BibTex RIS Cite

Electrochemistry and Radioactive Wastes: A Scientific Overview

Year 2016, Volume: 3 Issue: 1, 47 - 74, 31.01.2016

Abstract

Radioactive wastes are arising from nuclear applications such as nuclear medicine and nuclear power plants. Radioactive wastes should be managed in a safe manner to protect human beings and the environment now and in the future. The management strategy depends on collection, segregation, treatment, immobilization, and disposal. The treatment process is a very important step in which the hazardous materials were converted to a more concentrated, less volume and less movable materials. Electrochemistry is the branch of chemistry in which the passage of electric current was producing a chemical change. Electrochemical treatment of radioactive wastes is widely used all over the world. It has a number of advantages and hence benefits. Electrochemistry can lead to remote, automatic control and increasing safety. The present work is focusing on the role of electrochemistry in the treatment of radioactive wastes worldwide. It contains the fundamentals of electrochemistry, the brief story of radioactive wastes, and the modern trends in the electrochemical treatment of radioactive wastes. An overview of electrochemical decomposition of organic wastes, electrochemical reduction of nitrates, electro- precipitation, electro- ion exchange, and electrochemical remediation of soil are outlined. The main operating factors, the mechanism of decontamination, energy consumption and examples of field trials are considered.

References

  • INTERNATIONAL ATOMIC ENERGY AGENCY. (1992). Handling and Treatment of Radioactive Aqueous Wastes, IAEATECDOC-654, Vienna. URL: http: //wwwpub. iaea.org/books/IAEABooks/914/Handli ng-and-Treatment-of-RadioactiveAqueous-Wastes.
  • Dziewinski, J., Marczak, S., Nuttall, E. and Smith, W. (1995). Electrochemical Treatment of Mixed and Hazardous Waste, MRS Proc. 412-509. DOI: http: //dx.doi.org/10.1557/PROC-412-509.
  • INTERNATIONAL ATOMIC ENERGY AGENCY. (1992). Treatment and Conditioning of Radioactive Organic Liquids, IAEA-TECDOC-656, Vienna. URL: http: //www.pub. iaea.org/MTCD/publication s/pdf/te_656_web.pdf.
  • INTERNATIONAL ATOMIC ENERGY AGENCY, (1992). Chemical Precipitation Processes for the Treatment of Aqueous Radioactive Waste, Technical Reports Series No. 337, IAEA, Vienna. URL: http: //wwwpub. iaea.org/books/IAEABooks/1441/Chemi cal-Precipitation-Processes-for-theTreatment-of-Aqueous-Radioactive-Waste.
  • Chen. G, Chen. X, and Yue. P. (2000). Electro-coagulation and electro-floatation of restaurant wastwater, J of Environmental Engineering, vol.126. (9) P 858. ISSN (online): 1943-7870, ISSN (print): 0733- 9372. 10.1061/(ASCE)0733- 9372(2000)126: 9(858). DOI: 5. DOI: 10.1061/(ASCE)0733- 9372(2000)126: 9(858)
  • Hirose. Y, Neville. M, Turner. A, Steel. D. (1992). State of the art application of electrochemical processes to waste management, waste management, Proc. Symp. University of Arizona, Tucson, vol. 2. URL: https: //inis. iaea.org/search/searchsinglerec ord.aspx?recordsFor=SingleRecord&RN=36 065467.
  • Wendt H, Vogt H, Kreysa G, Goldacker H, Jüttner K, Galla U, and Schmieder H. (2012). Electrochemistry, 2. Inorganic Electrochemical Processes. Wiley-VCH, Weinheim. DOI: 10.1002/14356007.a09_183.pub4.
  • Abed El Aziz M. M., (2003). Electrochemical Studies on the Treatment of Hazardous Wastes, Ph.D. Thesis, Ain Shams University. Cairo, Egypt.
  • Walid K.Lafi, (2011). Electro-coagulation Treatment of Wastewater from Paper Industry, International Conference on energy, environment, devices, systems, communications, computers (EEDSCC 11), Venice, Italy March 8-10, ISBN: 978-960- 474-284-4.
  • Atkins, P. de Paula, J. (2006). Physical Chemistry for the Life Sciences. Oxford University Press. New York, p 209-225. ISBN: 978-0716786283.
  • http: //chemwiki.ucdavis.edu/Analytical Chemistry/Electrochemistry, visited on December 20, 2015.
  • Spiers. A and Stebbens, D, (1973). Chemistry by Concept, Heinemann Educational Books, London, UK. ISBN: 9780435648305.
  • Glinka. N. L, (1988). General Chemistry Text Book, Mir Publisher, Moscow.
  • Dutton, Philip James. (2011). General Chemistry: Principles and Modern Applications, 10th Edition, by Petrucci, Herring, Madura, Bissonnette, and Pearson Print, Toronto, Canada. ISBN: 978- 0136121497.
  • Valdovinos. V, Monroy. F, and Bustos. E. (2014). Treatment Methods for Radioactive Wastes and Its Electrochemical Applications, INTECH. Ch. 14. DOI: 10.5772/57445.
