Research Article
BibTex RIS Cite

Effect of Al2O3 Doping on Antibacterial Activity of 45S5 Bioactive Glass

Year 2021, , 419 - 428, 31.05.2021
https://doi.org/10.18596/jotcsa.835912

Abstract

45S5 bioactive glasses (BGs) are special class of glasses that form chemical bonds with surrounding bone tissue, which is due to the dissolution behavior of these glass materials. Furthermore, BG shows an antibacterial effect since the dissolution of BG results with high aqueous pH that affect bacterial viability. In this study, the antibacterial activity of Al2O3 doped bioactive glasses (AGs) was evaluated. AGs were produced via the melt quenching method. Functional groups of glasses were evaluated with Fourier Transform Infrared (FTIR) analysis, and glassy structure was evaluated by X-ray diffraction (XRD). Specific surface area, particle size information and density of milled BG and AGs were obtained using surface area and porosity instrument, laser scattering particle size distribution analyzer and He pycnometer, respectively. Antibacterial activity of bioactive glasses was investigated on Staphylococcus aureus and Escherichia coli via Standard Colony Count Method at 50 mg/ml concentration and different time points, pH change of the media in the presence of BG and AGs at 50 mg/ml concentration was also measured at identical time points. XRD analysis revealed amorphous structure of BG and AGs. Similar specific surface area, particle size and density values were obtained for BG and produced AGs. Antibacterial test results showed that Al2O3 doped 45S5 bioactive glasses had decreased antibacterial activity compared to 45S5 bioactive glass for both bacteria studied.

Thanks

The author would like to thank Meta Bioengineering and R&D Services Inc. (Turkey) for their kind supply of Bone-G Active®. The author also would like to thank Professor Melda Altıkatoğlu Yapaöz (Faculty of Arts & Science, Department of Chemistry, Yildiz Technical University) for her help in the antibacterial tests of the bioactive glass samples.

