BibTex RIS Cite

STRUCTURAL CHARACTERIZATION AND GAS PERMEATION PROPERTIES OF POLYETHERIMIDE (PEI)/ZEOLITIC IMIDAZOLATE (ZIF-11) MIXED MATRIX MEMBRANES

Year 2016, Volume: 3 Issue: 2, 183 - 205, 29.06.2016
https://doi.org/10.18596/jotcsa.62047

Abstract

In this study, the preparation of polyetherimide (PEI-Ultem1000)/ZIF-11 mixed matrix membranes was studied in various ZIF-11 nanoparticles loadings (0, 10, 15, 20, and 30 wt.%). The newly synthesized ZIF-11 nanoparticles with an average particle size of ~280 nm were integrated in PEI membranes as novel mixed matrix membranes (MMMs). The effect of ZIF-11 loading was scrutinised for H2, CO2, and CH4 gas separation performance at 35 °C and 4 bar. The incorporation of ZIF-11 nanoparticles improved the gas permeation properties of the MMMs with an increase in ZIF-11 loading. As the ZIF-11 loading increased up to 20 wt.%, the permeability of H2 and CO2 increased to four times higher than that of the pure polymer. Moderate increase of CH4 permeability was also recorded. At higher loadings above 20 wt.%, the permeability decreased for all gases and the CO2/CH4, and H2/CH4 selectivities increased consistent with the ZIF-11 loading.

