Research Article
BibTex RIS Cite

Kinetic and thermodynamic study on adsorption of cadmium from aqueous solutions using natural clay

Year 2021, , 677 - 692, 31.05.2021
https://doi.org/10.18596/jotcsa.882016

Abstract

Heavy metal pollution poses a great risk for the environment and the human health. Cadmium is among the most common pollutants found in wastewater, known for its great toxicity even in small doses. This work aims to study the removal of cadmium using natural Moroccan clay (MC). The clay was characterized using X-ray diffraction, X-ray fluorescence, Fourier transform infrared spectroscopy, BET, and SEM. The effects of several experimental parameters on the clay adsorption capacity towards cadmium ions, such as MC dose, initial concentration and contact time, initial pH, and temperature were studied. The kinetic models Pseudo-first order, Pseudo-second order, and Elovich are evaluated to identify the adsorption process. The adsorption mechanism was determined by the use of the adsorption isotherms: Langmuir, Freundlich, and Temkin model. The results show that the heavy metal retention obeys the Pseudo-second order (R²≥0.99). The Langmuir isotherm model provided the best fit (R²≥0.99) to the experimental data for the adsorption of Cd(II) by MC as compared to the Freundlich and Temkin model. The maximum monolayer adsorption capacity of Cd(II), using the Langmuir model equation, is equal to 5.25 mg/g. The adsorption is a spontaneous and an endothermic process characterized by a disorder of the medium.

Thanks

The authors are pleased to acknowledge Centre National de la Recherche Scientifique et Technique (CNRST) Morocco.

