):89-94.
  • 7. Acar H, Karakisla M, Sacak M. Potassium persulfate-mediated preparation of conducting polypyrrole/polyacrylonitrile composite fibers: Humidity and temperature-sensing properties. Journal of Applied Polymer Science. 2012;125(5):3977-85.
  • 8. Hamedi M, Forchheimer R, Inganäs O. Towards woven logic from organic electronic fibres. Nature Materials. 2007;6:357.
  • 9. Kelly FM, Meunier L, Cochrane C, Koncar V. Evaluation of Solid or Liquid Phase Conducting Polymers Within a Flexible Textile Electrochromic Device. Display Technology, Journal of. 2013;9(8):626-31.
  • 10. Erdoğan MK, Karakışla M, Saçak M. Polypyrrole and silver particles coated poly(ethylene terephthalate) nonwoven composite for electromagnetic interference shielding. Journal of Composite Materials.0(0):0021998317724859.
  • 11. Firoz Babu K, Dhandapani P, Maruthamuthu S, Anbu Kulandainathan M. One pot synthesis of polypyrrole silver nanocomposite on cotton fabrics for multifunctional property. Carbohydrate Polymers. 2012;90(4):1557-63.
  • 12. Erdoğan MK, Karakışla M, Saçak M. Fabrication of poly(o‐Anisidine)/Ag particles coated poly(ethylene terephthalate) nonwoven composite and investigation of antibacterial activity. Polymer Composites.0(0).
  • 13. Mondal S, Rana U, Malik S. Facile Decoration of Polyaniline Fiber with Ag Nanoparticles for Recyclable SERS Substrate. ACS Applied Materials & Interfaces. 2015;7(19):10457-65.
  • 14. Bu Y, Chen Z. Role of Polyaniline on the Photocatalytic Degradation and Stability Performance of the Polyaniline/Silver/Silver Phosphate Composite under Visible Light. ACS Applied Materials & Interfaces. 2014;6(20):17589-98.
  • 15. Blinova NV, Stejskal J, Trchová M, Sapurina I, Ćirić-Marjanović G. The oxidation of aniline with silver nitrate to polyaniline–silver composites. Polymer. 2009;50(1):50-6.
  • 16. Bober P, Stejskal J, Trchová M, Hromádková J, Prokeš J. Polyaniline-coated silver nanowires. Reactive and Functional Polymers. 2010;70(9):656-62.
  • 17. Blinova NV, Bober P, Hromádková J, Trchová M, Stejskal J, Prokeš J. Polyaniline–silver composites prepared by the oxidation of aniline with silver nitrate in acetic acid solutions. Polymer International. 2010;59(4):437-46.
  • 18. Attia MF, Azib T, Salmi Z, Singh A, Decorse P, Battaglini N, et al. One-step UV-induced modification of cellulose fabrics by polypyrrole/silver nanocomposite films. Journal of Colloid and Interface Science. 2013;393:130-7.
  • 19. Gashti M, Ghehi S, Arekhloo S, Mirsmaeeli A, Kiumarsi A. Electromagnetic shielding response of UV-induced polypyrrole/silver coated wool. Fibers Polym. 2015;16(3):585-92.
  • 20. Bober P, Stejskal J, Trchová M, Prokeš J. Polyaniline–silver composites prepared by the oxidation of aniline with mixed oxidants, silver nitrate and ammonium peroxydisulfate: The control of silver content. Polymer. 2011;52(26):5947-52.
  • 21. Bober P, Stejskal J, Trchová M, Prokeš J, Sapurina I. Oxidation of Aniline with Silver Nitrate Accelerated by p-Phenylenediamine: A New Route to Conducting Composites. Macromolecules. 2010;43(24):10406-13.
  • 22. Erdoğan MK, Karakışla M, Saçak M. Morphologically different silver particles decorated- conductive poly(o-anisidine)/wool fabric composites and investigation of catalytic activity in reduction of methylene blue. Materials Chemistry and Physics. 2019;225:72-83.
  • 23. Vidhu VK, Philip D. Catalytic degradation of organic dyes using biosynthesized silver nanoparticles. Micron. 2014;56:54-62.
  • 24. Kulkarni MV, Viswanath AK, Khanna PK. Synthesis and characterization of poly(N-methyl aniline) doped with sulphonic acids: Their application as humidity sensors. Journal of Applied Polymer Science. 2006;99(3):812-20.
