Research Article
BibTex RIS Cite
Year 2017, Volume: 4 Issue: 2, 549 - 562, 15.04.2017
https://doi.org/10.18596/jotcsa.296243

Abstract

References

  • 1. Sah RN, Brown PH. Boron determination- a review of analytical methods. Microchem. J. 1997;56(3):285-304. DOI: 10.1006/mchj.1997.1428.
  • 2. Meacham S, Karakas S, Wallace A, Altun F. Boron in human health: evidence for dietary recommendations and public policies. The Open Mineral Processing Journal. 2010; 3:36-53. DOI: 10.2174/1874841401003010036.
  • 3. WHO, Guidelines for Drinking Water Quality, 4th ed., Switzerland, 2011.
  • 4. World Health Organization, Boron, Environmental health criteria monograph 204; IPCS; Geneva1998 (http://www.inchem.org/documents/ehc/ehc/ehc204.htm)
  • 5. Zaijun L, Zhu Z, Jan T, Hsu CG, Jiaomai P. 4-Methoxy-azomethine-H as a reagent for the spectrophotometric determination of boron in plants and soils. Anal. Chim. Acta. 1999; 402:253-57. DOI: 10.1016/S0003-2670(99)00563-2.
  • 6. Aznarez J, Ferrer A, Rabadan JM and Mar L. Extractive spectrophotometric and fluorimetric determination of boron wit 2,2,4- trimethyl-1,3 pentanediaol and carminic acid. Talanta. 1985;32:1156-1158. DOI:10.1007/bf00322763.
  • 7. Balogh IS, Andruch V, Kádár M, Billes F, Posta J, Szabová E. A simple method of boron determination in mineral waters using Victoria blue 4R. Int. J. Environ. Anal. Chem. 2009; 89(6): 449-459, DOI:10.1080/03067310802710621.
  • 8. Rice EW, Baird RB, Eaton AD, Clesceri S, editor, Standard Methods for the Examination of Water and Wastewater, 22nd Edition. American Public Health Association, American Water Works Association, Water Environment Federation; 2012. 1496 p. ISBN: 9780875530130 0875530133.
  • 9. Marcantonatos M, Gamba G, Monnier D. Contribution à l'étude du dosage de traces d'acide borique par luminescence. Helv. Chim. Acta. 1969; 52:538-43. DOI: 10.1002/hlca.19690520220.
  • 10. Garcia-Campana AM, Barrero FA, Ceba MR. Spectrofluorimetric determination of boron in soils, plants and natural waters with Alizarin Red S. Analyst. 1992; 117:1189-91. DOI: 10.1039/AN9921701189.
  • Sarıca DY, Ertas N. Flow injection analysis for boron determination by using methyl borate generation and flame atomic emission spectrometry. Turk. J. Chem. 2001; 25:305-310. http://journals.tubitak.gov.tr/chem/issues/kim-01-25-3/kim-25-3-7-0008-2.pdf
  • 12.Guo C, Huang Y, Zhog M, Li H, Sun Y, Chen H. Determination of trace amounts of boron in polysilicon by differential pulse voltammetry after hydrofluoric acid/nitric acid treatment. Int. J. Electrochem. Sci. 2011; 6:6525 – 6541. http://www.electrochemsci.org/papers/vol6/6126525.pdf
  • Liv L, Nakiboğlu N. Simple and rapid voltammetric determination of boron in water and steel samples using a pencil graphite electrod. Turk. J. Chem. 2016; 40:412-21. DOI: 10.3906/kim-1507-64.
  • Keikoabe S, Hirokazukobayashi H, Kojimiyadera N, Akasaka KI. Fully automated measuring equipment for aqueous boron and its application to online monitoring of industrial process effluents. Environ. Sci. Technol. 2009, 43, 4119–4123. DOI:10.1021/es900062f.
  • Hill CJ, Lash RP. Ion chromatographic determination of boron as tetrafluoroborate. Anal Chem. 1980, 52, 24-27. DOI: 10.1021/ac50051a007.
  • Brennan MC, Svehla G. Flow injection determination of boron, copper, molybdenum, tungsten and zinc in organic matrices with direct current plasma optical emission spectrometry. Fresenius Z. Anal. Chem. 1989; 335:893- 899. DOI: 10.1007/BF00466377.

Fluorescence Sensor for the Determination of Boron

Year 2017, Volume: 4 Issue: 2, 549 - 562, 15.04.2017
https://doi.org/10.18596/jotcsa.296243

Abstract
















This study
reports the preparation and characterization of a new polymeric fluorescence
sensor for the determination of boron. The sensor was prepared by the UV-curing
of
Glucosyloxyethyl methacrylate (GOEM), 1,6-Hexandiol diacrylate (HDDA), hydroxyethylmethacrylate (HEMA) and 2,2’-dimethoxy-2-phenylacetophenone
(DMPA) was used as the photoinitiator. The features of the sensor performance
including sensitivity, response time, pH effect, stability and matrix
interferences were studied
.  The excitation and
emission wavelengths of the fluorescence sensor were 378 and 423 nm,
respectively. With the prepared fluorescence sensor, the optimum pH value for
the boron solution was determined as pH 6.0, and the optimum analysis time was
selected as 45 seconds. The linear response range under the optimized
conditions was found to be 9.25 × 10-7 mol L-1 and 9.25 ×
10-6 mol L-1. The limit of detection
(LOD) was
2.90 × 10−8 mol L-1 and the limit of
quantification (LOQ) was 9.66 10−8 mol L-1 (n=7)
with 1.2% relative standard deviation.
In addition,
boron could be selectively detected by the prepared polymeric sensor even in
the presence of foreign ions.
The prepared sensor was also
successfully applied to real environmental water samples.
    

