Research Article
BibTex RIS Cite
Year 2021, , 659 - 676, 31.05.2021
https://doi.org/10.18596/jotcsa.912967

Abstract

Project Number

Project No. FEF19004.18.001

References

  • 1. Bosshard P, Eugster CH. The development of the chemistry of furans, 1952-1963. In: Advances in Heterocyclic Chemistry [Internet]. Elsevier; 1967 [cited 2021 May 10]. p. 377–490. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0065272508605942
  • 2. Khanam H, Shamsuzzaman. Bioactive Benzofuran derivatives: A review. European Journal of Medicinal Chemistry. 2015 Jun;97:483–504. Doi: https://doi.org/10.1016/j.ejmech.2014.11.039.
  • 3. Hiremath SM, Suvitha A, Patil NR, Hiremath CS, Khemalapure SS, Pattanayak SK, et al. Molecular structure, vibrational spectra, NMR, UV, NBO, NLO, HOMO-LUMO and molecular docking of 2-(4, 6-dimethyl-1-benzofuran-3-yl) acetic acid (2DBAA): Experimental and theoretical approach. Journal of Molecular Structure. 2018 Nov;1171:362–74. Doi: https://doi.org/10.1016/j.molstruc.2018.05.109.
  • 4. Radadiya A, Shah A. Bioactive benzofuran derivatives: An insight on lead developments, radioligands and advances of the last decade. European Journal of Medicinal Chemistry. 2015 Jun;97:356–76. Doi: https://doi.org/10.1016/j.ejmech.2015.01.021.
  • 5. Dawood KM. Benzofuran derivatives: a patent review. Expert Opinion on Therapeutic Patents. 2013 Sep;23(9):1133–56. Doi: https://doi.org/10.1517/13543776.2013.801455.
  • 6. Naik R, Harmalkar DS, Xu X, Jang K, Lee K. Bioactive benzofuran derivatives: Moracins A–Z in medicinal chemistry. European Journal of Medicinal Chemistry. 2015 Jan;90:379–93. Doi: https://doi.org/10.1016/j.ejmech.2014.11.047.
  • 7. Oka T. Enantioselective synthesis and absolute configuration of (−)-1-(benzofuran-2-yl)-2-propylaminopentane, ((−)-BPAP), a highly potent and selective catecholaminergic activity enhancer. Bioorganic & Medicinal Chemistry. 2001 May;9(5):1213–9. Doi: https://doi.org/10.1016/S0968-0896(00)00341-2.
  • 8. Fukai T, Oku Y, Hano Y, Terada S. Antimicrobial Activities of Hydrophobic 2-Arylbenzofurans and an Isoflavone against Vancomycin-Resistant Enterococci and Methicillin-Resistant Staphylococcus aureus. Planta med. 2004 Jul;70(7):685–7. Doi: https://doi.org/10.1055/s-2004-827196.
  • 9. Gilchrist T. Aromatic heterocycles. In: Heterocyclic chemistry. Harlow, UK: Longman Scientific & Technical; 1985. p. 5–19.
  • 10. Hattori M, Hada S, Watahiki A, Ihara H, Shu Y-Z, Kakiuchi N, et al. Studies on dental caries prevention by traditional medicines. X Antibacterial action of phenolic components from mace against Streptococcus mutans. Chem Pharm Bull. 1986;34(9):3885–93. Doi: https://doi.org/10.1248/cpb.34.3885.
  • 11. Erber S, Ringshandl R, von Angerer E. 2-Phenylbenzo[b]furans: relationship between structure, estrogen receptor affinity and cytostatic activity against mammary tumor cells. Anticancer Drug Des. 1991 Nov;6(5):417–26. Url: https://pubmed.ncbi.nlm.nih.gov/1764164/.
  • 12. Cui B, Chai H, Santisuk T, Reutrakul V, Farnsworth NR, Cordell GA, et al. Novel cytotoxic 1H-cyclopenta[b]benzofuran lignans from Aglaia elliptica. Tetrahedron. 1997 Dec;53(52):17625–32. Doi: https://doi.org/10.1016/S0040-4020(97)10231-9.
  • 13. Lee SK, Cui B, Mehta RR, Kinghorn AD, Pezzuto JM. Cytostatic mechanism and antitumor potential of novel 1H-cyclopenta[b]benzofuran lignans isolated from Aglaiaelliptica. Chemico-Biological Interactions. 1998 Oct;115(3):215–28. Doi: https://doi.org/10.1016/S0009-2797(98)00073-8.
  • 14. Kodama I, Kamiya K, Toyama J. Amiodarone: ionic and cellular mechanisms of action of the most promising class III agent. The American Journal of Cardiology. 1999 Nov;84(9):20–8. Doi: https://doi.org/10.1016/S0002-9149(99)00698-0.
  • 15. Hayakawa I, Shioya R, Agatsuma T, Furukawa H, Naruto S, Sugano Y. 4-Hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester derivatives as potent anti-tumor agents. Bioorganic & Medicinal Chemistry Letters. 2004 Jan;14(2):455–8. Doi: https://doi.org/10.1016/j.bmcl.2003.10.039.
  • 16. Hwang BY, Su B-N, Chai H, Mi Q, Kardono LBS, Afriastini JJ, et al. Silvestrol and Episilvestrol, Potential Anticancer Rocaglate Derivatives from Aglaia silvestris. J Org Chem. 2004 Sep;69(18):6156–6156. Doi: https://doi.org/10.1021/jo040008h.
  • 17. Masche UP, Rentsch KM, von Felten A, Meier PJ, Fattinger KE. No clinically relevant effect of Iornoxicam intake on acenocoumarol pharmacokinetics and pharmacodynamics. European Journal of Clinical Pharmacology. 1999 Jan 20;54(11):865–8. Doi: https://doi.org/10.1007/s002280050568.