References

  • Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP. Bioactive glass in tissue engineering. Acta Biomaterialia. 2011 Jun;7(6):2355–73. Doi: 10.1016/j.actbio.2011.03.016.
  • Bellantone M, Williams HD, Hench LL. Broad-spectrum bactericidal activity of Ag2O-doped bioactive glass. Antimicrobial Agents and Chemotherapy. 2020 Jun;46(6):1940–45. Doi: 10.1128/AAC.46.6.1940–1945.2002.
  • Kokubo T. Surface chemistry of bioactive glass-ceramics. Journal of Non-Crystalline Solids. 1990 Apr;120(1-3):138–51. Doi: 10.1016/0022-3093(90)90199-V.
  • Fernandes JS, Gentile P, Pires RA, Reis RL, Hatton PV. Multifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for repair and regeneration of bone tissue. Acta Biomaterialia. 2017 Sep;59:2–11. Doi: 10.1016/j.actbio.2017.06.046.
  • Rabiee SM, Nazparvar N, Azizian M, Vashaee D, Tayebi L. Effect of ion substitution on properties of bioactive glasses: A review. Ceramics International. 2015 Jul;41(6):7241–51. Doi: 10.1016/j.ceramint.2015.02.140.
  • Gerhardt LC, Boccaccini AR. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials. 2010 Jul; 3(7):3867–910. Doi: 10.3390/ma3073867.
  • Hu S, Chang J, Liu M, Ning C. Study on antibacterial effect of 45S5 Bioglass®. Journal of Materials Science: Materials in Medicine. 2009 Jan; 20(1):281–86. Doi: 10.1007/s10856-008-3564-5.
  • Abushahba F, Söderling E, Aalto-Setälä L, Sangder J, Hupa L, O Närhi T. Antibacterial properties of bioactive glass particle abraded titanium against Streptococcus mutans. Biomedical Physics and Engineering Express. 2018 Apr; 4:045002. Doi: 10.1088/2057-1976/aabeee.
  • Andersson ÖH, Södergård A. Solubility and film formation of phosphate and alumina containing silicate glasses. Journal of Non-Crystalline Solids. 1999 Apr; 246(1-2):9–15. Doi: 10.1016/S0022-3093(99)00072-1.
  • El-Kheshen AA, Khaliafa FA, Saad EA, Elwan RL. Effect of Al2O3 addition on bioactivity, thermal and mechanical properties of some bioactive glasses. Ceramics International. 2008 Sep; 34(7):1667–73. Doi: 10.1016/j.ceramint.2007.05.016.
  • Andersson ÖH, Liu G, Karlsson KH, Niemi L, Miettinen J, Juhanoja J. In vivo behaviour of glasses in the SiO2-Na2O-CaO-P2O5-Al2O3-B2O3 system. Journal of Materials Science: Materials in Medicine. 1990 Nov; 1(4):219–27. Doi: 10.1007/BF00701080.
  • Tripathi H, Hira SK, Kumar AS, Gupta U, Manna PP, Singh SP. Structural characterization and in vitro bioactivity assessment of SiO2–CaO–P2O5–K2O–Al2O3 glass as bioactive ceramic material. Ceramics International. 2015 Nov; 41(9):11756–69. Doi: 10.1016/j.ceramint.2015.05.143.
  • Karakuzu-Ikizler B, Terzioglu P, Basaran-Elalmis Y, Tekerek BS, Yucel S. Role of magnesium and aluminum substitution on the structural properties and bioactivity of bioglasses synthesized from biogenic silica. Bioactive Materials. 2020 Mar; 5(1):66–73. Doi: 10.1016/j.bioactmat.2019.12.007.
  • Karakuzu-Ikizler B, Terzioglu P, Oduncu-Tekerek BS, Yücel S. Effect of selenium incorporation on the structure and in vitro bioactivity of 45S5 bioglass. Journal of The Australian Ceramic Society. 2020 Jun; 56(2):697–709. Doi: 10.1007/s41779-019-00388-6.
  • Kesmez O. Preparation of anti-bacterial biocomposite nanofibers fabricated by electrospinning method. Journal of the Turkish Chemical Society Section A: Chemistry. 2020 Feb; 7(1):125–42. Doi: 10.18596/jotcsa. 590621.
  • Demir C, Süer NC, Yapaöz MA, Kebir N, Okullu SO, Kocagoz T, Eren T. Biocidal activity of ROMP- polymer coatings containing quaternary phosphonium groups. Progress in Organic Coatings. 2019 Oct; 135:299–305. Doi: 10.1016/j.porgcoat.2019.06.008.
  • Palantoken A, Yilmaz MS, Yapaoz MA, Tulunay EY, Eren T, Piskin S. Dual antimicrobial effects induced by hydrogel incorporated with UV-curable quaternary ammonium polyethyleneimine and AgNO3. Materials Science and Engineering C-Materials For Biological Applications. 2016 Nov; 68:494–504. Doi: 10.1016/j.msec.2016.06.005.
  • Dziadek M, Zagrajczuk B, Jelen P, Olejniczak Z, Cholewa-Kowalska K. Structural variations of bioactive glasses obtained by different synthesis routes. Ceramics International. 2016 Oct; 42(13):14700–14709. Doi: 10.1016/j.ceramint.2016.06.095.
  • Hoppe A, Meszaros R, Stähli C, Romeis S, Schmidt J, Peukert W, Marelli B, Nazhat SN, Wondraczek L, Lao J, Jallot E, Boccaccini AR. In vitro reactivity of Cu doped 45S5 Bioglass® derived scaffolds for bone tissue engineering. Journal of Materials Chemistry B. 2013 Nov;41:5659–5674. Doi: 10.1039/c3tb21007c.
  • Lefebvre L, Chevalier J, Gremillard L, Zenati R, Thollet G, Bernache-Assolant D, Govin A. Structural transformations of bioactive glass 45S5 with thermal treatments. Acta Materialia. 2007 Jun;55(10):3305–3313. Doi: 10.1016/j.actamat.2007.01.029.
  • Romeis S, Hoppe A, Eisermann C, Schneider N, Boccaccini AR, Schmidt J, Peukert W. Enhancing in vitro bioactivity of melt‐derived 45S5 Bioglass® by comminution in a stirred media mill. Journal of the American Ceramic Society. 2014 Jan;97(1):150–156. Doi: 10.1111/jace.12615.
  • Sepulveda P, Jones JR, Hench LL. In vitro dissolution of melt‐derived 45S5 and sol‐gel derived 58S bioactive glasses. Journal of Biomedical Materials Research. 2002 Aug;61(2):301–311. Doi: 10.1002/jbm.10207.
  • Gorriti MF, López JMP, Boccaccini AR, Audisio C, Gorustovich AA. In vitro study of the antibacterial activity of bioactive glass‐ceramic scaffolds. Advanced Engineering Materials. 2009 Jul;11(7):B67–B70. Doi: 10.1002/adem.200900081.
  • Zhang D, Leppäranta O, Munukka E, Ylänen H, Viljanen MK, Eerola E, Hupa M, Hupa L. Antibacterial effects and dissolution behavior of six bioactive glasses. Journal of Biomedical Materials Research Part A. 2010 May;93A(2):475–483. Doi: 10.1002/jbm.a.32564.
  • Allan I, Newman H, Wilson M. Antibacterial activity of particulate Bioglass® against supra-and subgingival bacteria. Biomaterials. 2001 Jun;22(12):1683–1687. Doi: 10.1016/S0142-9612(00)00330-6.
  • Leppäranta O, Vaahtio M, Peltola T, Zhang D, Hupa L, Hupa M, Ylänen H, Salonen JI, Viljanen MK, Eerola E. Antibacterial effect of bioactive glasses on clinically important anaerobic bacteria in vitro. Journal of Materials Science: Materials in Medicine. 2008 Feb;19(2):547–551. Doi: 10.1007/s10856-007-3018-5.
Year 2021, , 419 - 428, 31.05.2021
https://doi.org/10.18596/jotcsa.835912