  • INTERNATIONAL ATOMIC ENERGY AGENCY. (1984). Treatment of Low and Intermediate level Liquid Radioactive Wastes, Technical Reports Series No. 236, IAEA, Vienna. ISBN: 92-0-125184-X.
  • INTERNATIONAL ATOMIC ENERGY AGENCY. (1994). Classification of Radioactive Waste, Safety Series No. 111- G-1.1, IAEA, Vienna. URL: http: //wwwpub. iaea.org/MTCD/publications/PDF/Pub14 19_web.pdf.
  • INTERNATIONAL ATOMIC ENERGY AGENCY. (2009). Classification of Radioactive Waste, Safety Standards Series No. GSG-1, IAEA, Vienna. ISBN: 978-92-0- 109209-0.
  • INTERNATIONAL ATOMIC ENERGY AGENCY. (1970). Standardization of Radioactive Waste Categories, Technical Reports Series No. 101, IAEA, Vienna. ISBN: 92-0-125070-3.
  • INTERNATIONAL ATOMIC ENERGY AGENCY. (2004). Application of the concepts of the exclusion, exemption and clearance, Safety Standards Series No.RSG1.7, IAEA, Vienna. ISBN: 92-0- 109404-3.
  • INTERNATIONAL ATOMIC ENERGY AGENCY. (2001). Handling and processing of radioactive waste from nuclear application, Technical Reports Series No. 402, IAEA, Vienna. ISBN: 92-0-100801-5.
  • INTERNATIONAL ATOMIC ENERGY AGENCY. (2008). The management system for the processing, handling, and storage of radioactive waste, Safety Guide No.GSG3.3, IAEA, Vienna. ISBN: 978-92-0- 102008-6.
  • INTERNATIONAL ATOMIC ENERGY AGENCY. (2006b). The management system for facilities and activities, Safety Requirements No.GS-R3, IAEA, Vienna. ISBN: 92-0-106506-X.
  • Chang Ho Oh. (2001). Hazardous and radioactive waste treatment technologies handbook, CRC Press, USA. ISBN 0-8493- 9586-0.
  • Abdel Rahman R. O., Ibrahim H. A. and Yung-Tse Hung. (2011), Liquid Radioactive Wastes Treatment: A Review, Water, 3, P 551-565. ISSN 2073-4441. DOI: 10.3390/w3020551.
  • . INTERNATIONAL ATOMIC ENERGY AGENCY. (2002). Application of Ion Exchange Processes for the Treatment of Radioactive Waste and Management of Spent Ion Exchangers; TRS No. 408; IAEA, Vienna. ISBN: 92-0-112002-8.
  • INTERNATIONAL ATOMIC ENERGY AGENCY. (1992). Treatment and Conditioning of Radioactive Organic Liquids, IAEA-TECDOC-656, Vienna. URL: http: //wwwpub. iaea.org/books/IAEABooks/916/Treatm ent-and-Conditioning-of-RadioactiveOrganic-Liquids.
  • Hobbs. D. T., Genders. J. D., and Hartsough. D. (1996). Electrochemical reduction of nitrates and nitrites in alkaline nuclear waste solutions" J of applied electrochemistry, vol. 26 P. 1-9. DOI 10.1007/BF00248182.
  • Hobbs. D. T. (1997). Electrochemical Treatment of Liquid Wastes, Proceedings of the Efficient Separations and Crosscutting Program Technical Exchange Meeting, PNNL-SA-28461, Rev. 1.
  • Hobbs. D. T. (1995). Electrochemical Destruction of Nitrates and Organics FY1995 Progress Report, Savannah River Technology Center, Westinghouse Savannah River Company, Aiken, SC 29802, DOE Contract No. DE-AC09- 89SR18035. URL: 30. http: //wwwpub. iaea.org/MTCD/publications/pdf/te_656 _web.pdf.
  • Hobbs. D. T. (1992). Electrochemical Treatment of Nuclear Wastes at the Savannah River Site. In ‘Electrochemistry for a Cleaner Environment’ (edited by J. David Genders and Norman L. Weinberg eds), The Electrosynthesis Company, Inc., East Amherst, NY, chapter 12. ISBN: 9780962970825.
  • Vazquez. M., Hernandez. F., Benjumea. D., Grandoso. D., Lemus. M., Arbelo. C. (2007), Electrokinetic determination of the buffer capacity of Andisols, Science of the total environment, 378, P 214-217· DOI: http: //dx.doi.org/10.1016/j. scitotenv.2007. 01.049.
  • Prabhakaran D., Kannadasan T., Ahmed C. Basha, (2009). Treatability of resin effluents by electrochemical oxidation using batch recirculation reactor, Int. J. Environ. Sci. Tech., 6 (3), P 491-498. DOI: 10.1007/BF03326088.
  • Farmer, J. C.; Hickman, R. G.; Wang, F. T.; Lewis, P. R.; Summers, L. J., (1991). Initial study of the complete mediated electrochemical oxidation of ethylene glycol, Report No. UCRL-LR-106479, Lawrence Livermore, National Laboratory, Livermore, CA, USA. DOE Contract Number: W-7405- ENG-48. URL: http: //lss.fnal.gov/archive/other/ucrl-lr- 106479.pdf.
  • Farmer, J. C.; Wang, F. T.; HawleyFedder, R. A.; Lewis, P. R.; Summers, L. J.; Foiles, L., (1992). Electrochemical treatment of mixed and hazardous wastes: Oxidation of ethylene glycol and benzene by silver (II). J. Electrochem., Soc., 139 (3), P 654-662. DOI: 10.1149/1.2069280.