  • 18. Karaliota A, Kretsi O, Tzougraki C. Synthesis and characterization of a binuclear coumarin-3-carboxylate copper(II) complex. Journal of Inorganic Biochemistry. 2001 Mar;84(1–2):33–7. Doi: https://doi.org/10.1016/S0162-0134(00)00214-2.
  • 19. Kossakowski J, Krawiecka M, Kuran B, Stefańska J, Wolska I. Synthesis and Preliminary Evaluation of the Antimicrobial Activity of Selected 3-Benzofurancarboxylic Acid Derivatives. Molecules. 2010 Jul 6;15(7):4737–49. Doi: https://doi.org/10.3390/molecules15074737.
  • 20. Tsuji H, Mitsui C, Ilies L, Sato Y, Nakamura E. Synthesis and Properties of 2,3,6,7-Tetraarylbenzo[1,2- b :4,5- b ‘]difurans as Hole-Transporting Material. J Am Chem Soc. 2007 Oct 1;129(39):11902–3. Doi: https://doi.org/10.1021/ja074365w.
  • 21. Anderson S, Taylor PN, Verschoor GLB. Benzofuran Trimers for Organic Electroluminescence. Chem Eur J. 2004 Jan 23;10(2):518–27. Doi: https://doi.org/10.1002/chem.200305284.
  • 22. Creaven BS, Devereux M, Georgieva I, Karcz D, McCann M, Trendafilova N, et al. Molecular structure and spectroscopic studies on novel complexes of coumarin-3-carboxylic acid with Ni(II), Co(II), Zn(II) and Mn(II) ions based on density functional theory. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2011 Dec;84(1):275–85. Doi: https://doi.org/10.1016/j.saa.2011.09.041.
  • 23. Castellani CB, Carugo O. Studies on fluorescent lanthanide complexes. New complexes of lanthanides(III) with coumarinic-3-carboxylic acid. Inorganica Chimica Acta. 1989 May;159(2):157–61. Doi: https://doi.org/10.1016/S0020-1693(00)80560-5.
  • 24. Georgieva I, Trendafilova N, Aquino AJA, Lischka H. Theoretical Study of Metal−Ligand Interaction in Sm(III), Eu(III), and Tb(III) Complexes of Coumarin-3-Carboxylic Acid in the Gas Phase and Solution. Inorg Chem. 2007 Dec 1;46(25):10926–36. Doi: https://doi.org/10.1021/ic7016616.
  • 25. Georgieva I, Trendafilova N, Creaven BS, Walsh M, Noble A, McCann M. Is the CO frequency shift a reliable indicator of coumarin binding to metal ions through the carbonyl oxygen? Chemical Physics. 2009 Nov;365(1–2):69–79. Doi: https://doi.org/10.1016/j.chemphys.2009.10.004.
  • 26. Mihaylov Tz, Trendafilova N, Kostova I, Georgieva I, Bauer G. DFT modeling and spectroscopic study of metal–ligand bonding in La(III) complex of coumarin-3-carboxylic acid. Chemical Physics. 2006 Sep;327(2–3):209–19. Doi: https://doi.org/10.1016/j.chemphys.2006.04.009.
  • 27. Roh, Soo-Gyun, Baek, Nam Seob, Hong, Kyong-Soo, 김환규. Synthesis and Photophysical Properties of Luminescent Lanthanide Complexes Based on Coumarin-3-carboxylic Acid for Advanced Photonic Applications. Bulletin of the Korean Chemical Society. 2004 Mar 20;25(3):343–4. Doi: https://doi.org/10.5012/BKCS.2004.25.3.343.
  • 28. Köse DA, Öztürk B, Şahin O, Büyükgüngör O. Mixed ligand complexes of coumarilic acid/nicotinamide with transition metal complexes: Synthesis and structural investigation. J Therm Anal Calorim. 2014 Feb;115(2):1515–24. Doi: https://doi.org/10.1007/s10973-013-3415-6.
  • 29. Ng SW. Coordination complexes of triphenyltin coumarin-3-carboxylate with O -donor ligands: (coumarin-3-carboxylato)triphenyltin– L ( L = ethanol, diphenylcyclopropenone and quinoline N -oxide) and bis[(coumarin-3-carboxylato)triphenyltin]– L ( L = triphenylphosphine oxide and triphenylarsine oxide). Acta Crystallogr C Cryst Struct Commun. 1999 Apr 15;55(4):523–31. Doi: https://doi.org/10.1107/S0108270198014991.
  • 30. Ng SW, Kumar Das VG. Tetramethylammonium Bis(coumarin-3-carboxylato)triphenylstannate Ethanol Solvate. Acta Crystallogr C Cryst Struct Commun. 1997 Aug 15;53(8):1034–6. Doi: https://doi.org/10.1107/S0108270197004307.
  • 31. Mosa AI, Emara AAA, Yousef JM, Saddiq AA. Novel transition metal complexes of 4-hydroxy-coumarin-3-thiocarbohydrazone: Pharmacodynamic of Co(III) on rats and antimicrobial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2011 Oct;81(1):35–43. Doi: https://doi.org/10.1016/j.saa.2011.05.035.
  • 32. Weder JE, Dillon CT, Hambley TW, Kennedy BJ, Lay PA, Biffin JR, et al. Copper complexes of non-steroidal anti-inflammatory drugs: an opportunity yet to be realized. Coordination Chemistry Reviews. 2002 Oct;232(1–2):95–126. Doi: https://doi.org/10.1016/S0010-8545(02)00086-3.
  • 33. Tisato F, Marzano C, Porchia M, Pellei M, Santini C. Copper in diseases and treatments, and copper-based anticancer strategies. Med Res Rev. 2009;30(4): 708-49. Doi: https://doi.org/10.1002/med.20174.
  • 34. Bareggi SR, Cornelli U. Clioquinol: Review of its Mechanisms of Action and Clinical Uses in Neurodegenerative Disorders: Clioquinol. CNS Neuroscience & Therapeutics. 2012 Jan;18(1):41–6. Doi: https://doi.org/10.1111/j.1755-5949.2010.00231.x.
