Research Article
BibTex RIS Cite

A Near-infrared Benzothiazole-based Chemodosimeter for Rapid and Selective Detection of Hydrogen Sulfide

Year 2021, , 567 - 578, 31.05.2021
https://doi.org/10.18596/jotcsa.853370

Abstract

Hydrogen sulfide (H2S) is a biologically relevant gaseous molecule, which involves in a wide variety of physiological and pathological processes. Thus, detection of H2S is highly valuable in order to clarify its complex roles. In this study, a new benzothiazole-based donor-acceptor type H2S selective chemodosimeter (HP-1) was synthesized and its H2S detection capabilities were investigated in aqueous solutions. HP-1 exhibited a red-shifted absorption signal at 530 nm and a near-infrared (NIR) fluorescence peak at 680 nm as a result of enhanced intramolecular charge transfer (ICT) in the presence of H2S, which enabled a selective and very rapid ratiometric fluorescent detection. HP-1 was also showed to be highly sensitive toward H2S with a very low limit of detection value.

Thanks

S. Kolemen thanks Koç University for the financial support. The author also acknowledges the researchers in Koç University Surface Science and Technology Center (KUYTAM) for fluorescence quantum yield measurements.

References

  • 1. Qian Y, Karpus J, Kabil O, Zhang S-Y, Zhu H-L, Banerjee R, et al. Selective fluorescent probes for live-cell monitoring of sulphide. Nat Commun. 2011 Sep;2(1):495.
  • 2. Olas B. Hydrogen sulfide in signaling pathways. Clinica Chimica Acta. 2015 Jan;439:212–8.
  • 3. Rose P, Moore PK, Zhu YZ. H2S biosynthesis and catabolism: new insights from molecular studies. Cell Mol Life Sci. 2017 Apr;74(8):1391–412.
  • 4. Wang R. The Gasotransmitter Role of Hydrogen Sulfide. Antioxidants & Redox Signaling. 2003 Aug;5(4):493–501.
  • 5. Papapetropoulos A, Pyriochou A, Altaany Z, Yang G, Marazioti A, Zhou Z, et al. Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proceedings of the National Academy of Sciences. 2009 Dec 22;106(51):21972–7.
  • 6. Wei H-J, Li X, Tang X-Q. Therapeutic benefits of H2S in Alzheimer’s disease. Journal of Clinical Neuroscience. 2014 Oct 1;21(10):1665–9.
  • 7. Szabó C. Hydrogen sulphide and its therapeutic potential. Nature Reviews Drug Discovery. 2007 Nov 1;6(11):917–35.
  • 8. Kamoun P, Belardinelli M-C, Chabli A, Lallouchi K, Chadefaux-Vekemans B. Endogenous hydrogen sulfide overproduction in Down syndrome. American journal of medical genetics. 2003;116(3):310–1.
  • 9. Wang L, Cai H, Hu Y, Liu F, Huang S, Zhou Y, et al. A pharmacological probe identifies cystathionine β-synthase as a new negative regulator for ferroptosis. Cell Death Dis. 2018 Oct;9(10):1005.
  • 10. Breza J, Soltysova A, Hudecova S, Penesova A, Szadvari I, Babula P, et al. Endogenous H2S producing enzymes are involved in apoptosis induction in clear cell renal cell carcinoma. BMC Cancer. 2018 May 24;18(1):591.
  • 11. Lawrence NS, Davis J, Jiang L, Jones TGJ, Davies SN, Compton RG. The Electrochemical Analog of the Methylene Blue Reaction: A Novel Amperometric Approach to the Detection of Hydrogen Sulfide. Electroanal. 2000;12(18):1453–60.
  • 12. Choi MG, Cha S, Lee H, Jeon HL, Chang S-K. Sulfide-selective chemosignaling by a Cu2+ complex of dipicolylamine appended fluorescein. Chem Commun. 2009;(47):7390.
  • 13. Furne J, Saeed A, Levitt MD. Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2008 Nov;295(5):R1479–85.