References

  • References
  • Zornoza B, Tellez C, Coronas J, Gascon J, Kapteijn F. Metal organic framework based mixed matrix membranes: An increasingly important field of research with a large application potential. Microporous Mesoporous Mater [Internet]. 2013;166:67–78. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-84869082778&partnerID=40&md5=8345bb8d7b4fda7ecc7d357424a2b7d9
  • Sanders DF, Smith ZP, Guo R, Robeson LM, McGrath JE, Paul DR, et al. Energy-efficient polymeric gas separation membranes for a sustainable future: A review. Vol. 54, Polymer (United Kingdom). 2013. p. 4729–61.
  • Arjmandi M, Pakizeh M. Mixed matrix membranes incorporated with cubic-MOF-5 for improved polyetherimide gas separation membranes: Theory and experiment. J Ind Eng Chem. 2014;20(5):3857–68.
  • Bastani D, Esmaeili N, Asadollahi M. Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review. Vol. 19, Journal of Industrial and Engineering Chemistry. 2013. p. 375–93.
  • Robeson LM. The upper bound revisited. J Memb Sci. 2008;320(1-2):390–400.
  • Keser Demir N, Topuz B, Yilmaz L, Kalipcilar H. Synthesis of ZIF-8 from recycled mother liquors. Microporous Mesoporous Mater. 2014;198:291–300.
  • Dorosti F, Omidkhah M, Abedini R. Fabrication and characterization of Matrimid/MIL-53 mixed matrix membrane for CO2/CH4 separation. Chem Eng Res Des. 2014;92(11):2439–48.
  • Hu T, Dong G, Li H, Chen V. Effect of PEG and PEO-PDMS copolymer additives on the structure and performance of Matrimid?? hollow fibers for CO2 separation. J Memb Sci. 2014;468:107–17.
  • Chen XY, Vinh-Thang H, Rodrigue D, Kaliaguine S. Amine-Functionalized MIL-53 Metal-Organic Framework in Polyimide Mixed Matrix Membranes for CO2/CH4 Separation. Ind Eng Chem Res [Internet]. 2012;51(19):6895–906. Available from: <Go to ISI>://000304027700033nhttp://pubs.acs.org/doi/pdfplus/10.1021/ie3004336
  • Dai Y, Johnson JR, Karvan O, Sholl DS, Koros WJ. Ultem ??/ZIF-8 mixed matrix hollow fiber membranes for CO 2/N 2 separations. J Memb Sci. 2012;401-402:76–82.
  • Basu S, Cano-Odena A, Vankelecom IFJ. MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separations. Sep Purif Technol. 2011;81(1):31–40.
  • Erucar I, Keskin S. Computational screening of metal organic frameworks for mixed matrix membrane applications. J Memb Sci. 2012;407-408:221–30.
  • Askari M, Chung T-S. Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/ZIF-8 mixed matrix membranes. J Memb Sci [Internet]. 2013;444:173–83. Available from: http://www.sciencedirect.com/science/article/pii/S0376738813004031
  • Yilmaz G, Keskin S. Predicting the Performance of Zeolite Imidazolate Framework/Polymer Mixed Matrix Membranes for CO 2 , CH 4 , and H 2 Separations Using Molecular Simulations. Ind Eng Chem Res [Internet]. 2012;51(43):14218–28. Available from: http://dx.doi.org/10.1021/ie302290anhttp://pubs.acs.org/doi/abs/10.1021/ie302290a
  • Morris W, He N, Ray KG, Klonowski P, Furukawa H, Daniels IN, et al. A combined experimental-computational study on the effect of topology on carbon dioxide adsorption in zeolitic imidazolate frameworks. J Phys Chem C. 2012;116(45):24084–90.
  • Wijenayake SN, Panapitiya NP, Versteeg SH, Nguyen CN, Goel S, Balkus KJ, et al. Surface cross-linking of ZIF-8/polyimide mixed matrix membranes (MMMs) for gas separation. Ind Eng Chem Res. 2013;52(21):6991–7001.
  • Assfour B, Leoni S, Seifert G. Hydrogen adsorption sites in zeolite imidazolate frameworks ZIF-8 and ZIF-11. J Phys Chem C. 2010;114(31):13381–4.
  • Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science. 2008;319(5865):939–43.
  • Sanchez-Lainez J, Zornoza B, Mayoral A, Berenguer-Murcia Á, Cazorla-Amorós D, Tellez C, et al. Beyond the H2/CO2 upper bound: one-step crystallization and separation of nano-sized ZIF-11 by centrifugation and its application in mixed matrix membranes. J Mater Chem A [Internet]. 2015;7:6549–56. Available from: http://pubs.rsc.org/en/Content/ArticleLanding/2015/TA/C4TA06820C
  • He M, Yao J, Liu Q, Zhong Z, Wang H. Toluene-assisted synthesis of RHO-type zeolitic imidazolate frameworks: synthesis and formation mechanism of ZIF-11 and ZIF-12. Dalton Trans [Internet]. 2013;42(47):16608–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24071923
  • Shamsabadi AA, Kargari A, Babaheidari MB, Laki S, Ajami H. Role of critical concentration of PEI in NMP solutions on gas permeation characteristics of PEI gas separation membranes. J Ind Eng Chem. 2013;19(2):677–85.
  • Park KS, Ni Z, Cote AP, Choi JY, Huang R, Uribe-Romo FJ, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci U S A [Internet]. 2006;103(27):10186–91. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1502432&tool=pmcentrez&rendertype=abstractnhttp://www.ncbi.nlm.nih.gov/pubmed/23449063nhttp://www.pnas.org/cgi/doi/10.1073/pnas.0602439103
  • Cravillon J, M??nzer S, Lohmeier SJ, Feldhoff A, Huber K, Wiebcke M. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem Mater. 2009;21(8):1410–2.
  • Thorkelson J. a Study of the Synthesis of the Zeolitic Imidazolate Framework Membrane Zif-11. 2011;(July).
  • Hu H, Liu S, Chen C, Wang J, Zou Y, Lin L, et al. Two novel zeolitic imidazolate frameworks (ZIFs) as sorbents for solid-phase extraction (SPE) of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. Analyst [Internet]. 2014;139(22):5818–26. Available from: http://xlink.rsc.org/?DOI=C4AN01410C
  • Ahmad J, Hägg MB. Development of matrimid/zeolite 4A mixed matrix membranes using low boiling point solvent. Sep Purif Technol. 2013;115:190–7.
  • Koley T, Bandyopadhyay P, Mohanty AK, Banerjee S. Synthesis and characterization of new aromatic poly(ether imide)s and their gas transport properties. Eur Polym J. 2013;49(12):4212–23.
  • Perez E V., Balkus KJ, Ferraris JP, Musselman IH. Metal-organic polyhedra 18 mixed-matrix membranes for gas separation. J Memb Sci. 2014;463:82–93.
  • Namvar-Mahboub M, Pakizeh M. Development of a novel thin film composite membrane by interfacial polymerization on polyetherimide/modified SiO2 support for organic solvent nanofiltration. Sep Purif Technol. 2013;119:35–45.
  • Khosravi T, Mosleh S, Bakhtiari O, Mohammadi T. Mixed matrix membranes of Matrimid 5218 loaded with zeolite 4A for pervaporation separation of water-isopropanol mixtures. Chem Eng Res Des. 2012;90(12):2353–63.
  • Takahashi S, Paul DR. Gas permeation in poly(ether imide) nanocomposite membranes based on surface-treated silica. Part 1: Without chemical coupling to matrix. Polymer (Guildf). 2006;47(21):7519–34.
  • Nafisi V, Hägg MB. Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture. J Memb Sci. 2014;459:244–55.
  • Ordo??ez MJC, Balkus KJ, Ferraris JP, Musselman IH. Molecular sieving realized with ZIF-8/Matrimid?? mixed-matrix membranes. J Memb Sci. 2010;361(1-2):28–37.
  • Moore TT, Koros WJ. Non-ideal effects in organic-inorganic materials for gas separation membranes. J Mol Struct. 2005;739(1-3):87–98.
Year 2016, Volume: 3 Issue: 2, 183 - 205, 29.06.2016
https://doi.org/10.18596/jotcsa.62047