References

  • 1. Jiménez-Castañeda M, Medina D. Use of Surfactant-Modified Zeolites and Clays for the Removal of Heavy Metals from Water. Water. 2017 Mar 24;9(4):235. Doi: https://doi.org/10.3390/w9040235.
  • 2. Bouazza D, Miloudi H, Adjdir M, Tayeb A, Boos A. Competitive adsorption of Cu (II) and Zn (II) on impregnate raw Algerian bentonite and efficiency of extraction. Applied Clay Science. 2018 Jan;151:118–23. Doi: https://doi.org/10.1016/j.clay.2017.10.026.
  • 3. Ezzeddine Z, Batonneau-Gener I, Pouilloux Y, Hamad H, Saad Z. Synthetic Nax Zeolite as a Very Efficient Heavy Metals Sorbent in Batch and Dynamic Conditions. Colloids and Interfaces. 2018 May 24;2(2):22. Doi: https://doi.org/10.3390/colloids2020022.
  • 4. Essaadaoui Y, Lebkiri A, Rifi E, Kadiri L, Ouass A. Adsorption of lead by modified Eucalyptus camaldulensis barks: equilibrium, kinetic and thermodynamic studies. Dwt. 2018;111:267–77. Doi: https://doi.org/10.5004/dwt.2018.22191.
  • 5. Zhang R, Zhou L, Zhang F, Ding Y, Gao J, Chen J, et al. Heavy metal pollution and assessment in the tidal flat sediments of Haizhou Bay, China. Marine Pollution Bulletin. 2013 Sep;74(1):403–12. Doi: https://doi.org/10.1016/j.marpolbul.2013.06.019.
  • 6. Bensalah J, Habsaoui A, Abbou B, Kadiri L, Lebkiri I, Lebkiri A, et al. Adsorption of the anionic dye methyl orange on used artificial zeolites: kinetic study and modeling of experimental data. MediterrJChem,. 2019 Nov 18;9(4):311–6. Doi: https://doi.org/10.13171/mjc941911181112jb.
  • 7. Fu F, Wang Q. Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management. 2011 Mar;92(3):407–18. Doi: https://doi.org/10.1016/j.jenvman.2010.11.011.
  • 8. Gupta VK, Mittal A, Gajbe V, Mittal J. Removal and Recovery of the Hazardous Azo Dye Acid Orange 7 through Adsorption over Waste Materials: Bottom Ash and De-Oiled Soya. Ind Eng Chem Res. 2006 Feb;45(4):1446–53. Doi: https://doi.org/10.1021/ie051111f.
  • 9. Gupta VK, Carrott PJM, Ribeiro Carrott MML, Suhas. Low-Cost Adsorbents: Growing Approach to Wastewater Treatment—a Review. Critical Reviews in Environmental Science and Technology. 2009 Oct 9;39(10):783–842. Doi: https://doi.org/10.1080/10643380801977610.
  • 10. Kabdaşlı I, Arslan T, Ölmez-Hancı T, Arslan-Alaton I, Tünay O. Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes. Journal of Hazardous Materials. 2009 Jun 15;165(1–3):838–45. Doi: https://doi.org/10.1016/j.jhazmat.2008.10.065.
  • 11. Ouallal H, Dehmani Y, Moussout H, Messaoudi L, Azrour M. Kinetic, isotherm and mechanism investigations of the removal of phenols from water by raw and calcined clays. Heliyon. 2019 May;5(5):e01616. Doi: https://doi.org/10.1016/j.heliyon.2019.e01616.
  • 12. Huisman JL, Schouten G, Schultz C. Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry. Hydrometallurgy. 2006 Sep;83(1–4):106–13. Doi: https://doi.org/10.1016/j.hydromet.2006.03.017.
  • 13. Wang L, Hung Y-T, Shammas N. Volume 3: Physicochemical Treatment Processes. In: Handbook of Environmental Engineering [Internet]. Totowa, NJ: Humana Press; 2005. p. 1–703. ISBN: 978-1-59259-820-5. Available from: https://www.springer.com/gp/book/9781588291653
  • 14. Keng P-S, Lee S-L, Ha S-T, Hung Y-T, Ong S-T. Removal of hazardous heavy metals from aqueous environment by low-cost adsorption materials. Environ Chem Lett. 2014 Mar;12(1):15–25. Doi: https://doi.org/10.1007/s10311-013-0427-1.
  • 15. Kadiri L, Lebkiri A, Rifi EH, Ouass A, Essaadaoui Y, Lebkiri I. Mathematical modeling and thermodynamic study of copper (II) removal from aqueous solution by Coriandrum Sativum seeds. MediterrJChem,. 2019 Jan 20;7(6):478–90. Doi: https://doi.org/10.13171/mjc7619012111lk.
  • 16. Essebaai H, Ismi I, Lebkiri A, Marzak S, Rifi EH. Kinetic and Thermodynamic Study of Adsorption of Copper (II) Ion on Moroccan Clay. Mediterr J Chem. 2019 Sep 13;9(2):102–15. Doi: https://doi.org/10.13171/mjc92190909510he.
  • 17. Uddin MK. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal. 2017 Jan;308:438–62. Doi: https://doi.org/10.1016/j.cej.2016.09.029.
  • 18. Abbou B, Lebkiri I, Ouaddari H, Kadiri L, Ouass A, Habsaoui A, et al. Removal of Cd(II), Cu(II), and Pb(II) by adsorption onto natural clay: a kinetic and thermodynamic study. Turk J Chem. 2021;45:362–76. Doi: https://doi.org/10.3906/kim-2004-82.