  • 14. Qian Y, Zhang L, Ding S, Deng X, He C, Zheng XE, et al. A fluorescent probe for rapid detection of hydrogen sulfide in blood plasma and brain tissues in mice. Chem Sci. 2012;3(10):2920.
  • 15. Lin VS, Chen W, Xian M, Chang CJ. Chemical probes for molecular imaging and detection of hydrogen sulfide and reactive sulfur species in biological systems. Chem Soc Rev. 2015;44:4596–618.
  • 16. Liu C, Pan J, Li S, Zhao Y, Wu LY, Berkman CE, et al. Capture and Visualization of Hydrogen Sulfide by a Fluorescent Probe. Angew Chem. 2011 Oct 24;123(44):10511–3.
  • 17. Lippert AR, New EJ, Chang CJ. Reaction-Based Fluorescent Probes for Selective Imaging of Hydrogen Sulfide in Living Cells. J Am Chem Soc. 2011 Jul 6;133(26):10078–80.
  • 18. Liu Y, Feng G. A visible light excitable colorimetric and fluorescent ESIPT probe for rapid and selective detection of hydrogen sulfide. Org Biomol Chem. 2014;12:438–45.
  • 19. Guo Z, Park S, Yoon J, Shin I. Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem Soc Rev. 2014;43(1):16–29.
  • 20. Gong S, Zhou E, Hong J, Feng G. Nitrobenzoxadiazole Ether-Based Near-Infrared Fluorescent Probe with Unexpected High Selectivity for H 2 S Imaging in Living Cells and Mice. Anal Chem. 2019 Oct 15;91(20):13136–42.
  • 21. Ozdemir T, Sozmen F, Mamur S, Tekinay T, Akkaya EU. Fast responding and selective near-IR Bodipy dye for hydrogen sulfide sensing. Chem Commun. 2014;50:5455–7.
  • 22. Zheng Y, Zhao M, Qiao Q, Liu H, Lang H, Xu Z. A near-infrared fluorescent probe for hydrogen sulfide in living cells. Dyes and Pigments. 2013 Sep 1;98(3):367–71.
  • 23. Zhang X, Zhang L, Ma W-W, Zhou Y, Lu Z-N, Xu S. A Near-Infrared Ratiometric Fluorescent Probe for Highly Selective Recognition and Bioimaging of Cysteine. Frontiers in Chemistry. 2019;7:32.
  • 24. Karton-Lifshin N, Albertazzi L, Bendikov M, Baran PS, Shabat D. “Donor–Two-Acceptor” Dye Design: A Distinct Gateway to NIR Fluorescence. J Am Chem Soc. 2012 Dec 19;134(50):20412–20.
  • 25. Chen C, Fang C. Devising Efficient Red‐Shifting Strategies for Bioimaging: A Generalizable Donor‐Acceptor Fluorophore Prototype. Chem Asian J. 2020;15:1514–23.
  • 26. Jaswal S, Kumar J. Review on fluorescent donor–acceptor conjugated system as molecular probes. Materials Today: Proceedings. 2020;26:566–80.
  • 27. Woo S-J, Kim Y, Kim M-J, Baek JY, Kwon S-K, Kim Y-H, et al. Strategies for the Molecular Design of Donor–Acceptor-type Fluorescent Emitters for Efficient Deep Blue Organic Light Emitting Diodes. Chem Mater. 2018 ubat;30(3):857–63.
  • 28. Gong Y, Feng D, Liu W, Fang J, Feng S. A self-immolative near-infrared probe based on hemi-benzothiazolecyanine for visualizing hydrogen peroxide in living cells and mice. Dyes and Pigments. 2021 Feb;186:108954.
  • 29. Zhang X, Liu J-Y. Solvent dependent photophysical properties and near-infrared solid-state excited state intramolecular proton transfer (ESIPT) fluorescence of 2,4,6-trisbenzothiazolylphenol. Dyes and Pigments. 2016 ubat;125:80–8.
  • 30. Li S-J, Li Y-F, Liu H-W, Zhou D-Y, Jiang W-L, Ou-Yang J, et al. A Dual-Response Fluorescent Probe for the Detection of Viscosity and H 2 S and Its Application in Studying Their Cross-Talk Influence in Mitochondria. Anal Chem. 2018 Aug 7;90(15):9418–25.
Year 2021, , 567 - 578, 31.05.2021
https://doi.org/10.18596/jotcsa.853370

