Research Article
BibTex RIS Cite

Comparison of the cytotoxic effects of bulk and nanosized CeO2 on lymphocyte cells

Year 2021, , 1145 - 1152, 30.11.2021
https://doi.org/10.18596/jotcsa.974814

Abstract

Cerium(IV) oxide (CeO2) is widely used in industrial fields such as biomedical, glass, electronics, automotive, and pharmacology. In this study, the cytotoxic effects on human peripheral blood cultures of two forms of cerium(IV) oxide with different particle sizes (Bulk-sized Cerium(IV) oxide: BC and Nano-sized Cerium(IV) oxide: NC) in concentrations range of 0.001-200 ppm were investigated. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay were used to determine the cytotoxicity of these forms. According to the test results, it was determined that both forms caused severe cytotoxicity at all concentrations studied. It was observed that cytotoxicity increased with increasing concentration. NCs are more toxic at all concentrations except 100 and 200 ppm concentrations.

Supporting Institution

-

Project Number

-

Thanks

The author thanks to Füreya Elif Öztürkkan and Mustafa Sertçelik for their technical supports.

References

  • 1. Abid SA, Taha AA, Ismail RA, Mohsin MH. Antibacterial and cytotoxic activities of cerium oxide nanoparticles prepared by laser ablation in liquid. Environmental Science and Pollution Research. 2020 Aug;27(24):30479–89.
  • 2. Heckert EG, Karakoti AS, Seal S, Self WT. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials. 2008 Jun;29(18):2705–9.
  • 3. Dadook M, Mehrabian S, Salehi M, Irian S. Morphological, Biochemical and Molecular Characterization of Twelve Nitrogen-Fixing Bacteria and Their Response to Various Zinc Concentration. Jundishapur Journal of Microbiology. 2014 Apr;7(4):e9415.
  • 4. Li S, He P, Dong J, Guo Z, Dai L. DNA-Directed Self-Assembling of Carbon Nanotubes. Journal of the American Chemical Society. 2005 Jan;127(1):14–5.
  • 5. Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environmental Health Perspectives. 2005 Jul;113(7):823–39.
  • 6. He L, Su Y, Lanhong J, Shi S. Recent advances of cerium oxide nanoparticles in synthesis, luminescence and biomedical studies: a review. Journal of Rare Earths. 2015 Aug;33(8):791–9.
  • 7. Pirmohamed T, Dowding JM, Singh S, Wasserman B, Heckert E, Karakoti AS, et al. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chemical Communications. 2010;46(16):2736.
  • 8. Varini E, Sánchez-Salcedo S, Malavasi G, Lusvardi G, Vallet-Regí M, Salinas AJ. Cerium (III) and (IV) containing mesoporous glasses/alginate beads for bone regeneration: Bioactivity, biocompatibility and reactive oxygen species activity. Materials Science and Engineering: C. 2019 Dec;105:109971.
  • 9. Walkey C, Das S, Seal S, Erlichman J, Heckman K, Ghibelli L, et al. Catalytic properties and biomedical applications of cerium oxide nanoparticles. Environmental Science: Nano. 2015;2(1):33–53.
  • 10. Zhang M, Zhang C, Zhai X, Luo F, Du Y, Yan C. Antibacterial mechanism and activity of cerium oxide nanoparticles. Science China Materials. 2019 Nov;62(11):1727–39.
  • 11. Naz S, Kazmi STB, Zia M. CeO 2 nanoparticles synthesized through green chemistry are biocompatible: In vitro and in vivo assessment. Journal of Biochemical and Molecular Toxicology. 2019 May;33(5):e22291.
  • 12. Eskandari N, Nejadi Babadaei MM, Nikpur S, Ghasrahmad G, Attar F, Heshmati M, et al. Biophysical, docking, and cellular studies on the effects of cerium oxide nanoparticles on blood components: in vitro. International Journal of Nanomedicine. 2018 Aug;13:4575–89.
  • 13. Sangsefidi FS, Nejati M, Verdi J, Salavati-Niasari M. Green synthesis and characterization of cerium oxide nanostructures in the presence carbohydrate sugars as a capping agent and investigation of their cytotoxicity on the mesenchymal stem cell. Journal of Cleaner Production. 2017 Jul;156:741–9.
  • 14. Hamidian K, Saberian MR, Miri A, Sharifi F, Sarani M. Doped and un-doped cerium oxide nanoparticles: Biosynthesis, characterization, and cytotoxic study. Ceramics International. 2021 May;47(10):13895–902.