  • 35. Duncan C, White AR. Copper complexes as therapeutic agents. Metallomics. 2012;4(2):127–38. Doi: https://doi.org/10.1039/C2MT00174H.
  • 36. a) Drzewiecka A, Koziol AE, Klepka MT, Wolska A, Jimenez-Pulido SB, Lis T, et al. Two coordination modes around the Cu(II) cations in complexes with benzo[b]furancarboxylic acids. Chemical Physics Letters. 2013 Feb;559:41–5. Doi: https://doi.org/10.1016/j.cplett.2013.01.011. .b) Drzewiecka A, Koziol AE, Klepka MT, Wolska A, Jimenez-Pulido SB, Struga M. Electrochemical synthesis and structural studies of zinc(II) complexes with derivatives of benzo[b]furancarboxylic acids. Chemical Physics Letters. 2013 Jun;575:40–5. Doi: https://doi.org/10.1016/j.cplett.2013.04.078.
  • 37. Dağlı Ö, Köse DA, Şahin O, Şahin ZS. The synthesis and structural characterization of transition metal coordination complexes of coumarilic acid. J Therm Anal Calorim. 2017 Jun;128(3):1373–83. Doi. https://doi.org/10.1007/s10973-016-6053-y.
  • 38. Dağlı Ö, Köse DA, İçten O, Avcı GA, Şahin O. The mixed ligand complexes of Co(II), Ni(II), Cu(II) and Zn(II) with coumarilic acid/1,10-phenanthroline: Synthesis, crystal characterization and biological applications. J Therm Anal Calorim. 2019 May;136(4):1467–80. Doi: https://doi.org/10.1007/s10973-018-7773-y.
  • 39. Koç S, Köse DA, Avcı E. Synthesis, Structural Characterization and Biological Application of Mixed Ligands Complexes of Coumaric Acid/Coumarine with Some Transition Metal Cation. European Chemical Bulletin. 2016;5(4):132–7.
  • 40. Koc S, Kose DA, Avci E. Synthesis and Thermal Characterization of p-Coumaric Acid Complexes of CoII, NiII, CuII and ZnII Metal Cations and Biological Applications. Hittite J Sci Eng. 2016;3(1):15–22. Doi: https://doi.org/10.17350/HJSE19030000027.
  • 41. Dağlı Ö, Köse DA, Avcı GA, Şahin O. Novel mixed-ligand complexes of coumarilate/N,N′-diethylnicotinamide with some transition metals: Synthesis and structural characterization. J Therm Anal Calorim. 2017 Sep;129(3):1389–402. Doi: https://doi.org/10.1007/s10973-017-6373-6.
  • 42. Srinivasan BR, Shetgaonkar SY, Näther C, Bensch W. Solid state synthesis and characterization of a triple chain calcium(II) coordination polymer showing two different bridging 4-nitrobenzoate coordination modes. Polyhedron. 2009 Feb;28(3):534–40. Doi: https://doi.org/10.1016/j.poly.2008.11.022.
  • 43. Elin RJ. Assessment of magnesium status. Clinical Chemistry. 1987 Nov 1;33(11):1965–70. Doi: https://doi.org/10.1093/clinchem/33.11.1965.
  • 44. Purvis JR, Movahed A. Magnesium disorders and cardiovascular diseases. Clin Cardiol. 1992 Aug;15(8):556–68. Doi: https://doi.org/10.1002/clc.4960150804.
  • 45. Rabbani LE, Antman EM. The role of magnesium therapy in acute myocardial infarction. Clin Cardiol. 1996 Nov;19(11):841–4. Doi: https://doi.org/10.1002/clc.4960191103.
  • 46. Ralston MA, Murnane MR, Kelley RE, Altschuld RA, Unverferth DV, Leier CV. Magnesium content of serum, circulating mononuclear cells, skeletal muscle, and myocardium in congestive heart failure. Circulation. 1989 Sep;80(3):573–80. Doi: https://doi.org/10.1161/01.CIR.80.3.573.
  • 47. Lim P, Jacob E. Magnesium Deficiency in Patients on Long-Term Diuretic Therapy for Heart Failure. BMJ. 1972 Sep 9;3(5827):620–2. Doi: https://doi.org/10.1136/bmj.3.5827.620.
  • 48. Radecka-Paryzek W, Patroniak V. The template synthesis and characterization of alkaline earth metal ion nitrate macroacyclic Schiff base complexes. Polyhedron. 1994 Jul;13(14):2125–8. Doi: https://doi.org/10.1016/S0277-5387(00)81492-8.
  • 49. Bock CW, Katz AK, Glusker JP. Hydration of Zinc Ions: A Comparison with Magnesium and Beryllium Ions. J Am Chem Soc. 1995 Apr;117(13):3754–65. Doi. https://doi.org/10.1021/ja00118a012.
  • 50. Katz AK, Glusker JP, Beebe SA, Bock CW. Calcium Ion Coordination: A Comparison with That of Beryllium, Magnesium, and Zinc. J Am Chem Soc. 1996 Jan;118(24):5752–63. Doi: https://doi.org/10.1021/ja953943i.
  • 51. Carugo O, Djinovi? K, Rizzi M. Comparison of the co-ordinative behaviour of calcium(II) and magnesium(II) from crystallographic data. J Chem Soc, Dalton Trans. 1993;(14):2127. Doi: https://doi.org/10.1039/dt9930002127.
  • 52. Peschke M, Blades AT, Kebarle P. Hydration Energies and Entropies for Mg 2+ , Ca 2+ , Sr 2+ , and Ba 2+ from Gas-Phase Ion−Water Molecule Equilibria Determinations. J Phys Chem A. 1998 Nov 1;102(48):9978–85. Doi: https://doi.org/10.1021/jp9821127.
  • 53. Refat MS, Alghool S, El-Halim HFA. Alkaline earth metal (II) complexes of vitamin B13 with bidentate orotate ligands: Synthesis, structural and thermal studies. Comptes Rendus Chimie. 2011 May;14(5):496–502. Doi: https://doi.org/10.1016/j.crci.2010.04.024.