  • Murillo-Rivera, B., Labastida, I., Barón, J., Oropeza-Guzmán, M. T., Gonzalez, I., & Teutli-León, M. M. M. (2009). Influence of anolyte and catholyte composition on TPHs removal from low permeability soil by electrokinetic reclamation. Electrochimica Acta, Vol.54, P 2119-2114.
  • Acar, Y. B., Hamed, T., Alshawabkeb, A. N., & Gale, R. J. (1994). Removal of cadmium (II) from saturated kaolinite by the application of electrical current. Géotechnique, Vol.44, No.2, P 239-254. DOI: http: //dx.doi.org/10.1680/geot.1994.44.2.2 39.
  • Pamukcu, S., Wittle, J. K. (1992). Electrokinectic removal of selected heavy metals from soil. Environmental Progress, Vol.11, No.3, P 241 250. DOI: 10.1002/ep.670110323.
  • Reddy, K. R., Donahue, M., Saicheck, R. E., & Sasaoka, R. (1999). Preliminary assessment of electrokinetic remediation of soil and sludge contaminated with mixed waste. Journal of Air & Waste Management Association, Vol.49, P 823-830. DOI: 10.1080/10473289.1999.10463849.
  • Reddy, K. R., Ala, P. R., Sharma, S., & Kumar, S. N. (2006). Enhanced electrokinetic remediation of lead contaminated soil. Sci. Technol., Vol.85, P 123-132.
  • Hamed, J., Acar, Y.B., Gale, R. J. (1991). Pb (II) removal from kaolinite by electrokinetics. Journal of Geotechnical Engineering, Vol. 117, P 241- 271. DOI: 10.1061/(ASCE)0733- 9410(1991)117: 2(241).
  • Hamed, J. T., Bhadra, A. (1997). Influence of current density and pH on electrokinetics. Journal of Hazardous materials, Vol.55, P 279-294. DOI: 10.1016/S0304-3894(97)00024-1.
  • Méndez. E, Pérez. M, Romero O, Beltrán. E.D, Castro. S, Corona. J.L, Corona. A, Cuevas. M.C, Bustos. E. (2012). Effects of electrode material on the efficiency of hydrocarbon removal by an electrokinetic remediation process, Electrochim. Acta, 86, P 148–156. DOI: 10.1016/j.electacta.2012.04.042.
  • Alcántara, M.T., Gómez, J., Pazos, M., Sanromán, M. A., (2010). Electrokinetic remediation of PAH mixtures from kaolin. J. Hazard. Mat. 179, P 1156 –1160. DOI: 10.1016/j.jhazmat.2010.03.010
  • Elisama Vieira dos Santos, Mariana Oliv eira Medeiros, Aecia S. Dantas dos Anjos, Carlos A. Martínez-Huitle, Djalma Ribeiro da Silva. (2014). Application of Electrochemical Technologies to Treat Polluted Soil by Diesel, The Italian Association of Chemical Engineering, CHEMICAL ENGINEERING TRANSACTIONS, Vol. 41, P 157-162. DOI: 10.3303/CET1441027.
  • Virkutytea, J., Sillanpää, M., Latostenmaa, P. (2002). Electrokinetic soil remediation – critical overview. Science of the Total Environment, 289 (1-3), P 97 – 121. DOI: 10.1016/S0048-9697(01)01027- 0.
  • Yeung, A. T., Hsu, Ch., Menon, R. M. (1996). EDTA-enhanced electrokinetic extraction of lead. Journal of Geotechnical and Geoenvironmental Engineering, 122 (8), P 666 – 673. DOI: 10.1061/(ASCE)0733- 9410(1996)122: 8(666).
  • Cox, C. D., Shoesmith, M. A., Ghosh, M. M. (1996). Electrokinetic remediation of mercury contaminated soils Using Iodine/Iodide Lixiviant. Environmental Science and Technology, 30 (6), P 1933 – 1039. DOI: 10.1021/es950633r.
  • Cundy, A. B., Hopkinson, L. (2005). Electrokinetic iron pan generation in unconsolidated sediments: implications for contaminated land remediation and soil engineering, Applied Geochemistry, 20, P 841 – 848. DOI: http: //dx.doi.org/10.1016/j.apgeochem.200 4.11.014.
  • Ruiz, C., Anaya, J. M., Ramírez, V., Alba, G. I., García, M. G., Carrillo - Chávez, A,Teutli, M. M. M., Bustos, E. (2011). Soil arsenic removal by a permeable reactive barrier of iron coupled to an electrochemical process. International Journal of the Electrochemical Science, 6, P 548 – 560. URL: http: //www.biblioteca.juriquilla.unam.mx/W ONDERLAND/ProductividadCGEO2011Final/ 97Ruiz2011.pdf
  • Saichek, R. E., Reddy, K. R. (2003). Effect of pH control at the anode for the electrokinetic remoal of phenanthrene from kaolin soil. Chemosphere, 51 (4), P 273 – 287. DOI: 10.1016/S0045-6535(02)00849- 4.
  • Saichek, R. E., Reddy, K. R. (2005). Electrokinetically enhanced remediation of hydrophobic organic compounds in soils: a review. Critical Review of Environmental Science Technology, 35, P 115 – 192. DOI: 10.1080/10643380590900237.
  • Hu, J. M., Meng, H. M., Zhang, J. Q., Cao, C. N. (2002). Degradation mechanism of long service life Ti/IrO2-Ta2O5 oxide anodes in sulphuric acid, Corrosion Science 44 (8), P 1655 – 1668. DOI: 10.1016/S0010-938X(01)00165-2.
  • Himadri R. Ghatak. (2013). Electrochemical Treatment of Hazardous Organic Pollutants – A Status Review, Journal of Energy Technologies and Policy, Vol.3, No.11. URL: http: //www. iiste.org/Journals/index.php/JE TP/article/view/8545