Abstract

References

  • Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP. Bioactive glass in tissue engineering. Acta Biomaterialia. 2011 Jun;7(6):2355–73. Doi: 10.1016/j.actbio.2011.03.016.
  • Bellantone M, Williams HD, Hench LL. Broad-spectrum bactericidal activity of Ag2O-doped bioactive glass. Antimicrobial Agents and Chemotherapy. 2020 Jun;46(6):1940–45. Doi: 10.1128/AAC.46.6.1940–1945.2002.
  • Kokubo T. Surface chemistry of bioactive glass-ceramics. Journal of Non-Crystalline Solids. 1990 Apr;120(1-3):138–51. Doi: 10.1016/0022-3093(90)90199-V.
  • Fernandes JS, Gentile P, Pires RA, Reis RL, Hatton PV. Multifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for repair and regeneration of bone tissue. Acta Biomaterialia. 2017 Sep;59:2–11. Doi: 10.1016/j.actbio.2017.06.046.
  • Rabiee SM, Nazparvar N, Azizian M, Vashaee D, Tayebi L. Effect of ion substitution on properties of bioactive glasses: A review. Ceramics International. 2015 Jul;41(6):7241–51. Doi: 10.1016/j.ceramint.2015.02.140.
  • Gerhardt LC, Boccaccini AR. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials. 2010 Jul; 3(7):3867–910. Doi: 10.3390/ma3073867.
  • Hu S, Chang J, Liu M, Ning C. Study on antibacterial effect of 45S5 Bioglass®. Journal of Materials Science: Materials in Medicine. 2009 Jan; 20(1):281–86. Doi: 10.1007/s10856-008-3564-5.
  • Abushahba F, Söderling E, Aalto-Setälä L, Sangder J, Hupa L, O Närhi T. Antibacterial properties of bioactive glass particle abraded titanium against Streptococcus mutans. Biomedical Physics and Engineering Express. 2018 Apr; 4:045002. Doi: 10.1088/2057-1976/aabeee.
  • Andersson ÖH, Södergård A. Solubility and film formation of phosphate and alumina containing silicate glasses. Journal of Non-Crystalline Solids. 1999 Apr; 246(1-2):9–15. Doi: 10.1016/S0022-3093(99)00072-1.
  • El-Kheshen AA, Khaliafa FA, Saad EA, Elwan RL. Effect of Al2O3 addition on bioactivity, thermal and mechanical properties of some bioactive glasses. Ceramics International. 2008 Sep; 34(7):1667–73. Doi: 10.1016/j.ceramint.2007.05.016.
  • Andersson ÖH, Liu G, Karlsson KH, Niemi L, Miettinen J, Juhanoja J. In vivo behaviour of glasses in the SiO2-Na2O-CaO-P2O5-Al2O3-B2O3 system. Journal of Materials Science: Materials in Medicine. 1990 Nov; 1(4):219–27. Doi: 10.1007/BF00701080.
  • Tripathi H, Hira SK, Kumar AS, Gupta U, Manna PP, Singh SP. Structural characterization and in vitro bioactivity assessment of SiO2–CaO–P2O5–K2O–Al2O3 glass as bioactive ceramic material. Ceramics International. 2015 Nov; 41(9):11756–69. Doi: 10.1016/j.ceramint.2015.05.143.
  • Karakuzu-Ikizler B, Terzioglu P, Basaran-Elalmis Y, Tekerek BS, Yucel S. Role of magnesium and aluminum substitution on the structural properties and bioactivity of bioglasses synthesized from biogenic silica. Bioactive Materials. 2020 Mar; 5(1):66–73. Doi: 10.1016/j.bioactmat.2019.12.007.
  • Karakuzu-Ikizler B, Terzioglu P, Oduncu-Tekerek BS, Yücel S. Effect of selenium incorporation on the structure and in vitro bioactivity of 45S5 bioglass. Journal of The Australian Ceramic Society. 2020 Jun; 56(2):697–709. Doi: 10.1007/s41779-019-00388-6.
  • Kesmez O. Preparation of anti-bacterial biocomposite nanofibers fabricated by electrospinning method. Journal of the Turkish Chemical Society Section A: Chemistry. 2020 Feb; 7(1):125–42. Doi: 10.18596/jotcsa. 590621.