  • 15. Könen-Adıgüzel S, Ergene S. In vitro evaluation of the genotoxicity of CeO2 nanoparticles in human peripheral blood lymphocytes using cytokinesis-block micronucleus test, comet assay, and gamma H2AX. Toxicology and Industrial Health. 2018 May;34(5):293–300.
  • 16. Arslan K, Akbaba GB. In vitro genotoxicity assessment and comparison of cerium(IV) oxide micro- and nanoparticles. Toxicology and Industrial Health. 2020 Feb;36(2):76–83.
  • 17. Arnold MC, Badireddy AR, Wiesner MR, Di Giulio RT, Meyer JN. Cerium Oxide Nanoparticles are More Toxic than Equimolar Bulk Cerium Oxide in Caenorhabditis elegans. Archives of Environmental Contamination and Toxicology. 2013 Aug;65(2):224–33.
  • 18. Rosenkranz P, Fernández-Cruz ML, Conde E, Ramírez-Fernández MB, Flores JC, Fernández M, et al. Effects of cerium oxide nanoparticles to fish and mammalian cell lines: An assessment of cytotoxicity and methodology. Toxicology in Vitro. 2012 Sep;26(6):888–96.
  • 19. Smith JL, Forbes IJ. Use of Human Lymphocytes in Studies of Drug Action. Nature. 1967 Jul;215(5100):538–9.
  • 20. Kammula US, Lee K-H, Riker AI, Wang E, Ohnmacht GA, Rosenberg SA, et al. Functional Analysis of Antigen-Specific T Lymphocytes by Serial Measurement of Gene Expression in Peripheral Blood Mononuclear Cells and Tumor Specimens. The Journal of Immunology. 1999 Dec 15;163(12):6867–75.
  • 21. Farrukh MA, Tan P, Adnan R. Influence of reaction parameters on the synthesis of surfactant-assisted tin oxide nanoparticles. Turkish Journal of Chemistry. 2012;36(2):303–14.
  • 22. Alexander L, Klug HP. Determination of Crystallite Size with the X‐Ray Spectrometer. Journal of Applied Physics. 1950 Feb;21(2):137–42.
  • 23. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods. 1983 Dec;65(1–2):55–63.
  • 24. Akbaba GB. Determination of Cytotoxicity of Zinc 2-Bromobenzoate with Nicotinamide and N,N’-Diethylnicotinamide Complexes. Caucasian Journal of Science. 2020 Dec;7(2):130–9.
  • 25. ISO 10993-5:2009(en), Biological evaluation of medical devices - Part 5: Tests for in vitro cytotoxicity.
  • 26. Rasouli Z, Yousefi M, Torbati MB, Samadi S, Kalateh K. Synthesis and characterization of nanoceria-based composites and in vitro evaluation of their cytotoxicity against colon cancer. Polyhedron. 2020 Jan;176:114297.
  • 27. Renu G, Rani VVD, Nair SV, Subramanian KRV, Lakshmanan V-K. Development of Cerium Oxide Nanoparticles and Its Cytotoxicity in Prostate Cancer Cells. Advanced Science Letters. 2012 Mar;6(1):17–25.
  • 28. Kargar H, Ghasemi F, Darroudi M. Bioorganic polymer-based synthesis of cerium oxide nanoparticles and their cell viability assays. Ceramics International. 2015 Jan;41(1):1589–94.
  • 29. Sabouri Z, Sabouri M, Amiri MS, Khatami M, Darroudi M. Plant-based synthesis of cerium oxide nanoparticles using Rheum turkestanicum extract and evaluation of their cytotoxicity and photocatalytic properties. Materials Technology. 2020 Dec;1–14.
  • 30. Elahi B, Mirzaee M, Darroudi M, Sadri K, Kazemi Oskuee R. Bio-based synthesis of Nano-Ceria and evaluation of its bio-distribution and biological properties. Colloids and Surfaces B: Biointerfaces. 2019 Sep;181:830–6.
  • 31. De Marzi L, Monaco A, De Lapuente J, Ramos D, Borras M, Di Gioacchino M, et al. Cytotoxicity and Genotoxicity of Ceria Nanoparticles on Different Cell Lines in Vitro. International Journal of Molecular Sciences. 2013 Feb;14(2):3065–77.
  • 32. García-Salvador A, Katsumiti A, Rojas E, Aristimuño C, Betanzos M, Martínez-Moro M, et al. A Complete In Vitro Toxicological Assessment of the Biological Effects of Cerium Oxide Nanoparticles: From Acute Toxicity to Multi-Dose Subchronic Cytotoxicity Study. Nanomaterials. 2021 Jun;11(6):1577.
  • 33. Miri A, Beiki H, Najafidoust A, Khatami M, Sarani M. Cerium oxide nanoparticles: green synthesis using Banana peel, cytotoxic effect, UV protection and their photocatalytic activity. Bioprocess and Biosystems Engineering. 2021 Sep;44(9):1891–9.
  • 34. Rosário F, Bessa MJ, Brandão F, Costa C, Lopes CB, Estrada AC, et al. Unravelling the Potential Cytotoxic Effects of Metal Oxide Nanoparticles and Metal(Loid) Mixtures on A549 Human Cell Line. Nanomaterials. 2020 Mar;10(3):447.
Year 2021, , 1145 - 1152, 30.11.2021
https://doi.org/10.18596/jotcsa.974814