References

  • 1. Sah RN, Brown PH. Boron determination- a review of analytical methods. Microchem. J. 1997;56(3):285-304. DOI: 10.1006/mchj.1997.1428.
  • 2. Meacham S, Karakas S, Wallace A, Altun F. Boron in human health: evidence for dietary recommendations and public policies. The Open Mineral Processing Journal. 2010; 3:36-53. DOI: 10.2174/1874841401003010036.
  • 3. WHO, Guidelines for Drinking Water Quality, 4th ed., Switzerland, 2011.
  • 4. World Health Organization, Boron, Environmental health criteria monograph 204; IPCS; Geneva1998 (http://www.inchem.org/documents/ehc/ehc/ehc204.htm)
  • 5. Zaijun L, Zhu Z, Jan T, Hsu CG, Jiaomai P. 4-Methoxy-azomethine-H as a reagent for the spectrophotometric determination of boron in plants and soils. Anal. Chim. Acta. 1999; 402:253-57. DOI: 10.1016/S0003-2670(99)00563-2.
  • 6. Aznarez J, Ferrer A, Rabadan JM and Mar L. Extractive spectrophotometric and fluorimetric determination of boron wit 2,2,4- trimethyl-1,3 pentanediaol and carminic acid. Talanta. 1985;32:1156-1158. DOI:10.1007/bf00322763.
  • 7. Balogh IS, Andruch V, Kádár M, Billes F, Posta J, Szabová E. A simple method of boron determination in mineral waters using Victoria blue 4R. Int. J. Environ. Anal. Chem. 2009; 89(6): 449-459, DOI:10.1080/03067310802710621.
  • 8. Rice EW, Baird RB, Eaton AD, Clesceri S, editor, Standard Methods for the Examination of Water and Wastewater, 22nd Edition. American Public Health Association, American Water Works Association, Water Environment Federation; 2012. 1496 p. ISBN: 9780875530130 0875530133.
  • 9. Marcantonatos M, Gamba G, Monnier D. Contribution à l'étude du dosage de traces d'acide borique par luminescence. Helv. Chim. Acta. 1969; 52:538-43. DOI: 10.1002/hlca.19690520220.
  • 10. Garcia-Campana AM, Barrero FA, Ceba MR. Spectrofluorimetric determination of boron in soils, plants and natural waters with Alizarin Red S. Analyst. 1992; 117:1189-91. DOI: 10.1039/AN9921701189.
  • Sarıca DY, Ertas N. Flow injection analysis for boron determination by using methyl borate generation and flame atomic emission spectrometry. Turk. J. Chem. 2001; 25:305-310. http://journals.tubitak.gov.tr/chem/issues/kim-01-25-3/kim-25-3-7-0008-2.pdf
  • 12.Guo C, Huang Y, Zhog M, Li H, Sun Y, Chen H. Determination of trace amounts of boron in polysilicon by differential pulse voltammetry after hydrofluoric acid/nitric acid treatment. Int. J. Electrochem. Sci. 2011; 6:6525 – 6541. http://www.electrochemsci.org/papers/vol6/6126525.pdf
  • Liv L, Nakiboğlu N. Simple and rapid voltammetric determination of boron in water and steel samples using a pencil graphite electrod. Turk. J. Chem. 2016; 40:412-21. DOI: 10.3906/kim-1507-64.
  • Keikoabe S, Hirokazukobayashi H, Kojimiyadera N, Akasaka KI. Fully automated measuring equipment for aqueous boron and its application to online monitoring of industrial process effluents. Environ. Sci. Technol. 2009, 43, 4119–4123. DOI:10.1021/es900062f.
  • Hill CJ, Lash RP. Ion chromatographic determination of boron as tetrafluoroborate. Anal Chem. 1980, 52, 24-27. DOI: 10.1021/ac50051a007.
  • Brennan MC, Svehla G. Flow injection determination of boron, copper, molybdenum, tungsten and zinc in organic matrices with direct current plasma optical emission spectrometry. Fresenius Z. Anal. Chem. 1989; 335:893- 899. DOI: 10.1007/BF00466377.
There are 16 citations in total.

Details

Subjects Engineering, Chemical Engineering
Journal Section Articles
Authors

Soner Çubuk

Mirgül Kosif This is me

Ece Kök Yetimoğlu

Memet Vezir Kahraman

Publication Date April 15, 2017
Submission Date March 3, 2017
Acceptance Date April 8, 2017
Published in Issue Year 2017 Volume: 4 Issue: 2

Cite

Vancouver Çubuk S, Kosif M, Kök Yetimoğlu E, Kahraman MV. Fluorescence Sensor for the Determination of Boron. JOTCSA. 2017;4(2):549-62.