  • 25. Babazadeh M. Aqueous dispersions of DBSA-doped polyaniline: One-pot preparation, characterization, and properties study. Journal of Applied Polymer Science. 2009;113(6):3980-4.
  • 26. Ichinohe D, Aral T, Kise H. Synthesis of soluble polyaniline in reversed micellar systems. Synthetic Metals. 1997;84(1–3):75-6.
  • 27. Bober P, Trchová M, Prokeš J, Varga M, Stejskal J. Polyaniline–silver composites prepared by the oxidation of aniline with silver nitrate in solutions of sulfonic acids. Electrochimica Acta. 2011;56(10):3580-5.
  • 28. Cao Y, Smith P, Heeger AJ. Counter-ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers. Synthetic Metals. 1992;48(1):91-7.
  • 29. Long Y, Chen Z, Wang N, Zhang Z, Wan M. Resistivity study of polyaniline doped with protonic acids. Physica B: Condensed Matter. 2003;325:208-13.
  • 30. Guthrie JP. Hydrolysis of esters of oxy acids: pKa values for strong acids; Brønsted relationship for attack of water at methyl; free energies of hydrolysis of esters of oxy acids; and a linear relationship between free energy of hydrolysis and pKa holding over a range of 20 pK units. Canadian Journal of Chemistry. 1978;56(17):2342-54.
  • 31. Yang H, Ren Y-y, Wang T, Wang C. Preparation and antibacterial activities of Ag/Ag+/Ag3+ nanoparticle composites made by pomegranate (Punica granatum) rind extract. Results in Physics. 2016;6:299-304.
  • 32. Patil D, Patil P, Seo Y-K, Hwang YK. Poly(o-anisidine)–tin oxide nanocomposite: Synthesis, characterization and application to humidity sensing. Sensors and Actuators B: Chemical. 2010;148(1):41-8.
  • 33. Lovejoy KS, Lou AJ, Davis LE, Sanchez TC, Iyer S, Corley CA, et al. Single-Pot Extraction-Analysis of Dyed Wool Fibers with Ionic Liquids. Analytical Chemistry. 2012;84(21):9169-75.
  • 34. Dhibar S, Das CK. Silver Nanoparticles Decorated Polyaniline/Multiwalled Carbon Nanotubes Nanocomposite for High-Performance Supercapacitor Electrode. Industrial & Engineering Chemistry Research. 2014;53(9):3495-508.
  • 35. Nadagouda MN, Desai I, Cruz C, Yang DJ. Novel Pd based catalyst for the removal of organic and emerging contaminants. RSC Advances. 2012;2(19):7540-8.
  • 36. Ganapuram BR, Alle M, Dadigala R, Dasari A, Maragoni V, Guttena V. Catalytic reduction of methylene blue and Congo red dyes using green synthesized gold nanoparticles capped by salmalia malabarica gum. International Nano Letters. 2015;5(4):215-22.
  • 37. Kariuki VM, Yazgan I, Akgul A, Kowal A, Parlinska M, Sadik OA. Synthesis and catalytic, antimicrobial and cytotoxicity evaluation of gold and silver nanoparticles using biodegradable, [capital Pi]-conjugated polyamic acid. Environmental Science: Nano. 2015;2(5):518-27.
  • 38. Gupta N, Singh HP, Sharma RK. Metal nanoparticles with high catalytic activity in degradation of methyl orange: An electron relay effect. Journal of Molecular Catalysis A: Chemical. 2011;335(1):248-52.
  • 39. Zielińska-Jurek A, Wei Z, Wysocka I, Szweda P, Kowalska E. The effect of nanoparticles size on photocatalytic and antimicrobial properties of Ag-Pt/TiO2 photocatalysts. Applied Surface Science. 2015;353:317-25.
  • 40. Height MJ, Pratsinis SE, Mekasuwandumrong O, Praserthdam P. Ag-ZnO catalysts for UV-photodegradation of methylene blue. Applied Catalysis B: Environmental. 2006;63(3):305-12.
There are 40 citations in total.

Details

Primary Language English
Subjects Polymer Science and Technologies
Journal Section Articles
Authors

Meryem Kalkan Erdoğan 0000-0002-2905-4438

Meral Karakışla 0000-0001-7036-094X

Publication Date June 15, 2019
Submission Date January 13, 2019
Acceptance Date May 15, 2019
Published in Issue Year 2019

Cite

Vancouver Kalkan Erdoğan M, Karakışla M. Simultaneous Deposition of Poly(o-anisidine) and Noble Ag Particles on Wool Fabric and The Evaluation of Its Performance as Catalyst in Dye Reduction. JOTCSA. 2019;6(2):225-36.