Novel Mixed Ligand Complexes of Alkaline Earth Metals with Coumarilic Acid and Nicotinamide

Year 2021, , 659 - 676, 31.05.2021
https://doi.org/10.18596/jotcsa.912967

Abstract

Coordination compounds with mixed ligands were synthesized with 2A group (Mg2+, Ca2+, Ba2+, Sr2+) alkaline earth metal cations of coumarilic acid and nicotinamide ligands. Afterward, the structural properties of these new molecules were investigated by melting point, elemental analysis, infrared spectroscopy, thermal analysis (TGA / DTA) curves, powder X-ray diffraction (P-XRD) spectroscopy. It has been suggested that the complex structure with the Mg2+ metal center is different from the other three structures. In this structure, it was determined that four aqua and two nicotinamide ligands were located in the coordination sphere, and the coordination number was six, as expected. With two monoanionic coumarilic acids located outside the coordination sphere, complex charge equivalence was achieved. The other three molecules, Sr2+ and Ba2+, have iso-structural properties, and it is suggested that both structures contain a dinuclear metal center, and two aqua ligands are located in the bridging position between metal centers. Besides, the two coumarilate ligands involved in coordination are thought to coordinate with the primary metal cation through carbonyl and acidic oxygens while coordinating with the secondary metal cation through furan oxygen, providing the third bridge connection between metal centers. Metal cations with nine coordination numbers complete the coordination sphere with two terminal aqua and one nicotinamide ligands, each included in the structure. In the molecule with Ca2+ cation, which differs little from these metal cation structures, the difference according to these structures can be interpreted as the coordination of furan oxygen with the secondary metal center due to the octet coordination of the Ca2+ cation. From the thermal analysis curves, it was determined that only the Mg2+ cation complex contained hydrate. As a result of thermal decomposition, it was determined that relevant metal oxide residues remained in all structures, and this situation was defined by powder XRD.