  • Sengil, I.A., and Ozacar, M. (2009). The decolorization of C.I. Reactive Black 5 in aqueous solution by electrocoagulation using sacrificial iron electrodes. Journal of Hazardous Materials, 161, P 1369-1376. DOI: 10.1016/j.jhazmat.2008.04.100.
  • Daneshvar, N., Oladegaragoze, A., and Djafarzadeh, N. (2006). Decolorization of basic dye solutions by electrocoagulation: an investigation of the effect of operational parameters. Journal of Hazardous Materials B, 129, P 116–122. DOI: 10.1016/j.jhazmat.2005.08.033.
  • Mollah, M., Morkovsky, P., Gomes, J.A.G., Kesmez, M., Parga, J., and Cocke, D.L. (2004). Fundamentals, present and future perspectives of electrocoagulation. Journal of Hazardous Materials, B 114, P 199–210. DOI: 10.1016/j.jhazmat.2004.08.009.
  • Ugurlu. M, Gurses. A, Dogar. C, and Yalcin. M. (2008). The removal of lignin and phenol from paper mill effluents by electrocoagulation. Journal of Environmental Management 87, P 420–428. DOI: 10.1016/j.jenvman.2007.01.007
  • Kobya, M., Can, O.T., and Bayramoglu, M. (2003). Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes. Journal of Hazardous Materials B, 100, P 163–178. DOI: 10.1016/S0304-3894(03)00102-X.
  • Qiang, Z., Chang, J.H., and Huang, C.P. (2003). Electrochemical regeneration of Fe2+ in Fenton oxidation processes. Water Research, 37, P 1308–1319. DOI: 10.1016/S0043-1354(02)00461-X.
  • Yuksel, E., Sengil, I.A., and Ozacar, M. (2009). The removal of sodium dodecyl sulfate in synthetic wastewater by peroxielectrocoagulation method. Chemical Engineering Journal, 152, P 347-353. DOI: 10.1016/j. cej.2009.04.058.
  • Evans S. (1970). Electrochemically controlled ion-exchange, OSW Research and Development Reports.
  • Turner. A. D., Bridger. N. J., Jones. G. P., Pottinger. J. S., Junkison. A. R., Fletcher. P. A., Neville. M. D., Allen. P. M., Taylor. R. I., Fox. W. T A., Griffiths. P. G. (1994). "Electrochemical ion-exchange for active liquid waste treatment", European Commission Report. URL: https: //inis. iaea.org/search/searchsinglerec ord.aspx?recordsFor=SingleRecord&RN=24 059842
  • De Paiva Barreto, Jéssica Pires et al. (2014). Electrochemical Mediated Oxidation of Phenol Using Ti/IrO2 and Ti/Pt-SnO2- Sb2O5 Electrodes. J. Electrochem. Sci. Eng. 4.4. DOI: 10.5599/jese.2014.0069.
  • Turner A D, Bridger N J, Junkison. A. R, and Pottinger J S. (1989). Electrical processes for liquid waste treatment, AEREG3903. URL: http: //www. iaea.org/inis/collection/NCLColl ectionStore/_Public/20/053/20053176.pdf# page=89.
  • Koren. J.P.F. and Syversen. U. (1995). State of the Art Electroflocculation. Filtration and Separation, DOI: 10.1016/S0015-1882(97)84039-6.
  • Weintraub, M.H., Gealer, RL, Golovoy, A and Dzieciuch, M.A. (1983). Development of electrolytic treatment of oily waste water, Environmental progress, 2(l), p. 32. DOI: 10.1002/ep.670020108.
  • Fukui, Y. and Yuu, S. (1980). Collection of submicron particles in electroflotation, Chem. Eng. Sci., 36, P 1097- 1105. DOI: 10.1016/0009-2509(80)85098- 6.
  • Mallikaduan, R. and Venktachalam, S. (1984). Electroflotation: A review. International Symposium on Electrochemistry in Mineral and Metal Processing (16th meeting of The Electrochemical Society), Cincinnati, Ohio, USA, P 233 - 256.
  • Kaliniichuk, E.M., Vasilenko, LI., Shchepanyuk, V. Yu., Sukhoverkhova, N.A and Makarov, LA. (1976). Treating refinery waste waters to remove emulsified oils by electrocoagulation and electroflotation’, Int. Chem. Eng., 16(3), P 434. URL: http: //www.osti.gov/scitech/biblio/7158259 .
  • White, RE., Bockris, J.0’M. and Conway, B.E. (l986). Modern aspects of electrochemistry Plenum Press, London, chap. 6. DOI: 10.1007/0-306-46909-X_1.
  • Chambers, D.B. and Cottrell, W.RT. (1976). Flotation: two fresh ways to treat effluents. Chem. Eng., 83, p. 95.
  • Diggle, J.W. and Vijih, AK in Alwitt, RS. (1976). Oxides and oxide films in the aluminum-water system, vol. 4, Marcel Dekker, NY, Chap. 3, P 169-254.
  • Balmer. LM. and Foulds. AW. (1986). Electroflocculation/electroflotation for the removal of oil from oil-in-water emulsions, Filtration and Separation, 23(6), P 366.
  • Hosny, AY. (1992). Separation of oil from oil/water emulsions using an electroflotation cell with insoluble electrodes, Filtration and Separation, 29(5), P 419-423. DOI: 10.1016/0015- 1882(92)80204-V.
Year 2016, Volume: 3 Issue: 1, 47 - 74, 31.01.2016