  • 19. Arbaoui F, Boucherit MN. Comparison of two Algerian bentonites: Physico-chemical and retention capacity study. Applied Clay Science. 2014 Apr;91–92:6–11. Doi: https://doi.org/10.1016/j.clay.2014.02.001.
  • 20. Besq A, Malfoy C, Pantet A, Monnet P, Righi D. Physicochemical characterisation and flow properties of some bentonite muds. Applied Clay Science. 2003 Oct;23(5–6):275–86. Doi: https://doi.org/10.1016/S0169-1317(03)00127-3.
  • 21. Sadki H, Ziat K, Saidi M. Adsorption of dyes on activated local clay in aqueous solution. J Mater Environ Sci. 2014;5(1):2060-5.
  • 22. Ouaddari H, Karim A, Achiou B, Saja S, Aaddane A, Bennazha J, et al. New low-cost ultrafiltration membrane made from purified natural clays for direct Red 80 dye removal. Journal of Environmental Chemical Engineering. 2019 Aug;7(4):103268. Doi: https://doi.org/10.1016/j.jece.2019.103268.
  • 23. Essaadaoui Y, Lebkiri A, Rifi EH, Kadiri L, Ouass A. Adsorption of cobalt from aqueous solutions onto Bark of Eucalyptus. Mediterr J Chem. 2018 Sep 15;7(2):145–55. Doi: https://doi.org/10.13171/mjc72/01808150945-essaadaoui.
  • 24. Ouaddari H, Beqqour D, Bennazha J, El Amrani I-E, Albizane A, Solhy A, et al. Natural Moroccan clays: Comparative study of their application as recyclable catalysts in Knoevenagel condensation. Sustainable Chemistry and Pharmacy. 2018 Dec;10:1–8. Doi: https://doi.org/10.1016/j.scp.2018.07.003.
  • 25. Bedelean H, Măicăneanu A, Burcă S, Stanca M. Removal of heavy metal ions from wastewaters using natural clays. Clay miner. 2009 Dec;44(4):487–95. Doi: https://doi.org/10.1180/claymin.2009.044.4.487.
  • 26. Mobarak M, Selim AQ, Mohamed EA, Seliem MK. A superior adsorbent of CTAB/H2O2 solution−modified organic carbon rich-clay for hexavalent chromium and methyl orange uptake from solutions. Journal of Molecular Liquids. 2018 Jun;259:384–97. Doi: https://doi.org/10.1016/j.molliq.2018.02.014.
  • 27. Adebowale KO, Olu-Owolabi BI, Chigbundu EC. Removal of Safranin-O from Aqueous Solution by Adsorption onto Kaolinite Clay. JEAS. 2014;04(03):89–104. Doi: https://doi.org/10.4236/jeas.2014.43010.
  • 28. Bentahar Y, Hurel C, Draoui K, Khairoun S, Marmier N. Adsorptive properties of Moroccan clays for the removal of arsenic(V) from aqueous solution. Applied Clay Science. 2016 Jan;119:385–92. Doi: https://doi.org/10.1016/j.clay.2015.11.008.
  • 29. Chinoune K, Bentaleb K, Bouberka Z, Nadim A, Maschke U. Adsorption of reactive dyes from aqueous solution by dirty bentonite. Applied Clay Science. 2016 Apr;123:64–75. Doi: https://doi.org/10.1016/j.clay.2016.01.006.
  • 30. Eloussaief M, Kallel N, Yaacoubi A, Benzina M. Mineralogical identification, spectroscopic characterization, and potential environmental use of natural clay materials on chromate removal from aqueous solutions. Chemical Engineering Journal. 2011 Apr;168(3):1024–31. Doi: https://doi.org/10.1016/j.cej.2011.01.077.
  • 31. Gourouza M, Zanguina A, Natatou I, Boos A. Characterization of a mixed clay Niger. Revue CAMES—Sciences et Structure de la Matière. 2013;1:29–39.
  • 32. Madejová J, Pálková H. NIR Contribution to The Study of Modified Clay Minerals. In: Developments in Clay Science [Internet]. Elsevier; 2017 [cited 2021 May 12]. p. 447–81. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780081003558000138
  • 33. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem. 1985 Jan 1;57(4):603–19. Doi: https://doi.org/10.1351/pac198557040603.
  • 34. Gopal Reddi MR, Gomathi T, Saranya M, Sudha PN. Adsorption and kinetic studies on the removal of chromium and copper onto Chitosan-g-maliec anhydride-g-ethylene dimethacrylate. International Journal of Biological Macromolecules. 2017 Nov;104:1578–85. Doi: https://doi.org/10.1016/j.ijbiomac.2017.01.142.
  • 35. Dincer A, Gunes Y, Karakaya N, Gunes E. Comparison of activated carbon and bottom ash for removal of reactive dye from aqueous solution. Bioresource Technology. 2007 Mar;98(4):834–9. Doi: https://doi.org/10.1016/j.biortech.2006.03.009.
  • 36. Kaya A, Ören AH. Adsorption of zinc from aqueous solutions to bentonite. Journal of Hazardous Materials. 2005 Oct;125(1–3):183–9. Doi: https://doi.org/10.1016/j.jhazmat.2005.05.027.
  • 37. Ozdes D, Duran C, Senturk HB. Adsorptive removal of Cd(II) and Pb(II) ions from aqueous solutions by using Turkish illitic clay. Journal of Environmental Management. 2011 Dec;92(12):3082–90. Doi: https://doi.org/10.1016/j.jenvman.2011.07.022.