  • Demir C, Süer NC, Yapaöz MA, Kebir N, Okullu SO, Kocagoz T, Eren T. Biocidal activity of ROMP- polymer coatings containing quaternary phosphonium groups. Progress in Organic Coatings. 2019 Oct; 135:299–305. Doi: 10.1016/j.porgcoat.2019.06.008.
  • Palantoken A, Yilmaz MS, Yapaoz MA, Tulunay EY, Eren T, Piskin S. Dual antimicrobial effects induced by hydrogel incorporated with UV-curable quaternary ammonium polyethyleneimine and AgNO3. Materials Science and Engineering C-Materials For Biological Applications. 2016 Nov; 68:494–504. Doi: 10.1016/j.msec.2016.06.005.
  • Dziadek M, Zagrajczuk B, Jelen P, Olejniczak Z, Cholewa-Kowalska K. Structural variations of bioactive glasses obtained by different synthesis routes. Ceramics International. 2016 Oct; 42(13):14700–14709. Doi: 10.1016/j.ceramint.2016.06.095.
  • Hoppe A, Meszaros R, Stähli C, Romeis S, Schmidt J, Peukert W, Marelli B, Nazhat SN, Wondraczek L, Lao J, Jallot E, Boccaccini AR. In vitro reactivity of Cu doped 45S5 Bioglass® derived scaffolds for bone tissue engineering. Journal of Materials Chemistry B. 2013 Nov;41:5659–5674. Doi: 10.1039/c3tb21007c.
  • Lefebvre L, Chevalier J, Gremillard L, Zenati R, Thollet G, Bernache-Assolant D, Govin A. Structural transformations of bioactive glass 45S5 with thermal treatments. Acta Materialia. 2007 Jun;55(10):3305–3313. Doi: 10.1016/j.actamat.2007.01.029.
  • Romeis S, Hoppe A, Eisermann C, Schneider N, Boccaccini AR, Schmidt J, Peukert W. Enhancing in vitro bioactivity of melt‐derived 45S5 Bioglass® by comminution in a stirred media mill. Journal of the American Ceramic Society. 2014 Jan;97(1):150–156. Doi: 10.1111/jace.12615.
  • Sepulveda P, Jones JR, Hench LL. In vitro dissolution of melt‐derived 45S5 and sol‐gel derived 58S bioactive glasses. Journal of Biomedical Materials Research. 2002 Aug;61(2):301–311. Doi: 10.1002/jbm.10207.
  • Gorriti MF, López JMP, Boccaccini AR, Audisio C, Gorustovich AA. In vitro study of the antibacterial activity of bioactive glass‐ceramic scaffolds. Advanced Engineering Materials. 2009 Jul;11(7):B67–B70. Doi: 10.1002/adem.200900081.
  • Zhang D, Leppäranta O, Munukka E, Ylänen H, Viljanen MK, Eerola E, Hupa M, Hupa L. Antibacterial effects and dissolution behavior of six bioactive glasses. Journal of Biomedical Materials Research Part A. 2010 May;93A(2):475–483. Doi: 10.1002/jbm.a.32564.
  • Allan I, Newman H, Wilson M. Antibacterial activity of particulate Bioglass® against supra-and subgingival bacteria. Biomaterials. 2001 Jun;22(12):1683–1687. Doi: 10.1016/S0142-9612(00)00330-6.
  • Leppäranta O, Vaahtio M, Peltola T, Zhang D, Hupa L, Hupa M, Ylänen H, Salonen JI, Viljanen MK, Eerola E. Antibacterial effect of bioactive glasses on clinically important anaerobic bacteria in vitro. Journal of Materials Science: Materials in Medicine. 2008 Feb;19(2):547–551. Doi: 10.1007/s10856-007-3018-5.
There are 26 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other), Inorganic Chemistry
Journal Section Articles
Authors

Yeliz Elalmış 0000-0002-6871-2202

Publication Date May 31, 2021
Submission Date December 4, 2020
Acceptance Date February 8, 2021
Published in Issue Year 2021

Cite

Vancouver Elalmış Y. Effect of Al2O3 Doping on Antibacterial Activity of 45S5 Bioactive Glass. JOTCSA. 2021;8(2):419-28.