Abstract

References

  • INTERNATIONAL ATOMIC ENERGY AGENCY. (1992). Handling and Treatment of Radioactive Aqueous Wastes, IAEATECDOC-654, Vienna. URL: http: //wwwpub. iaea.org/books/IAEABooks/914/Handli ng-and-Treatment-of-RadioactiveAqueous-Wastes.
  • Dziewinski, J., Marczak, S., Nuttall, E. and Smith, W. (1995). Electrochemical Treatment of Mixed and Hazardous Waste, MRS Proc. 412-509. DOI: http: //dx.doi.org/10.1557/PROC-412-509.
  • INTERNATIONAL ATOMIC ENERGY AGENCY. (1992). Treatment and Conditioning of Radioactive Organic Liquids, IAEA-TECDOC-656, Vienna. URL: http: //www.pub. iaea.org/MTCD/publication s/pdf/te_656_web.pdf.
  • INTERNATIONAL ATOMIC ENERGY AGENCY, (1992). Chemical Precipitation Processes for the Treatment of Aqueous Radioactive Waste, Technical Reports Series No. 337, IAEA, Vienna. URL: http: //wwwpub. iaea.org/books/IAEABooks/1441/Chemi cal-Precipitation-Processes-for-theTreatment-of-Aqueous-Radioactive-Waste.
  • Chen. G, Chen. X, and Yue. P. (2000). Electro-coagulation and electro-floatation of restaurant wastwater, J of Environmental Engineering, vol.126. (9) P 858. ISSN (online): 1943-7870, ISSN (print): 0733- 9372. 10.1061/(ASCE)0733- 9372(2000)126: 9(858). DOI: 5. DOI: 10.1061/(ASCE)0733- 9372(2000)126: 9(858)
  • Hirose. Y, Neville. M, Turner. A, Steel. D. (1992). State of the art application of electrochemical processes to waste management, waste management, Proc. Symp. University of Arizona, Tucson, vol. 2. URL: https: //inis. iaea.org/search/searchsinglerec ord.aspx?recordsFor=SingleRecord&RN=36 065467.
  • Wendt H, Vogt H, Kreysa G, Goldacker H, Jüttner K, Galla U, and Schmieder H. (2012). Electrochemistry, 2. Inorganic Electrochemical Processes. Wiley-VCH, Weinheim. DOI: 10.1002/14356007.a09_183.pub4.
  • Abed El Aziz M. M., (2003). Electrochemical Studies on the Treatment of Hazardous Wastes, Ph.D. Thesis, Ain Shams University. Cairo, Egypt.
  • Walid K.Lafi, (2011). Electro-coagulation Treatment of Wastewater from Paper Industry, International Conference on energy, environment, devices, systems, communications, computers (EEDSCC 11), Venice, Italy March 8-10, ISBN: 978-960- 474-284-4.
  • Atkins, P. de Paula, J. (2006). Physical Chemistry for the Life Sciences. Oxford University Press. New York, p 209-225. ISBN: 978-0716786283.
  • http: //chemwiki.ucdavis.edu/Analytical Chemistry/Electrochemistry, visited on December 20, 2015.
  • Spiers. A and Stebbens, D, (1973). Chemistry by Concept, Heinemann Educational Books, London, UK. ISBN: 9780435648305.
  • Glinka. N. L, (1988). General Chemistry Text Book, Mir Publisher, Moscow.
  • Dutton, Philip James. (2011). General Chemistry: Principles and Modern Applications, 10th Edition, by Petrucci, Herring, Madura, Bissonnette, and Pearson Print, Toronto, Canada. ISBN: 978- 0136121497.
  • Valdovinos. V, Monroy. F, and Bustos. E. (2014). Treatment Methods for Radioactive Wastes and Its Electrochemical Applications, INTECH. Ch. 14. DOI: 10.5772/57445.
  • INTERNATIONAL ATOMIC ENERGY AGENCY. (1984). Treatment of Low and Intermediate level Liquid Radioactive Wastes, Technical Reports Series No. 236, IAEA, Vienna. ISBN: 92-0-125184-X.
  • INTERNATIONAL ATOMIC ENERGY AGENCY. (1994). Classification of Radioactive Waste, Safety Series No. 111- G-1.1, IAEA, Vienna. URL: http: //wwwpub. iaea.org/MTCD/publications/PDF/Pub14 19_web.pdf.
  • INTERNATIONAL ATOMIC ENERGY AGENCY. (2009). Classification of Radioactive Waste, Safety Standards Series No. GSG-1, IAEA, Vienna. ISBN: 978-92-0- 109209-0.
  • INTERNATIONAL ATOMIC ENERGY AGENCY. (1970). Standardization of Radioactive Waste Categories, Technical Reports Series No. 101, IAEA, Vienna. ISBN: 92-0-125070-3.
  • INTERNATIONAL ATOMIC ENERGY AGENCY. (2004). Application of the concepts of the exclusion, exemption and clearance, Safety Standards Series No.RSG1.7, IAEA, Vienna. ISBN: 92-0- 109404-3.
  • INTERNATIONAL ATOMIC ENERGY AGENCY. (2001). Handling and processing of radioactive waste from nuclear application, Technical Reports Series No. 402, IAEA, Vienna. ISBN: 92-0-100801-5.