Supporting Institution

Hitit University

Project Number

Project No. FEF19004.18.001

References

  • 1. Bosshard P, Eugster CH. The development of the chemistry of furans, 1952-1963. In: Advances in Heterocyclic Chemistry [Internet]. Elsevier; 1967 [cited 2021 May 10]. p. 377–490. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0065272508605942
  • 2. Khanam H, Shamsuzzaman. Bioactive Benzofuran derivatives: A review. European Journal of Medicinal Chemistry. 2015 Jun;97:483–504. Doi: https://doi.org/10.1016/j.ejmech.2014.11.039.
  • 3. Hiremath SM, Suvitha A, Patil NR, Hiremath CS, Khemalapure SS, Pattanayak SK, et al. Molecular structure, vibrational spectra, NMR, UV, NBO, NLO, HOMO-LUMO and molecular docking of 2-(4, 6-dimethyl-1-benzofuran-3-yl) acetic acid (2DBAA): Experimental and theoretical approach. Journal of Molecular Structure. 2018 Nov;1171:362–74. Doi: https://doi.org/10.1016/j.molstruc.2018.05.109.
  • 4. Radadiya A, Shah A. Bioactive benzofuran derivatives: An insight on lead developments, radioligands and advances of the last decade. European Journal of Medicinal Chemistry. 2015 Jun;97:356–76. Doi: https://doi.org/10.1016/j.ejmech.2015.01.021.
  • 5. Dawood KM. Benzofuran derivatives: a patent review. Expert Opinion on Therapeutic Patents. 2013 Sep;23(9):1133–56. Doi: https://doi.org/10.1517/13543776.2013.801455.
  • 6. Naik R, Harmalkar DS, Xu X, Jang K, Lee K. Bioactive benzofuran derivatives: Moracins A–Z in medicinal chemistry. European Journal of Medicinal Chemistry. 2015 Jan;90:379–93. Doi: https://doi.org/10.1016/j.ejmech.2014.11.047.
  • 7. Oka T. Enantioselective synthesis and absolute configuration of (−)-1-(benzofuran-2-yl)-2-propylaminopentane, ((−)-BPAP), a highly potent and selective catecholaminergic activity enhancer. Bioorganic & Medicinal Chemistry. 2001 May;9(5):1213–9. Doi: https://doi.org/10.1016/S0968-0896(00)00341-2.
  • 8. Fukai T, Oku Y, Hano Y, Terada S. Antimicrobial Activities of Hydrophobic 2-Arylbenzofurans and an Isoflavone against Vancomycin-Resistant Enterococci and Methicillin-Resistant Staphylococcus aureus. Planta med. 2004 Jul;70(7):685–7. Doi: https://doi.org/10.1055/s-2004-827196.
  • 9. Gilchrist T. Aromatic heterocycles. In: Heterocyclic chemistry. Harlow, UK: Longman Scientific & Technical; 1985. p. 5–19.
  • 10. Hattori M, Hada S, Watahiki A, Ihara H, Shu Y-Z, Kakiuchi N, et al. Studies on dental caries prevention by traditional medicines. X Antibacterial action of phenolic components from mace against Streptococcus mutans. Chem Pharm Bull. 1986;34(9):3885–93. Doi: https://doi.org/10.1248/cpb.34.3885.
  • 11. Erber S, Ringshandl R, von Angerer E. 2-Phenylbenzo[b]furans: relationship between structure, estrogen receptor affinity and cytostatic activity against mammary tumor cells. Anticancer Drug Des. 1991 Nov;6(5):417–26. Url: https://pubmed.ncbi.nlm.nih.gov/1764164/.
  • 12. Cui B, Chai H, Santisuk T, Reutrakul V, Farnsworth NR, Cordell GA, et al. Novel cytotoxic 1H-cyclopenta[b]benzofuran lignans from Aglaia elliptica. Tetrahedron. 1997 Dec;53(52):17625–32. Doi: https://doi.org/10.1016/S0040-4020(97)10231-9.
  • 13. Lee SK, Cui B, Mehta RR, Kinghorn AD, Pezzuto JM. Cytostatic mechanism and antitumor potential of novel 1H-cyclopenta[b]benzofuran lignans isolated from Aglaiaelliptica. Chemico-Biological Interactions. 1998 Oct;115(3):215–28. Doi: https://doi.org/10.1016/S0009-2797(98)00073-8.
  • 14. Kodama I, Kamiya K, Toyama J. Amiodarone: ionic and cellular mechanisms of action of the most promising class III agent. The American Journal of Cardiology. 1999 Nov;84(9):20–8. Doi: https://doi.org/10.1016/S0002-9149(99)00698-0.