Abstract

References

  • References
  • Zornoza B, Tellez C, Coronas J, Gascon J, Kapteijn F. Metal organic framework based mixed matrix membranes: An increasingly important field of research with a large application potential. Microporous Mesoporous Mater [Internet]. 2013;166:67–78. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-84869082778&partnerID=40&md5=8345bb8d7b4fda7ecc7d357424a2b7d9
  • Sanders DF, Smith ZP, Guo R, Robeson LM, McGrath JE, Paul DR, et al. Energy-efficient polymeric gas separation membranes for a sustainable future: A review. Vol. 54, Polymer (United Kingdom). 2013. p. 4729–61.
  • Arjmandi M, Pakizeh M. Mixed matrix membranes incorporated with cubic-MOF-5 for improved polyetherimide gas separation membranes: Theory and experiment. J Ind Eng Chem. 2014;20(5):3857–68.
  • Bastani D, Esmaeili N, Asadollahi M. Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review. Vol. 19, Journal of Industrial and Engineering Chemistry. 2013. p. 375–93.
  • Robeson LM. The upper bound revisited. J Memb Sci. 2008;320(1-2):390–400.
  • Keser Demir N, Topuz B, Yilmaz L, Kalipcilar H. Synthesis of ZIF-8 from recycled mother liquors. Microporous Mesoporous Mater. 2014;198:291–300.
  • Dorosti F, Omidkhah M, Abedini R. Fabrication and characterization of Matrimid/MIL-53 mixed matrix membrane for CO2/CH4 separation. Chem Eng Res Des. 2014;92(11):2439–48.
  • Hu T, Dong G, Li H, Chen V. Effect of PEG and PEO-PDMS copolymer additives on the structure and performance of Matrimid?? hollow fibers for CO2 separation. J Memb Sci. 2014;468:107–17.
  • Chen XY, Vinh-Thang H, Rodrigue D, Kaliaguine S. Amine-Functionalized MIL-53 Metal-Organic Framework in Polyimide Mixed Matrix Membranes for CO2/CH4 Separation. Ind Eng Chem Res [Internet]. 2012;51(19):6895–906. Available from: <Go to ISI>://000304027700033nhttp://pubs.acs.org/doi/pdfplus/10.1021/ie3004336
  • Dai Y, Johnson JR, Karvan O, Sholl DS, Koros WJ. Ultem ??/ZIF-8 mixed matrix hollow fiber membranes for CO 2/N 2 separations. J Memb Sci. 2012;401-402:76–82.
  • Basu S, Cano-Odena A, Vankelecom IFJ. MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separations. Sep Purif Technol. 2011;81(1):31–40.
  • Erucar I, Keskin S. Computational screening of metal organic frameworks for mixed matrix membrane applications. J Memb Sci. 2012;407-408:221–30.
  • Askari M, Chung T-S. Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/ZIF-8 mixed matrix membranes. J Memb Sci [Internet]. 2013;444:173–83. Available from: http://www.sciencedirect.com/science/article/pii/S0376738813004031
  • Yilmaz G, Keskin S. Predicting the Performance of Zeolite Imidazolate Framework/Polymer Mixed Matrix Membranes for CO 2 , CH 4 , and H 2 Separations Using Molecular Simulations. Ind Eng Chem Res [Internet]. 2012;51(43):14218–28. Available from: http://dx.doi.org/10.1021/ie302290anhttp://pubs.acs.org/doi/abs/10.1021/ie302290a
  • Morris W, He N, Ray KG, Klonowski P, Furukawa H, Daniels IN, et al. A combined experimental-computational study on the effect of topology on carbon dioxide adsorption in zeolitic imidazolate frameworks. J Phys Chem C. 2012;116(45):24084–90.
  • Wijenayake SN, Panapitiya NP, Versteeg SH, Nguyen CN, Goel S, Balkus KJ, et al. Surface cross-linking of ZIF-8/polyimide mixed matrix membranes (MMMs) for gas separation. Ind Eng Chem Res. 2013;52(21):6991–7001.
  • Assfour B, Leoni S, Seifert G. Hydrogen adsorption sites in zeolite imidazolate frameworks ZIF-8 and ZIF-11. J Phys Chem C. 2010;114(31):13381–4.
  • Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science. 2008;319(5865):939–43.