Abstract

Project Number

-

References

  • 1. Abid SA, Taha AA, Ismail RA, Mohsin MH. Antibacterial and cytotoxic activities of cerium oxide nanoparticles prepared by laser ablation in liquid. Environmental Science and Pollution Research. 2020 Aug;27(24):30479–89.
  • 2. Heckert EG, Karakoti AS, Seal S, Self WT. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials. 2008 Jun;29(18):2705–9.
  • 3. Dadook M, Mehrabian S, Salehi M, Irian S. Morphological, Biochemical and Molecular Characterization of Twelve Nitrogen-Fixing Bacteria and Their Response to Various Zinc Concentration. Jundishapur Journal of Microbiology. 2014 Apr;7(4):e9415.
  • 4. Li S, He P, Dong J, Guo Z, Dai L. DNA-Directed Self-Assembling of Carbon Nanotubes. Journal of the American Chemical Society. 2005 Jan;127(1):14–5.
  • 5. Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environmental Health Perspectives. 2005 Jul;113(7):823–39.
  • 6. He L, Su Y, Lanhong J, Shi S. Recent advances of cerium oxide nanoparticles in synthesis, luminescence and biomedical studies: a review. Journal of Rare Earths. 2015 Aug;33(8):791–9.
  • 7. Pirmohamed T, Dowding JM, Singh S, Wasserman B, Heckert E, Karakoti AS, et al. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chemical Communications. 2010;46(16):2736.
  • 8. Varini E, Sánchez-Salcedo S, Malavasi G, Lusvardi G, Vallet-Regí M, Salinas AJ. Cerium (III) and (IV) containing mesoporous glasses/alginate beads for bone regeneration: Bioactivity, biocompatibility and reactive oxygen species activity. Materials Science and Engineering: C. 2019 Dec;105:109971.
  • 9. Walkey C, Das S, Seal S, Erlichman J, Heckman K, Ghibelli L, et al. Catalytic properties and biomedical applications of cerium oxide nanoparticles. Environmental Science: Nano. 2015;2(1):33–53.
  • 10. Zhang M, Zhang C, Zhai X, Luo F, Du Y, Yan C. Antibacterial mechanism and activity of cerium oxide nanoparticles. Science China Materials. 2019 Nov;62(11):1727–39.
  • 11. Naz S, Kazmi STB, Zia M. CeO 2 nanoparticles synthesized through green chemistry are biocompatible: In vitro and in vivo assessment. Journal of Biochemical and Molecular Toxicology. 2019 May;33(5):e22291.
  • 12. Eskandari N, Nejadi Babadaei MM, Nikpur S, Ghasrahmad G, Attar F, Heshmati M, et al. Biophysical, docking, and cellular studies on the effects of cerium oxide nanoparticles on blood components: in vitro. International Journal of Nanomedicine. 2018 Aug;13:4575–89.
  • 13. Sangsefidi FS, Nejati M, Verdi J, Salavati-Niasari M. Green synthesis and characterization of cerium oxide nanostructures in the presence carbohydrate sugars as a capping agent and investigation of their cytotoxicity on the mesenchymal stem cell. Journal of Cleaner Production. 2017 Jul;156:741–9.
  • 14. Hamidian K, Saberian MR, Miri A, Sharifi F, Sarani M. Doped and un-doped cerium oxide nanoparticles: Biosynthesis, characterization, and cytotoxic study. Ceramics International. 2021 May;47(10):13895–902.
  • 15. Könen-Adıgüzel S, Ergene S. In vitro evaluation of the genotoxicity of CeO2 nanoparticles in human peripheral blood lymphocytes using cytokinesis-block micronucleus test, comet assay, and gamma H2AX. Toxicology and Industrial Health. 2018 May;34(5):293–300.
  • 16. Arslan K, Akbaba GB. In vitro genotoxicity assessment and comparison of cerium(IV) oxide micro- and nanoparticles. Toxicology and Industrial Health. 2020 Feb;36(2):76–83.
  • 17. Arnold MC, Badireddy AR, Wiesner MR, Di Giulio RT, Meyer JN. Cerium Oxide Nanoparticles are More Toxic than Equimolar Bulk Cerium Oxide in Caenorhabditis elegans. Archives of Environmental Contamination and Toxicology. 2013 Aug;65(2):224–33.