  • 15. Hayakawa I, Shioya R, Agatsuma T, Furukawa H, Naruto S, Sugano Y. 4-Hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester derivatives as potent anti-tumor agents. Bioorganic & Medicinal Chemistry Letters. 2004 Jan;14(2):455–8. Doi: https://doi.org/10.1016/j.bmcl.2003.10.039.
  • 16. Hwang BY, Su B-N, Chai H, Mi Q, Kardono LBS, Afriastini JJ, et al. Silvestrol and Episilvestrol, Potential Anticancer Rocaglate Derivatives from Aglaia silvestris. J Org Chem. 2004 Sep;69(18):6156–6156. Doi: https://doi.org/10.1021/jo040008h.
  • 17. Masche UP, Rentsch KM, von Felten A, Meier PJ, Fattinger KE. No clinically relevant effect of Iornoxicam intake on acenocoumarol pharmacokinetics and pharmacodynamics. European Journal of Clinical Pharmacology. 1999 Jan 20;54(11):865–8. Doi: https://doi.org/10.1007/s002280050568.
  • 18. Karaliota A, Kretsi O, Tzougraki C. Synthesis and characterization of a binuclear coumarin-3-carboxylate copper(II) complex. Journal of Inorganic Biochemistry. 2001 Mar;84(1–2):33–7. Doi: https://doi.org/10.1016/S0162-0134(00)00214-2.
  • 19. Kossakowski J, Krawiecka M, Kuran B, Stefańska J, Wolska I. Synthesis and Preliminary Evaluation of the Antimicrobial Activity of Selected 3-Benzofurancarboxylic Acid Derivatives. Molecules. 2010 Jul 6;15(7):4737–49. Doi: https://doi.org/10.3390/molecules15074737.
  • 20. Tsuji H, Mitsui C, Ilies L, Sato Y, Nakamura E. Synthesis and Properties of 2,3,6,7-Tetraarylbenzo[1,2- b :4,5- b ‘]difurans as Hole-Transporting Material. J Am Chem Soc. 2007 Oct 1;129(39):11902–3. Doi: https://doi.org/10.1021/ja074365w.
  • 21. Anderson S, Taylor PN, Verschoor GLB. Benzofuran Trimers for Organic Electroluminescence. Chem Eur J. 2004 Jan 23;10(2):518–27. Doi: https://doi.org/10.1002/chem.200305284.
  • 22. Creaven BS, Devereux M, Georgieva I, Karcz D, McCann M, Trendafilova N, et al. Molecular structure and spectroscopic studies on novel complexes of coumarin-3-carboxylic acid with Ni(II), Co(II), Zn(II) and Mn(II) ions based on density functional theory. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2011 Dec;84(1):275–85. Doi: https://doi.org/10.1016/j.saa.2011.09.041.
  • 23. Castellani CB, Carugo O. Studies on fluorescent lanthanide complexes. New complexes of lanthanides(III) with coumarinic-3-carboxylic acid. Inorganica Chimica Acta. 1989 May;159(2):157–61. Doi: https://doi.org/10.1016/S0020-1693(00)80560-5.
  • 24. Georgieva I, Trendafilova N, Aquino AJA, Lischka H. Theoretical Study of Metal−Ligand Interaction in Sm(III), Eu(III), and Tb(III) Complexes of Coumarin-3-Carboxylic Acid in the Gas Phase and Solution. Inorg Chem. 2007 Dec 1;46(25):10926–36. Doi: https://doi.org/10.1021/ic7016616.
  • 25. Georgieva I, Trendafilova N, Creaven BS, Walsh M, Noble A, McCann M. Is the CO frequency shift a reliable indicator of coumarin binding to metal ions through the carbonyl oxygen? Chemical Physics. 2009 Nov;365(1–2):69–79. Doi: https://doi.org/10.1016/j.chemphys.2009.10.004.
  • 26. Mihaylov Tz, Trendafilova N, Kostova I, Georgieva I, Bauer G. DFT modeling and spectroscopic study of metal–ligand bonding in La(III) complex of coumarin-3-carboxylic acid. Chemical Physics. 2006 Sep;327(2–3):209–19. Doi: https://doi.org/10.1016/j.chemphys.2006.04.009.
  • 27. Roh, Soo-Gyun, Baek, Nam Seob, Hong, Kyong-Soo, 김환규. Synthesis and Photophysical Properties of Luminescent Lanthanide Complexes Based on Coumarin-3-carboxylic Acid for Advanced Photonic Applications. Bulletin of the Korean Chemical Society. 2004 Mar 20;25(3):343–4. Doi: https://doi.org/10.5012/BKCS.2004.25.3.343.