  • Sanchez-Lainez J, Zornoza B, Mayoral A, Berenguer-Murcia Á, Cazorla-Amorós D, Tellez C, et al. Beyond the H2/CO2 upper bound: one-step crystallization and separation of nano-sized ZIF-11 by centrifugation and its application in mixed matrix membranes. J Mater Chem A [Internet]. 2015;7:6549–56. Available from: http://pubs.rsc.org/en/Content/ArticleLanding/2015/TA/C4TA06820C
  • He M, Yao J, Liu Q, Zhong Z, Wang H. Toluene-assisted synthesis of RHO-type zeolitic imidazolate frameworks: synthesis and formation mechanism of ZIF-11 and ZIF-12. Dalton Trans [Internet]. 2013;42(47):16608–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24071923
  • Shamsabadi AA, Kargari A, Babaheidari MB, Laki S, Ajami H. Role of critical concentration of PEI in NMP solutions on gas permeation characteristics of PEI gas separation membranes. J Ind Eng Chem. 2013;19(2):677–85.
  • Park KS, Ni Z, Cote AP, Choi JY, Huang R, Uribe-Romo FJ, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci U S A [Internet]. 2006;103(27):10186–91. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1502432&tool=pmcentrez&rendertype=abstractnhttp://www.ncbi.nlm.nih.gov/pubmed/23449063nhttp://www.pnas.org/cgi/doi/10.1073/pnas.0602439103
  • Cravillon J, M??nzer S, Lohmeier SJ, Feldhoff A, Huber K, Wiebcke M. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem Mater. 2009;21(8):1410–2.
  • Thorkelson J. a Study of the Synthesis of the Zeolitic Imidazolate Framework Membrane Zif-11. 2011;(July).
  • Hu H, Liu S, Chen C, Wang J, Zou Y, Lin L, et al. Two novel zeolitic imidazolate frameworks (ZIFs) as sorbents for solid-phase extraction (SPE) of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. Analyst [Internet]. 2014;139(22):5818–26. Available from: http://xlink.rsc.org/?DOI=C4AN01410C
  • Ahmad J, Hägg MB. Development of matrimid/zeolite 4A mixed matrix membranes using low boiling point solvent. Sep Purif Technol. 2013;115:190–7.
  • Koley T, Bandyopadhyay P, Mohanty AK, Banerjee S. Synthesis and characterization of new aromatic poly(ether imide)s and their gas transport properties. Eur Polym J. 2013;49(12):4212–23.
  • Perez E V., Balkus KJ, Ferraris JP, Musselman IH. Metal-organic polyhedra 18 mixed-matrix membranes for gas separation. J Memb Sci. 2014;463:82–93.
  • Namvar-Mahboub M, Pakizeh M. Development of a novel thin film composite membrane by interfacial polymerization on polyetherimide/modified SiO2 support for organic solvent nanofiltration. Sep Purif Technol. 2013;119:35–45.
  • Khosravi T, Mosleh S, Bakhtiari O, Mohammadi T. Mixed matrix membranes of Matrimid 5218 loaded with zeolite 4A for pervaporation separation of water-isopropanol mixtures. Chem Eng Res Des. 2012;90(12):2353–63.
  • Takahashi S, Paul DR. Gas permeation in poly(ether imide) nanocomposite membranes based on surface-treated silica. Part 1: Without chemical coupling to matrix. Polymer (Guildf). 2006;47(21):7519–34.
  • Nafisi V, Hägg MB. Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture. J Memb Sci. 2014;459:244–55.
  • Ordo??ez MJC, Balkus KJ, Ferraris JP, Musselman IH. Molecular sieving realized with ZIF-8/Matrimid?? mixed-matrix membranes. J Memb Sci. 2010;361(1-2):28–37.
  • Moore TT, Koros WJ. Non-ideal effects in organic-inorganic materials for gas separation membranes. J Mol Struct. 2005;739(1-3):87–98.
There are 35 citations in total.

Details

Journal Section Articles
Authors

Mehtap Şafak Boroğlu This is me

Publication Date June 29, 2016
Submission Date May 28, 2016
Published in Issue Year 2016 Volume: 3 Issue: 2

Cite

Vancouver Şafak Boroğlu M. STRUCTURAL CHARACTERIZATION AND GAS PERMEATION PROPERTIES OF POLYETHERIMIDE (PEI)/ZEOLITIC IMIDAZOLATE (ZIF-11) MIXED MATRIX MEMBRANES. JOTCSA. 2016;3(2):183-205.