  • INTERNATIONAL ATOMIC ENERGY AGENCY. (2008). The management system for the processing, handling, and storage of radioactive waste, Safety Guide No.GSG3.3, IAEA, Vienna. ISBN: 978-92-0- 102008-6.
  • INTERNATIONAL ATOMIC ENERGY AGENCY. (2006b). The management system for facilities and activities, Safety Requirements No.GS-R3, IAEA, Vienna. ISBN: 92-0-106506-X.
  • Chang Ho Oh. (2001). Hazardous and radioactive waste treatment technologies handbook, CRC Press, USA. ISBN 0-8493- 9586-0.
  • Abdel Rahman R. O., Ibrahim H. A. and Yung-Tse Hung. (2011), Liquid Radioactive Wastes Treatment: A Review, Water, 3, P 551-565. ISSN 2073-4441. DOI: 10.3390/w3020551.
  • . INTERNATIONAL ATOMIC ENERGY AGENCY. (2002). Application of Ion Exchange Processes for the Treatment of Radioactive Waste and Management of Spent Ion Exchangers; TRS No. 408; IAEA, Vienna. ISBN: 92-0-112002-8.
  • INTERNATIONAL ATOMIC ENERGY AGENCY. (1992). Treatment and Conditioning of Radioactive Organic Liquids, IAEA-TECDOC-656, Vienna. URL: http: //wwwpub. iaea.org/books/IAEABooks/916/Treatm ent-and-Conditioning-of-RadioactiveOrganic-Liquids.
  • Hobbs. D. T., Genders. J. D., and Hartsough. D. (1996). Electrochemical reduction of nitrates and nitrites in alkaline nuclear waste solutions" J of applied electrochemistry, vol. 26 P. 1-9. DOI 10.1007/BF00248182.
  • Hobbs. D. T. (1997). Electrochemical Treatment of Liquid Wastes, Proceedings of the Efficient Separations and Crosscutting Program Technical Exchange Meeting, PNNL-SA-28461, Rev. 1.
  • Hobbs. D. T. (1995). Electrochemical Destruction of Nitrates and Organics FY1995 Progress Report, Savannah River Technology Center, Westinghouse Savannah River Company, Aiken, SC 29802, DOE Contract No. DE-AC09- 89SR18035. URL: 30. http: //wwwpub. iaea.org/MTCD/publications/pdf/te_656 _web.pdf.
  • Hobbs. D. T. (1992). Electrochemical Treatment of Nuclear Wastes at the Savannah River Site. In ‘Electrochemistry for a Cleaner Environment’ (edited by J. David Genders and Norman L. Weinberg eds), The Electrosynthesis Company, Inc., East Amherst, NY, chapter 12. ISBN: 9780962970825.
  • Vazquez. M., Hernandez. F., Benjumea. D., Grandoso. D., Lemus. M., Arbelo. C. (2007), Electrokinetic determination of the buffer capacity of Andisols, Science of the total environment, 378, P 214-217· DOI: http: //dx.doi.org/10.1016/j. scitotenv.2007. 01.049.
  • Prabhakaran D., Kannadasan T., Ahmed C. Basha, (2009). Treatability of resin effluents by electrochemical oxidation using batch recirculation reactor, Int. J. Environ. Sci. Tech., 6 (3), P 491-498. DOI: 10.1007/BF03326088.
  • Farmer, J. C.; Hickman, R. G.; Wang, F. T.; Lewis, P. R.; Summers, L. J., (1991). Initial study of the complete mediated electrochemical oxidation of ethylene glycol, Report No. UCRL-LR-106479, Lawrence Livermore, National Laboratory, Livermore, CA, USA. DOE Contract Number: W-7405- ENG-48. URL: http: //lss.fnal.gov/archive/other/ucrl-lr- 106479.pdf.
  • Farmer, J. C.; Wang, F. T.; HawleyFedder, R. A.; Lewis, P. R.; Summers, L. J.; Foiles, L., (1992). Electrochemical treatment of mixed and hazardous wastes: Oxidation of ethylene glycol and benzene by silver (II). J. Electrochem., Soc., 139 (3), P 654-662. DOI: 10.1149/1.2069280.
  • Murillo-Rivera, B., Labastida, I., Barón, J., Oropeza-Guzmán, M. T., Gonzalez, I., & Teutli-León, M. M. M. (2009). Influence of anolyte and catholyte composition on TPHs removal from low permeability soil by electrokinetic reclamation. Electrochimica Acta, Vol.54, P 2119-2114.
  • Acar, Y. B., Hamed, T., Alshawabkeb, A. N., & Gale, R. J. (1994). Removal of cadmium (II) from saturated kaolinite by the application of electrical current. Géotechnique, Vol.44, No.2, P 239-254. DOI: http: //dx.doi.org/10.1680/geot.1994.44.2.2 39.
  • Pamukcu, S., Wittle, J. K. (1992). Electrokinectic removal of selected heavy metals from soil. Environmental Progress, Vol.11, No.3, P 241 250. DOI: 10.1002/ep.670110323.
  • Reddy, K. R., Donahue, M., Saicheck, R. E., & Sasaoka, R. (1999). Preliminary assessment of electrokinetic remediation of soil and sludge contaminated with mixed waste. Journal of Air & Waste Management Association, Vol.49, P 823-830. DOI: 10.1080/10473289.1999.10463849.