  • 38. Lagrergen S. Zur theorie der sogenannten adsorption gelöster stoffe kungliga svenska vetenskapsakademiens. Handlingar. 1898;24(4):1–39.
  • 39. Gurses A, Dogar C, Yalcin M, Acikyildiz M, Bayrak R, Karaca S. The adsorption kinetics of the cationic dye, methylene blue, onto clay. Journal of Hazardous Materials. 2006 Apr 17;131(1–3):217–28. Doi: https://doi.org/10.1016/j.jhazmat.2005.09.036.
  • 40. Gupta S, Babu BV. Removal of toxic metal Cr(VI) from aqueous solutions using sawdust as adsorbent: Equilibrium, kinetics and regeneration studies. Chemical Engineering Journal. 2009 Aug 1;150(2–3):352–65. Doi: https://doi.org/10.1016/j.cej.2009.01.013.
  • 41. Abbas M, Kaddour S, Trari M. Kinetic and equilibrium studies of cobalt adsorption on apricot stone activated carbon. Journal of Industrial and Engineering Chemistry. 2014 May;20(3):745–51. Doi: https://doi.org/10.1016/j.jiec.2013.06.030.
  • 42. Saeed A, Sharif M, Iqbal M. Application potential of grapefruit peel as dye sorbent: Kinetics, equilibrium and mechanism of crystal violet adsorption. Journal of Hazardous Materials. 2010 Jul;179(1–3):564–72. Doi: https://doi.org/10.1016/j.jhazmat.2010.03.041.
  • 43. Langmuir I. The Adsorption of Gases on Plane Surfaces of Glass, Mica And Platinum. J Am Chem Soc. 1918 Sep;40(9):1361–403. Doi: https://doi.org/10.1021/ja02242a004.
  • 44. Obayomi KS, Auta M. Development of microporous activated Aloji clay for adsorption of lead (II) ions from aqueous solution. Heliyon. 2019 Nov;5(11):e02799. Doi: https://doi.org/10.1016/j.heliyon.2019.e02799.
  • 45. Freundlich H. Über die Adsorption in Lösungen. Zeitschrift für Physikalische Chemie [Internet]. 1907 Jan 1 [cited 2021 May 12];57U(1). Available from: https://www.degruyter.com/document/doi/10.1515/zpch-1907-5723/html.
  • 46. Tempkin M, Pyzhev V. Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys Chim USSR. 1940;12(1):327.
  • 47. Ouass A, Ismi I, Elaidi H, Lebkiri A, Cherkaoui M, Rifi EH. Mathematical Modeling Of The Adsorption Of Trivalent Chromium By The Sodium Polyacrylate Beads. J Mater Environ Sci. 2017;8(10):3448–56. URL: https://www.jmaterenvironsci.com/Document/vol8/vol8_N10/363-JMES-2585-Ouass.pdf.
  • 48. Benguella B, Yacouta-Nour A. Elimination des colorants acides en solution aqueuse par la bentonite et le kaolin. Comptes Rendus Chimie. 2009 Jun;12(6–7):762–71. Doi: https://doi.org/10.1016/j.crci.2008.11.008.
  • 49. Lebkiri I, Abbou B, Kadiri L, Ouass A, Essaadaoui Y, Habssaoui A, et al. Removal of methylene blue dye from aqueous solution using a superabsorbant hydrogel the polyacrylamide: isotherms and kinetic studies. Mediterr J Chem. 2019 Nov 25;9(5):337–46. Doi: https://doi.org/10.13171/mjc941911251089il.
  • 50. Qiu W, Zheng Y. Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinite-type zeolite synthesized from fly ash. Chemical Engineering Journal. 2009 Jan;145(3):483–8. Doi: https://doi.org/10.1016/j.cej.2008.05.001.
  • 51. Yavuz Ö, Altunkaynak Y, Güzel F. Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Research. 2003 Feb;37(4):948–52. Doi: https://doi.org/10.1016/S0043-1354(02)00409-8.
  • 52. Rao RAK, Kashifuddin M. Adsorption studies of Cd(II) on ball clay: Comparison with other natural clays. Arabian Journal of Chemistry. 2016 Nov;9:S1233–41. Doi: https://doi.org/10.1016/j.arabjc.2012.01.010.
  • 53. Unuabonah EI, Adebowale KO, Olu-Owolabi BI, Yang LZ. Comparison of sorption of Pb2+ and Cd2+ on Kaolinite clay and polyvinyl alcohol-modified Kaolinite clay. Adsorption. 2008 Dec;14(6):791–803. Doi: https://doi.org/10.1007/s10450-008-9142-9.
  • 54. Alvarez-Ayuso E, Garcia-Sanchez A. Removal of cadmium from aqueous solutions by palygorskite. Journal of Hazardous Materials. 2007 Aug 17;147(1–2):594–600. Doi: https://doi.org/10.1016/j.jhazmat.2007.01.055.
  • 55. Ulmanu M, Marañón E, Fernández Y, Castrillón L, Anger I, Dumitriu D. Removal of Copper and Cadmium Ions from Diluted Aqueous Solutions by Low Cost and Waste Material Adsorbents. Water, Air, and Soil Pollution. 2003;142(1/4):357–73. Doi: https://doi.org/10.1023/A:1022084721990.
  • 56. Jiang M, Jin X, Lu X-Q, Chen Z. Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay. Desalination. 2010 Mar;252(1–3):33–9. Doi: https://doi.org/10.1016/j.desal.2009.11.005.
Year 2021, , 677 - 692, 31.05.2021
https://doi.org/10.18596/jotcsa.882016