  • 28. Köse DA, Öztürk B, Şahin O, Büyükgüngör O. Mixed ligand complexes of coumarilic acid/nicotinamide with transition metal complexes: Synthesis and structural investigation. J Therm Anal Calorim. 2014 Feb;115(2):1515–24. Doi: https://doi.org/10.1007/s10973-013-3415-6.
  • 29. Ng SW. Coordination complexes of triphenyltin coumarin-3-carboxylate with O -donor ligands: (coumarin-3-carboxylato)triphenyltin– L ( L = ethanol, diphenylcyclopropenone and quinoline N -oxide) and bis[(coumarin-3-carboxylato)triphenyltin]– L ( L = triphenylphosphine oxide and triphenylarsine oxide). Acta Crystallogr C Cryst Struct Commun. 1999 Apr 15;55(4):523–31. Doi: https://doi.org/10.1107/S0108270198014991.
  • 30. Ng SW, Kumar Das VG. Tetramethylammonium Bis(coumarin-3-carboxylato)triphenylstannate Ethanol Solvate. Acta Crystallogr C Cryst Struct Commun. 1997 Aug 15;53(8):1034–6. Doi: https://doi.org/10.1107/S0108270197004307.
  • 31. Mosa AI, Emara AAA, Yousef JM, Saddiq AA. Novel transition metal complexes of 4-hydroxy-coumarin-3-thiocarbohydrazone: Pharmacodynamic of Co(III) on rats and antimicrobial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2011 Oct;81(1):35–43. Doi: https://doi.org/10.1016/j.saa.2011.05.035.
  • 32. Weder JE, Dillon CT, Hambley TW, Kennedy BJ, Lay PA, Biffin JR, et al. Copper complexes of non-steroidal anti-inflammatory drugs: an opportunity yet to be realized. Coordination Chemistry Reviews. 2002 Oct;232(1–2):95–126. Doi: https://doi.org/10.1016/S0010-8545(02)00086-3.
  • 33. Tisato F, Marzano C, Porchia M, Pellei M, Santini C. Copper in diseases and treatments, and copper-based anticancer strategies. Med Res Rev. 2009;30(4): 708-49. Doi: https://doi.org/10.1002/med.20174.
  • 34. Bareggi SR, Cornelli U. Clioquinol: Review of its Mechanisms of Action and Clinical Uses in Neurodegenerative Disorders: Clioquinol. CNS Neuroscience & Therapeutics. 2012 Jan;18(1):41–6. Doi: https://doi.org/10.1111/j.1755-5949.2010.00231.x.
  • 35. Duncan C, White AR. Copper complexes as therapeutic agents. Metallomics. 2012;4(2):127–38. Doi: https://doi.org/10.1039/C2MT00174H.
  • 36. a) Drzewiecka A, Koziol AE, Klepka MT, Wolska A, Jimenez-Pulido SB, Lis T, et al. Two coordination modes around the Cu(II) cations in complexes with benzo[b]furancarboxylic acids. Chemical Physics Letters. 2013 Feb;559:41–5. Doi: https://doi.org/10.1016/j.cplett.2013.01.011. .b) Drzewiecka A, Koziol AE, Klepka MT, Wolska A, Jimenez-Pulido SB, Struga M. Electrochemical synthesis and structural studies of zinc(II) complexes with derivatives of benzo[b]furancarboxylic acids. Chemical Physics Letters. 2013 Jun;575:40–5. Doi: https://doi.org/10.1016/j.cplett.2013.04.078.
  • 37. Dağlı Ö, Köse DA, Şahin O, Şahin ZS. The synthesis and structural characterization of transition metal coordination complexes of coumarilic acid. J Therm Anal Calorim. 2017 Jun;128(3):1373–83. Doi. https://doi.org/10.1007/s10973-016-6053-y.
  • 38. Dağlı Ö, Köse DA, İçten O, Avcı GA, Şahin O. The mixed ligand complexes of Co(II), Ni(II), Cu(II) and Zn(II) with coumarilic acid/1,10-phenanthroline: Synthesis, crystal characterization and biological applications. J Therm Anal Calorim. 2019 May;136(4):1467–80. Doi: https://doi.org/10.1007/s10973-018-7773-y.
  • 39. Koç S, Köse DA, Avcı E. Synthesis, Structural Characterization and Biological Application of Mixed Ligands Complexes of Coumaric Acid/Coumarine with Some Transition Metal Cation. European Chemical Bulletin. 2016;5(4):132–7.