Abstract

References

  • 1. Qian Y, Karpus J, Kabil O, Zhang S-Y, Zhu H-L, Banerjee R, et al. Selective fluorescent probes for live-cell monitoring of sulphide. Nat Commun. 2011 Sep;2(1):495.
  • 2. Olas B. Hydrogen sulfide in signaling pathways. Clinica Chimica Acta. 2015 Jan;439:212–8.
  • 3. Rose P, Moore PK, Zhu YZ. H2S biosynthesis and catabolism: new insights from molecular studies. Cell Mol Life Sci. 2017 Apr;74(8):1391–412.
  • 4. Wang R. The Gasotransmitter Role of Hydrogen Sulfide. Antioxidants & Redox Signaling. 2003 Aug;5(4):493–501.
  • 5. Papapetropoulos A, Pyriochou A, Altaany Z, Yang G, Marazioti A, Zhou Z, et al. Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proceedings of the National Academy of Sciences. 2009 Dec 22;106(51):21972–7.
  • 6. Wei H-J, Li X, Tang X-Q. Therapeutic benefits of H2S in Alzheimer’s disease. Journal of Clinical Neuroscience. 2014 Oct 1;21(10):1665–9.
  • 7. Szabó C. Hydrogen sulphide and its therapeutic potential. Nature Reviews Drug Discovery. 2007 Nov 1;6(11):917–35.
  • 8. Kamoun P, Belardinelli M-C, Chabli A, Lallouchi K, Chadefaux-Vekemans B. Endogenous hydrogen sulfide overproduction in Down syndrome. American journal of medical genetics. 2003;116(3):310–1.
  • 9. Wang L, Cai H, Hu Y, Liu F, Huang S, Zhou Y, et al. A pharmacological probe identifies cystathionine β-synthase as a new negative regulator for ferroptosis. Cell Death Dis. 2018 Oct;9(10):1005.
  • 10. Breza J, Soltysova A, Hudecova S, Penesova A, Szadvari I, Babula P, et al. Endogenous H2S producing enzymes are involved in apoptosis induction in clear cell renal cell carcinoma. BMC Cancer. 2018 May 24;18(1):591.
  • 11. Lawrence NS, Davis J, Jiang L, Jones TGJ, Davies SN, Compton RG. The Electrochemical Analog of the Methylene Blue Reaction: A Novel Amperometric Approach to the Detection of Hydrogen Sulfide. Electroanal. 2000;12(18):1453–60.
  • 12. Choi MG, Cha S, Lee H, Jeon HL, Chang S-K. Sulfide-selective chemosignaling by a Cu2+ complex of dipicolylamine appended fluorescein. Chem Commun. 2009;(47):7390.
  • 13. Furne J, Saeed A, Levitt MD. Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2008 Nov;295(5):R1479–85.
  • 14. Qian Y, Zhang L, Ding S, Deng X, He C, Zheng XE, et al. A fluorescent probe for rapid detection of hydrogen sulfide in blood plasma and brain tissues in mice. Chem Sci. 2012;3(10):2920.
  • 15. Lin VS, Chen W, Xian M, Chang CJ. Chemical probes for molecular imaging and detection of hydrogen sulfide and reactive sulfur species in biological systems. Chem Soc Rev. 2015;44:4596–618.
  • 16. Liu C, Pan J, Li S, Zhao Y, Wu LY, Berkman CE, et al. Capture and Visualization of Hydrogen Sulfide by a Fluorescent Probe. Angew Chem. 2011 Oct 24;123(44):10511–3.
  • 17. Lippert AR, New EJ, Chang CJ. Reaction-Based Fluorescent Probes for Selective Imaging of Hydrogen Sulfide in Living Cells. J Am Chem Soc. 2011 Jul 6;133(26):10078–80.