Abstract

References

  • 1. Jiménez-Castañeda M, Medina D. Use of Surfactant-Modified Zeolites and Clays for the Removal of Heavy Metals from Water. Water. 2017 Mar 24;9(4):235. Doi: https://doi.org/10.3390/w9040235.
  • 2. Bouazza D, Miloudi H, Adjdir M, Tayeb A, Boos A. Competitive adsorption of Cu (II) and Zn (II) on impregnate raw Algerian bentonite and efficiency of extraction. Applied Clay Science. 2018 Jan;151:118–23. Doi: https://doi.org/10.1016/j.clay.2017.10.026.
  • 3. Ezzeddine Z, Batonneau-Gener I, Pouilloux Y, Hamad H, Saad Z. Synthetic Nax Zeolite as a Very Efficient Heavy Metals Sorbent in Batch and Dynamic Conditions. Colloids and Interfaces. 2018 May 24;2(2):22. Doi: https://doi.org/10.3390/colloids2020022.
  • 4. Essaadaoui Y, Lebkiri A, Rifi E, Kadiri L, Ouass A. Adsorption of lead by modified Eucalyptus camaldulensis barks: equilibrium, kinetic and thermodynamic studies. Dwt. 2018;111:267–77. Doi: https://doi.org/10.5004/dwt.2018.22191.
  • 5. Zhang R, Zhou L, Zhang F, Ding Y, Gao J, Chen J, et al. Heavy metal pollution and assessment in the tidal flat sediments of Haizhou Bay, China. Marine Pollution Bulletin. 2013 Sep;74(1):403–12. Doi: https://doi.org/10.1016/j.marpolbul.2013.06.019.
  • 6. Bensalah J, Habsaoui A, Abbou B, Kadiri L, Lebkiri I, Lebkiri A, et al. Adsorption of the anionic dye methyl orange on used artificial zeolites: kinetic study and modeling of experimental data. MediterrJChem,. 2019 Nov 18;9(4):311–6. Doi: https://doi.org/10.13171/mjc941911181112jb.
  • 7. Fu F, Wang Q. Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management. 2011 Mar;92(3):407–18. Doi: https://doi.org/10.1016/j.jenvman.2010.11.011.
  • 8. Gupta VK, Mittal A, Gajbe V, Mittal J. Removal and Recovery of the Hazardous Azo Dye Acid Orange 7 through Adsorption over Waste Materials: Bottom Ash and De-Oiled Soya. Ind Eng Chem Res. 2006 Feb;45(4):1446–53. Doi: https://doi.org/10.1021/ie051111f.
  • 9. Gupta VK, Carrott PJM, Ribeiro Carrott MML, Suhas. Low-Cost Adsorbents: Growing Approach to Wastewater Treatment—a Review. Critical Reviews in Environmental Science and Technology. 2009 Oct 9;39(10):783–842. Doi: https://doi.org/10.1080/10643380801977610.
  • 10. Kabdaşlı I, Arslan T, Ölmez-Hancı T, Arslan-Alaton I, Tünay O. Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes. Journal of Hazardous Materials. 2009 Jun 15;165(1–3):838–45. Doi: https://doi.org/10.1016/j.jhazmat.2008.10.065.
  • 11. Ouallal H, Dehmani Y, Moussout H, Messaoudi L, Azrour M. Kinetic, isotherm and mechanism investigations of the removal of phenols from water by raw and calcined clays. Heliyon. 2019 May;5(5):e01616. Doi: https://doi.org/10.1016/j.heliyon.2019.e01616.
  • 12. Huisman JL, Schouten G, Schultz C. Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry. Hydrometallurgy. 2006 Sep;83(1–4):106–13. Doi: https://doi.org/10.1016/j.hydromet.2006.03.017.
  • 13. Wang L, Hung Y-T, Shammas N. Volume 3: Physicochemical Treatment Processes. In: Handbook of Environmental Engineering [Internet]. Totowa, NJ: Humana Press; 2005. p. 1–703. ISBN: 978-1-59259-820-5. Available from: https://www.springer.com/gp/book/9781588291653
  • 14. Keng P-S, Lee S-L, Ha S-T, Hung Y-T, Ong S-T. Removal of hazardous heavy metals from aqueous environment by low-cost adsorption materials. Environ Chem Lett. 2014 Mar;12(1):15–25. Doi: https://doi.org/10.1007/s10311-013-0427-1.