  • 18. Rosenkranz P, Fernández-Cruz ML, Conde E, Ramírez-Fernández MB, Flores JC, Fernández M, et al. Effects of cerium oxide nanoparticles to fish and mammalian cell lines: An assessment of cytotoxicity and methodology. Toxicology in Vitro. 2012 Sep;26(6):888–96.
  • 19. Smith JL, Forbes IJ. Use of Human Lymphocytes in Studies of Drug Action. Nature. 1967 Jul;215(5100):538–9.
  • 20. Kammula US, Lee K-H, Riker AI, Wang E, Ohnmacht GA, Rosenberg SA, et al. Functional Analysis of Antigen-Specific T Lymphocytes by Serial Measurement of Gene Expression in Peripheral Blood Mononuclear Cells and Tumor Specimens. The Journal of Immunology. 1999 Dec 15;163(12):6867–75.
  • 21. Farrukh MA, Tan P, Adnan R. Influence of reaction parameters on the synthesis of surfactant-assisted tin oxide nanoparticles. Turkish Journal of Chemistry. 2012;36(2):303–14.
  • 22. Alexander L, Klug HP. Determination of Crystallite Size with the X‐Ray Spectrometer. Journal of Applied Physics. 1950 Feb;21(2):137–42.
  • 23. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods. 1983 Dec;65(1–2):55–63.
  • 24. Akbaba GB. Determination of Cytotoxicity of Zinc 2-Bromobenzoate with Nicotinamide and N,N’-Diethylnicotinamide Complexes. Caucasian Journal of Science. 2020 Dec;7(2):130–9.
  • 25. ISO 10993-5:2009(en), Biological evaluation of medical devices - Part 5: Tests for in vitro cytotoxicity.
  • 26. Rasouli Z, Yousefi M, Torbati MB, Samadi S, Kalateh K. Synthesis and characterization of nanoceria-based composites and in vitro evaluation of their cytotoxicity against colon cancer. Polyhedron. 2020 Jan;176:114297.
  • 27. Renu G, Rani VVD, Nair SV, Subramanian KRV, Lakshmanan V-K. Development of Cerium Oxide Nanoparticles and Its Cytotoxicity in Prostate Cancer Cells. Advanced Science Letters. 2012 Mar;6(1):17–25.
  • 28. Kargar H, Ghasemi F, Darroudi M. Bioorganic polymer-based synthesis of cerium oxide nanoparticles and their cell viability assays. Ceramics International. 2015 Jan;41(1):1589–94.
  • 29. Sabouri Z, Sabouri M, Amiri MS, Khatami M, Darroudi M. Plant-based synthesis of cerium oxide nanoparticles using Rheum turkestanicum extract and evaluation of their cytotoxicity and photocatalytic properties. Materials Technology. 2020 Dec;1–14.
  • 30. Elahi B, Mirzaee M, Darroudi M, Sadri K, Kazemi Oskuee R. Bio-based synthesis of Nano-Ceria and evaluation of its bio-distribution and biological properties. Colloids and Surfaces B: Biointerfaces. 2019 Sep;181:830–6.
  • 31. De Marzi L, Monaco A, De Lapuente J, Ramos D, Borras M, Di Gioacchino M, et al. Cytotoxicity and Genotoxicity of Ceria Nanoparticles on Different Cell Lines in Vitro. International Journal of Molecular Sciences. 2013 Feb;14(2):3065–77.
  • 32. García-Salvador A, Katsumiti A, Rojas E, Aristimuño C, Betanzos M, Martínez-Moro M, et al. A Complete In Vitro Toxicological Assessment of the Biological Effects of Cerium Oxide Nanoparticles: From Acute Toxicity to Multi-Dose Subchronic Cytotoxicity Study. Nanomaterials. 2021 Jun;11(6):1577.
  • 33. Miri A, Beiki H, Najafidoust A, Khatami M, Sarani M. Cerium oxide nanoparticles: green synthesis using Banana peel, cytotoxic effect, UV protection and their photocatalytic activity. Bioprocess and Biosystems Engineering. 2021 Sep;44(9):1891–9.
  • 34. Rosário F, Bessa MJ, Brandão F, Costa C, Lopes CB, Estrada AC, et al. Unravelling the Potential Cytotoxic Effects of Metal Oxide Nanoparticles and Metal(Loid) Mixtures on A549 Human Cell Line. Nanomaterials. 2020 Mar;10(3):447.
There are 34 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Articles
Authors

Giray Buğra Akbaba 0000-0002-1413-9498

Project Number -
Publication Date November 30, 2021
Submission Date July 26, 2021
Acceptance Date October 8, 2021
Published in Issue Year 2021

Cite

Vancouver Akbaba GB. Comparison of the cytotoxic effects of bulk and nanosized CeO2 on lymphocyte cells. JOTCSA. 2021;8(4):1145-52.