  • Reddy, K. R., Ala, P. R., Sharma, S., & Kumar, S. N. (2006). Enhanced electrokinetic remediation of lead contaminated soil. Sci. Technol., Vol.85, P 123-132.
  • Hamed, J., Acar, Y.B., Gale, R. J. (1991). Pb (II) removal from kaolinite by electrokinetics. Journal of Geotechnical Engineering, Vol. 117, P 241- 271. DOI: 10.1061/(ASCE)0733- 9410(1991)117: 2(241).
  • Hamed, J. T., Bhadra, A. (1997). Influence of current density and pH on electrokinetics. Journal of Hazardous materials, Vol.55, P 279-294. DOI: 10.1016/S0304-3894(97)00024-1.
  • Méndez. E, Pérez. M, Romero O, Beltrán. E.D, Castro. S, Corona. J.L, Corona. A, Cuevas. M.C, Bustos. E. (2012). Effects of electrode material on the efficiency of hydrocarbon removal by an electrokinetic remediation process, Electrochim. Acta, 86, P 148–156. DOI: 10.1016/j.electacta.2012.04.042.
  • Alcántara, M.T., Gómez, J., Pazos, M., Sanromán, M. A., (2010). Electrokinetic remediation of PAH mixtures from kaolin. J. Hazard. Mat. 179, P 1156 –1160. DOI: 10.1016/j.jhazmat.2010.03.010
  • Elisama Vieira dos Santos, Mariana Oliv eira Medeiros, Aecia S. Dantas dos Anjos, Carlos A. Martínez-Huitle, Djalma Ribeiro da Silva. (2014). Application of Electrochemical Technologies to Treat Polluted Soil by Diesel, The Italian Association of Chemical Engineering, CHEMICAL ENGINEERING TRANSACTIONS, Vol. 41, P 157-162. DOI: 10.3303/CET1441027.
  • Virkutytea, J., Sillanpää, M., Latostenmaa, P. (2002). Electrokinetic soil remediation – critical overview. Science of the Total Environment, 289 (1-3), P 97 – 121. DOI: 10.1016/S0048-9697(01)01027- 0.
  • Yeung, A. T., Hsu, Ch., Menon, R. M. (1996). EDTA-enhanced electrokinetic extraction of lead. Journal of Geotechnical and Geoenvironmental Engineering, 122 (8), P 666 – 673. DOI: 10.1061/(ASCE)0733- 9410(1996)122: 8(666).
  • Cox, C. D., Shoesmith, M. A., Ghosh, M. M. (1996). Electrokinetic remediation of mercury contaminated soils Using Iodine/Iodide Lixiviant. Environmental Science and Technology, 30 (6), P 1933 – 1039. DOI: 10.1021/es950633r.
  • Cundy, A. B., Hopkinson, L. (2005). Electrokinetic iron pan generation in unconsolidated sediments: implications for contaminated land remediation and soil engineering, Applied Geochemistry, 20, P 841 – 848. DOI: http: //dx.doi.org/10.1016/j.apgeochem.200 4.11.014.
  • Ruiz, C., Anaya, J. M., Ramírez, V., Alba, G. I., García, M. G., Carrillo - Chávez, A,Teutli, M. M. M., Bustos, E. (2011). Soil arsenic removal by a permeable reactive barrier of iron coupled to an electrochemical process. International Journal of the Electrochemical Science, 6, P 548 – 560. URL: http: //www.biblioteca.juriquilla.unam.mx/W ONDERLAND/ProductividadCGEO2011Final/ 97Ruiz2011.pdf
  • Saichek, R. E., Reddy, K. R. (2003). Effect of pH control at the anode for the electrokinetic remoal of phenanthrene from kaolin soil. Chemosphere, 51 (4), P 273 – 287. DOI: 10.1016/S0045-6535(02)00849- 4.
  • Saichek, R. E., Reddy, K. R. (2005). Electrokinetically enhanced remediation of hydrophobic organic compounds in soils: a review. Critical Review of Environmental Science Technology, 35, P 115 – 192. DOI: 10.1080/10643380590900237.
  • Hu, J. M., Meng, H. M., Zhang, J. Q., Cao, C. N. (2002). Degradation mechanism of long service life Ti/IrO2-Ta2O5 oxide anodes in sulphuric acid, Corrosion Science 44 (8), P 1655 – 1668. DOI: 10.1016/S0010-938X(01)00165-2.
  • Himadri R. Ghatak. (2013). Electrochemical Treatment of Hazardous Organic Pollutants – A Status Review, Journal of Energy Technologies and Policy, Vol.3, No.11. URL: http: //www. iiste.org/Journals/index.php/JE TP/article/view/8545
  • Sengil, I.A., and Ozacar, M. (2009). The decolorization of C.I. Reactive Black 5 in aqueous solution by electrocoagulation using sacrificial iron electrodes. Journal of Hazardous Materials, 161, P 1369-1376. DOI: 10.1016/j.jhazmat.2008.04.100.
  • Daneshvar, N., Oladegaragoze, A., and Djafarzadeh, N. (2006). Decolorization of basic dye solutions by electrocoagulation: an investigation of the effect of operational parameters. Journal of Hazardous Materials B, 129, P 116–122. DOI: 10.1016/j.jhazmat.2005.08.033.