  • 15. Kadiri L, Lebkiri A, Rifi EH, Ouass A, Essaadaoui Y, Lebkiri I. Mathematical modeling and thermodynamic study of copper (II) removal from aqueous solution by Coriandrum Sativum seeds. MediterrJChem,. 2019 Jan 20;7(6):478–90. Doi: https://doi.org/10.13171/mjc7619012111lk.
  • 16. Essebaai H, Ismi I, Lebkiri A, Marzak S, Rifi EH. Kinetic and Thermodynamic Study of Adsorption of Copper (II) Ion on Moroccan Clay. Mediterr J Chem. 2019 Sep 13;9(2):102–15. Doi: https://doi.org/10.13171/mjc92190909510he.
  • 17. Uddin MK. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal. 2017 Jan;308:438–62. Doi: https://doi.org/10.1016/j.cej.2016.09.029.
  • 18. Abbou B, Lebkiri I, Ouaddari H, Kadiri L, Ouass A, Habsaoui A, et al. Removal of Cd(II), Cu(II), and Pb(II) by adsorption onto natural clay: a kinetic and thermodynamic study. Turk J Chem. 2021;45:362–76. Doi: https://doi.org/10.3906/kim-2004-82.
  • 19. Arbaoui F, Boucherit MN. Comparison of two Algerian bentonites: Physico-chemical and retention capacity study. Applied Clay Science. 2014 Apr;91–92:6–11. Doi: https://doi.org/10.1016/j.clay.2014.02.001.
  • 20. Besq A, Malfoy C, Pantet A, Monnet P, Righi D. Physicochemical characterisation and flow properties of some bentonite muds. Applied Clay Science. 2003 Oct;23(5–6):275–86. Doi: https://doi.org/10.1016/S0169-1317(03)00127-3.
  • 21. Sadki H, Ziat K, Saidi M. Adsorption of dyes on activated local clay in aqueous solution. J Mater Environ Sci. 2014;5(1):2060-5.
  • 22. Ouaddari H, Karim A, Achiou B, Saja S, Aaddane A, Bennazha J, et al. New low-cost ultrafiltration membrane made from purified natural clays for direct Red 80 dye removal. Journal of Environmental Chemical Engineering. 2019 Aug;7(4):103268. Doi: https://doi.org/10.1016/j.jece.2019.103268.
  • 23. Essaadaoui Y, Lebkiri A, Rifi EH, Kadiri L, Ouass A. Adsorption of cobalt from aqueous solutions onto Bark of Eucalyptus. Mediterr J Chem. 2018 Sep 15;7(2):145–55. Doi: https://doi.org/10.13171/mjc72/01808150945-essaadaoui.
  • 24. Ouaddari H, Beqqour D, Bennazha J, El Amrani I-E, Albizane A, Solhy A, et al. Natural Moroccan clays: Comparative study of their application as recyclable catalysts in Knoevenagel condensation. Sustainable Chemistry and Pharmacy. 2018 Dec;10:1–8. Doi: https://doi.org/10.1016/j.scp.2018.07.003.
  • 25. Bedelean H, Măicăneanu A, Burcă S, Stanca M. Removal of heavy metal ions from wastewaters using natural clays. Clay miner. 2009 Dec;44(4):487–95. Doi: https://doi.org/10.1180/claymin.2009.044.4.487.
  • 26. Mobarak M, Selim AQ, Mohamed EA, Seliem MK. A superior adsorbent of CTAB/H2O2 solution−modified organic carbon rich-clay for hexavalent chromium and methyl orange uptake from solutions. Journal of Molecular Liquids. 2018 Jun;259:384–97. Doi: https://doi.org/10.1016/j.molliq.2018.02.014.
  • 27. Adebowale KO, Olu-Owolabi BI, Chigbundu EC. Removal of Safranin-O from Aqueous Solution by Adsorption onto Kaolinite Clay. JEAS. 2014;04(03):89–104. Doi: https://doi.org/10.4236/jeas.2014.43010.
  • 28. Bentahar Y, Hurel C, Draoui K, Khairoun S, Marmier N. Adsorptive properties of Moroccan clays for the removal of arsenic(V) from aqueous solution. Applied Clay Science. 2016 Jan;119:385–92. Doi: https://doi.org/10.1016/j.clay.2015.11.008.
  • 29. Chinoune K, Bentaleb K, Bouberka Z, Nadim A, Maschke U. Adsorption of reactive dyes from aqueous solution by dirty bentonite. Applied Clay Science. 2016 Apr;123:64–75. Doi: https://doi.org/10.1016/j.clay.2016.01.006.