  • 18. Liu Y, Feng G. A visible light excitable colorimetric and fluorescent ESIPT probe for rapid and selective detection of hydrogen sulfide. Org Biomol Chem. 2014;12:438–45.
  • 19. Guo Z, Park S, Yoon J, Shin I. Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem Soc Rev. 2014;43(1):16–29.
  • 20. Gong S, Zhou E, Hong J, Feng G. Nitrobenzoxadiazole Ether-Based Near-Infrared Fluorescent Probe with Unexpected High Selectivity for H 2 S Imaging in Living Cells and Mice. Anal Chem. 2019 Oct 15;91(20):13136–42.
  • 21. Ozdemir T, Sozmen F, Mamur S, Tekinay T, Akkaya EU. Fast responding and selective near-IR Bodipy dye for hydrogen sulfide sensing. Chem Commun. 2014;50:5455–7.
  • 22. Zheng Y, Zhao M, Qiao Q, Liu H, Lang H, Xu Z. A near-infrared fluorescent probe for hydrogen sulfide in living cells. Dyes and Pigments. 2013 Sep 1;98(3):367–71.
  • 23. Zhang X, Zhang L, Ma W-W, Zhou Y, Lu Z-N, Xu S. A Near-Infrared Ratiometric Fluorescent Probe for Highly Selective Recognition and Bioimaging of Cysteine. Frontiers in Chemistry. 2019;7:32.
  • 24. Karton-Lifshin N, Albertazzi L, Bendikov M, Baran PS, Shabat D. “Donor–Two-Acceptor” Dye Design: A Distinct Gateway to NIR Fluorescence. J Am Chem Soc. 2012 Dec 19;134(50):20412–20.
  • 25. Chen C, Fang C. Devising Efficient Red‐Shifting Strategies for Bioimaging: A Generalizable Donor‐Acceptor Fluorophore Prototype. Chem Asian J. 2020;15:1514–23.
  • 26. Jaswal S, Kumar J. Review on fluorescent donor–acceptor conjugated system as molecular probes. Materials Today: Proceedings. 2020;26:566–80.
  • 27. Woo S-J, Kim Y, Kim M-J, Baek JY, Kwon S-K, Kim Y-H, et al. Strategies for the Molecular Design of Donor–Acceptor-type Fluorescent Emitters for Efficient Deep Blue Organic Light Emitting Diodes. Chem Mater. 2018 ubat;30(3):857–63.
  • 28. Gong Y, Feng D, Liu W, Fang J, Feng S. A self-immolative near-infrared probe based on hemi-benzothiazolecyanine for visualizing hydrogen peroxide in living cells and mice. Dyes and Pigments. 2021 Feb;186:108954.
  • 29. Zhang X, Liu J-Y. Solvent dependent photophysical properties and near-infrared solid-state excited state intramolecular proton transfer (ESIPT) fluorescence of 2,4,6-trisbenzothiazolylphenol. Dyes and Pigments. 2016 ubat;125:80–8.
  • 30. Li S-J, Li Y-F, Liu H-W, Zhou D-Y, Jiang W-L, Ou-Yang J, et al. A Dual-Response Fluorescent Probe for the Detection of Viscosity and H 2 S and Its Application in Studying Their Cross-Talk Influence in Mitochondria. Anal Chem. 2018 Aug 7;90(15):9418–25.
There are 30 citations in total.

Details

Primary Language English
Subjects Organic Chemistry
Journal Section Articles
Authors

Safacan Kolemen 0000-0003-4162-5587

Publication Date May 31, 2021
Submission Date January 5, 2021
Acceptance Date April 12, 2021
Published in Issue Year 2021

Cite

Vancouver Kolemen S. A Near-infrared Benzothiazole-based Chemodosimeter for Rapid and Selective Detection of Hydrogen Sulfide. JOTCSA. 2021;8(2):567-78.