  • Mollah, M., Morkovsky, P., Gomes, J.A.G., Kesmez, M., Parga, J., and Cocke, D.L. (2004). Fundamentals, present and future perspectives of electrocoagulation. Journal of Hazardous Materials, B 114, P 199–210. DOI: 10.1016/j.jhazmat.2004.08.009.
  • Ugurlu. M, Gurses. A, Dogar. C, and Yalcin. M. (2008). The removal of lignin and phenol from paper mill effluents by electrocoagulation. Journal of Environmental Management 87, P 420–428. DOI: 10.1016/j.jenvman.2007.01.007
  • Kobya, M., Can, O.T., and Bayramoglu, M. (2003). Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes. Journal of Hazardous Materials B, 100, P 163–178. DOI: 10.1016/S0304-3894(03)00102-X.
  • Qiang, Z., Chang, J.H., and Huang, C.P. (2003). Electrochemical regeneration of Fe2+ in Fenton oxidation processes. Water Research, 37, P 1308–1319. DOI: 10.1016/S0043-1354(02)00461-X.
  • Yuksel, E., Sengil, I.A., and Ozacar, M. (2009). The removal of sodium dodecyl sulfate in synthetic wastewater by peroxielectrocoagulation method. Chemical Engineering Journal, 152, P 347-353. DOI: 10.1016/j. cej.2009.04.058.
  • Evans S. (1970). Electrochemically controlled ion-exchange, OSW Research and Development Reports.
  • Turner. A. D., Bridger. N. J., Jones. G. P., Pottinger. J. S., Junkison. A. R., Fletcher. P. A., Neville. M. D., Allen. P. M., Taylor. R. I., Fox. W. T A., Griffiths. P. G. (1994). "Electrochemical ion-exchange for active liquid waste treatment", European Commission Report. URL: https: //inis. iaea.org/search/searchsinglerec ord.aspx?recordsFor=SingleRecord&RN=24 059842
  • De Paiva Barreto, Jéssica Pires et al. (2014). Electrochemical Mediated Oxidation of Phenol Using Ti/IrO2 and Ti/Pt-SnO2- Sb2O5 Electrodes. J. Electrochem. Sci. Eng. 4.4. DOI: 10.5599/jese.2014.0069.
  • Turner A D, Bridger N J, Junkison. A. R, and Pottinger J S. (1989). Electrical processes for liquid waste treatment, AEREG3903. URL: http: //www. iaea.org/inis/collection/NCLColl ectionStore/_Public/20/053/20053176.pdf# page=89.
  • Koren. J.P.F. and Syversen. U. (1995). State of the Art Electroflocculation. Filtration and Separation, DOI: 10.1016/S0015-1882(97)84039-6.
  • Weintraub, M.H., Gealer, RL, Golovoy, A and Dzieciuch, M.A. (1983). Development of electrolytic treatment of oily waste water, Environmental progress, 2(l), p. 32. DOI: 10.1002/ep.670020108.
  • Fukui, Y. and Yuu, S. (1980). Collection of submicron particles in electroflotation, Chem. Eng. Sci., 36, P 1097- 1105. DOI: 10.1016/0009-2509(80)85098- 6.
  • Mallikaduan, R. and Venktachalam, S. (1984). Electroflotation: A review. International Symposium on Electrochemistry in Mineral and Metal Processing (16th meeting of The Electrochemical Society), Cincinnati, Ohio, USA, P 233 - 256.
  • Kaliniichuk, E.M., Vasilenko, LI., Shchepanyuk, V. Yu., Sukhoverkhova, N.A and Makarov, LA. (1976). Treating refinery waste waters to remove emulsified oils by electrocoagulation and electroflotation’, Int. Chem. Eng., 16(3), P 434. URL: http: //www.osti.gov/scitech/biblio/7158259 .
  • White, RE., Bockris, J.0’M. and Conway, B.E. (l986). Modern aspects of electrochemistry Plenum Press, London, chap. 6. DOI: 10.1007/0-306-46909-X_1.
  • Chambers, D.B. and Cottrell, W.RT. (1976). Flotation: two fresh ways to treat effluents. Chem. Eng., 83, p. 95.
  • Diggle, J.W. and Vijih, AK in Alwitt, RS. (1976). Oxides and oxide films in the aluminum-water system, vol. 4, Marcel Dekker, NY, Chap. 3, P 169-254.
  • Balmer. LM. and Foulds. AW. (1986). Electroflocculation/electroflotation for the removal of oil from oil-in-water emulsions, Filtration and Separation, 23(6), P 366.
  • Hosny, AY. (1992). Separation of oil from oil/water emulsions using an electroflotation cell with insoluble electrodes, Filtration and Separation, 29(5), P 419-423. DOI: 10.1016/0015- 1882(92)80204-V.
There are 75 citations in total.

Details

Primary Language English
Journal Section REVIEW ARTICLES
Authors

Maher Abed Elaziz

Mohamed Khalifa This is me

Publication Date January 31, 2016
Submission Date November 1, 2015
Published in Issue Year 2016 Volume: 3 Issue: 1

Cite

Vancouver Abed Elaziz M, Khalifa M. Electrochemistry and Radioactive Wastes: A Scientific Overview. JOTCSA. 2016;3(1):47-74.