  • 30. Eloussaief M, Kallel N, Yaacoubi A, Benzina M. Mineralogical identification, spectroscopic characterization, and potential environmental use of natural clay materials on chromate removal from aqueous solutions. Chemical Engineering Journal. 2011 Apr;168(3):1024–31. Doi: https://doi.org/10.1016/j.cej.2011.01.077.
  • 31. Gourouza M, Zanguina A, Natatou I, Boos A. Characterization of a mixed clay Niger. Revue CAMES—Sciences et Structure de la Matière. 2013;1:29–39.
  • 32. Madejová J, Pálková H. NIR Contribution to The Study of Modified Clay Minerals. In: Developments in Clay Science [Internet]. Elsevier; 2017 [cited 2021 May 12]. p. 447–81. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780081003558000138
  • 33. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem. 1985 Jan 1;57(4):603–19. Doi: https://doi.org/10.1351/pac198557040603.
  • 34. Gopal Reddi MR, Gomathi T, Saranya M, Sudha PN. Adsorption and kinetic studies on the removal of chromium and copper onto Chitosan-g-maliec anhydride-g-ethylene dimethacrylate. International Journal of Biological Macromolecules. 2017 Nov;104:1578–85. Doi: https://doi.org/10.1016/j.ijbiomac.2017.01.142.
  • 35. Dincer A, Gunes Y, Karakaya N, Gunes E. Comparison of activated carbon and bottom ash for removal of reactive dye from aqueous solution. Bioresource Technology. 2007 Mar;98(4):834–9. Doi: https://doi.org/10.1016/j.biortech.2006.03.009.
  • 36. Kaya A, Ören AH. Adsorption of zinc from aqueous solutions to bentonite. Journal of Hazardous Materials. 2005 Oct;125(1–3):183–9. Doi: https://doi.org/10.1016/j.jhazmat.2005.05.027.
  • 37. Ozdes D, Duran C, Senturk HB. Adsorptive removal of Cd(II) and Pb(II) ions from aqueous solutions by using Turkish illitic clay. Journal of Environmental Management. 2011 Dec;92(12):3082–90. Doi: https://doi.org/10.1016/j.jenvman.2011.07.022.
  • 38. Lagrergen S. Zur theorie der sogenannten adsorption gelöster stoffe kungliga svenska vetenskapsakademiens. Handlingar. 1898;24(4):1–39.
  • 39. Gurses A, Dogar C, Yalcin M, Acikyildiz M, Bayrak R, Karaca S. The adsorption kinetics of the cationic dye, methylene blue, onto clay. Journal of Hazardous Materials. 2006 Apr 17;131(1–3):217–28. Doi: https://doi.org/10.1016/j.jhazmat.2005.09.036.
  • 40. Gupta S, Babu BV. Removal of toxic metal Cr(VI) from aqueous solutions using sawdust as adsorbent: Equilibrium, kinetics and regeneration studies. Chemical Engineering Journal. 2009 Aug 1;150(2–3):352–65. Doi: https://doi.org/10.1016/j.cej.2009.01.013.
  • 41. Abbas M, Kaddour S, Trari M. Kinetic and equilibrium studies of cobalt adsorption on apricot stone activated carbon. Journal of Industrial and Engineering Chemistry. 2014 May;20(3):745–51. Doi: https://doi.org/10.1016/j.jiec.2013.06.030.
  • 42. Saeed A, Sharif M, Iqbal M. Application potential of grapefruit peel as dye sorbent: Kinetics, equilibrium and mechanism of crystal violet adsorption. Journal of Hazardous Materials. 2010 Jul;179(1–3):564–72. Doi: https://doi.org/10.1016/j.jhazmat.2010.03.041.
  • 43. Langmuir I. The Adsorption of Gases on Plane Surfaces of Glass, Mica And Platinum. J Am Chem Soc. 1918 Sep;40(9):1361–403. Doi: https://doi.org/10.1021/ja02242a004.
  • 44. Obayomi KS, Auta M. Development of microporous activated Aloji clay for adsorption of lead (II) ions from aqueous solution. Heliyon. 2019 Nov;5(11):e02799. Doi: https://doi.org/10.1016/j.heliyon.2019.e02799.