  • 40. Koc S, Kose DA, Avci E. Synthesis and Thermal Characterization of p-Coumaric Acid Complexes of CoII, NiII, CuII and ZnII Metal Cations and Biological Applications. Hittite J Sci Eng. 2016;3(1):15–22. Doi: https://doi.org/10.17350/HJSE19030000027.
  • 41. Dağlı Ö, Köse DA, Avcı GA, Şahin O. Novel mixed-ligand complexes of coumarilate/N,N′-diethylnicotinamide with some transition metals: Synthesis and structural characterization. J Therm Anal Calorim. 2017 Sep;129(3):1389–402. Doi: https://doi.org/10.1007/s10973-017-6373-6.
  • 42. Srinivasan BR, Shetgaonkar SY, Näther C, Bensch W. Solid state synthesis and characterization of a triple chain calcium(II) coordination polymer showing two different bridging 4-nitrobenzoate coordination modes. Polyhedron. 2009 Feb;28(3):534–40. Doi: https://doi.org/10.1016/j.poly.2008.11.022.
  • 43. Elin RJ. Assessment of magnesium status. Clinical Chemistry. 1987 Nov 1;33(11):1965–70. Doi: https://doi.org/10.1093/clinchem/33.11.1965.
  • 44. Purvis JR, Movahed A. Magnesium disorders and cardiovascular diseases. Clin Cardiol. 1992 Aug;15(8):556–68. Doi: https://doi.org/10.1002/clc.4960150804.
  • 45. Rabbani LE, Antman EM. The role of magnesium therapy in acute myocardial infarction. Clin Cardiol. 1996 Nov;19(11):841–4. Doi: https://doi.org/10.1002/clc.4960191103.
  • 46. Ralston MA, Murnane MR, Kelley RE, Altschuld RA, Unverferth DV, Leier CV. Magnesium content of serum, circulating mononuclear cells, skeletal muscle, and myocardium in congestive heart failure. Circulation. 1989 Sep;80(3):573–80. Doi: https://doi.org/10.1161/01.CIR.80.3.573.
  • 47. Lim P, Jacob E. Magnesium Deficiency in Patients on Long-Term Diuretic Therapy for Heart Failure. BMJ. 1972 Sep 9;3(5827):620–2. Doi: https://doi.org/10.1136/bmj.3.5827.620.
  • 48. Radecka-Paryzek W, Patroniak V. The template synthesis and characterization of alkaline earth metal ion nitrate macroacyclic Schiff base complexes. Polyhedron. 1994 Jul;13(14):2125–8. Doi: https://doi.org/10.1016/S0277-5387(00)81492-8.
  • 49. Bock CW, Katz AK, Glusker JP. Hydration of Zinc Ions: A Comparison with Magnesium and Beryllium Ions. J Am Chem Soc. 1995 Apr;117(13):3754–65. Doi. https://doi.org/10.1021/ja00118a012.
  • 50. Katz AK, Glusker JP, Beebe SA, Bock CW. Calcium Ion Coordination: A Comparison with That of Beryllium, Magnesium, and Zinc. J Am Chem Soc. 1996 Jan;118(24):5752–63. Doi: https://doi.org/10.1021/ja953943i.
  • 51. Carugo O, Djinovi? K, Rizzi M. Comparison of the co-ordinative behaviour of calcium(II) and magnesium(II) from crystallographic data. J Chem Soc, Dalton Trans. 1993;(14):2127. Doi: https://doi.org/10.1039/dt9930002127.
  • 52. Peschke M, Blades AT, Kebarle P. Hydration Energies and Entropies for Mg 2+ , Ca 2+ , Sr 2+ , and Ba 2+ from Gas-Phase Ion−Water Molecule Equilibria Determinations. J Phys Chem A. 1998 Nov 1;102(48):9978–85. Doi: https://doi.org/10.1021/jp9821127.
  • 53. Refat MS, Alghool S, El-Halim HFA. Alkaline earth metal (II) complexes of vitamin B13 with bidentate orotate ligands: Synthesis, structural and thermal studies. Comptes Rendus Chimie. 2011 May;14(5):496–502. Doi: https://doi.org/10.1016/j.crci.2010.04.024.
There are 53 citations in total.

Details

Primary Language English
Subjects Inorganic Chemistry
Journal Section Articles
Authors

Emrah Karaer 0000-0003-3854-7768

Dursun Ali Köse 0000-0003-4767-6799

Project Number Project No. FEF19004.18.001
Publication Date May 31, 2021
Submission Date April 10, 2021
Acceptance Date May 10, 2021
Published in Issue Year 2021

Cite

Vancouver Karaer E, Köse DA. Novel Mixed Ligand Complexes of Alkaline Earth Metals with Coumarilic Acid and Nicotinamide. JOTCSA. 2021;8(2):659-76.