  • 45. Freundlich H. Über die Adsorption in Lösungen. Zeitschrift für Physikalische Chemie [Internet]. 1907 Jan 1 [cited 2021 May 12];57U(1). Available from: https://www.degruyter.com/document/doi/10.1515/zpch-1907-5723/html.
  • 46. Tempkin M, Pyzhev V. Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys Chim USSR. 1940;12(1):327.
  • 47. Ouass A, Ismi I, Elaidi H, Lebkiri A, Cherkaoui M, Rifi EH. Mathematical Modeling Of The Adsorption Of Trivalent Chromium By The Sodium Polyacrylate Beads. J Mater Environ Sci. 2017;8(10):3448–56. URL: https://www.jmaterenvironsci.com/Document/vol8/vol8_N10/363-JMES-2585-Ouass.pdf.
  • 48. Benguella B, Yacouta-Nour A. Elimination des colorants acides en solution aqueuse par la bentonite et le kaolin. Comptes Rendus Chimie. 2009 Jun;12(6–7):762–71. Doi: https://doi.org/10.1016/j.crci.2008.11.008.
  • 49. Lebkiri I, Abbou B, Kadiri L, Ouass A, Essaadaoui Y, Habssaoui A, et al. Removal of methylene blue dye from aqueous solution using a superabsorbant hydrogel the polyacrylamide: isotherms and kinetic studies. Mediterr J Chem. 2019 Nov 25;9(5):337–46. Doi: https://doi.org/10.13171/mjc941911251089il.
  • 50. Qiu W, Zheng Y. Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinite-type zeolite synthesized from fly ash. Chemical Engineering Journal. 2009 Jan;145(3):483–8. Doi: https://doi.org/10.1016/j.cej.2008.05.001.
  • 51. Yavuz Ö, Altunkaynak Y, Güzel F. Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Research. 2003 Feb;37(4):948–52. Doi: https://doi.org/10.1016/S0043-1354(02)00409-8.
  • 52. Rao RAK, Kashifuddin M. Adsorption studies of Cd(II) on ball clay: Comparison with other natural clays. Arabian Journal of Chemistry. 2016 Nov;9:S1233–41. Doi: https://doi.org/10.1016/j.arabjc.2012.01.010.
  • 53. Unuabonah EI, Adebowale KO, Olu-Owolabi BI, Yang LZ. Comparison of sorption of Pb2+ and Cd2+ on Kaolinite clay and polyvinyl alcohol-modified Kaolinite clay. Adsorption. 2008 Dec;14(6):791–803. Doi: https://doi.org/10.1007/s10450-008-9142-9.
  • 54. Alvarez-Ayuso E, Garcia-Sanchez A. Removal of cadmium from aqueous solutions by palygorskite. Journal of Hazardous Materials. 2007 Aug 17;147(1–2):594–600. Doi: https://doi.org/10.1016/j.jhazmat.2007.01.055.
  • 55. Ulmanu M, Marañón E, Fernández Y, Castrillón L, Anger I, Dumitriu D. Removal of Copper and Cadmium Ions from Diluted Aqueous Solutions by Low Cost and Waste Material Adsorbents. Water, Air, and Soil Pollution. 2003;142(1/4):357–73. Doi: https://doi.org/10.1023/A:1022084721990.
  • 56. Jiang M, Jin X, Lu X-Q, Chen Z. Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay. Desalination. 2010 Mar;252(1–3):33–9. Doi: https://doi.org/10.1016/j.desal.2009.11.005.
There are 56 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry
Journal Section Articles
Authors

Brahim Abbou 0000-0002-2056-9187

İmane Lebkiri This is me 0000-0001-5668-1392

Hanae Ouaddarı This is me 0000-0001-6716-2985

Omar Elkhattabi This is me 0000-0001-9125-3844

Amar Habsaouı This is me 0000-0001-9641-8046

Ahmed Lebkırı This is me 0000-0003-0593-0074

El Housseine Rıfı This is me 0000-0002-6436-4554

Publication Date May 31, 2021
Submission Date February 17, 2021
Acceptance Date May 11, 2021
Published in Issue Year 2021

Cite

Vancouver Abbou B, Lebkiri İ, Ouaddarı H, Elkhattabi O, Habsaouı A, Lebkırı A, Rıfı EH. Kinetic and thermodynamic study on adsorption of cadmium from aqueous solutions using natural clay. JOTCSA. 2021;8(2):677-92.

Cited By