Year 2016, Volume 3 , Issue 3, Pages 637 - 656 2017-01-08

Thermal, Mechanical and Water Resistance Properties of LDPE/Starch Bio-Based Polymer Blends for Food Packing Applications

Hale Berber Yamak [1]


In this study, low density polyethylene, LDPE was melt blended with starch using twin screw extruder to form biodegradable polymer blends. The LDPE/starch blend films used in food packing were obtained by hot pressing of the granules produced by extrusion process. The starch content was varied from 0 to 40 wt% of LDPE. To provide fine starch dispersion, glycerol and zinc stearate were used as plasticizer and compatibilizer, respectively. The effect of starch content on the properties of LDPE film was investigated. A good dispersion was achieved for low starch contents, but agglomeration of the starch particles occurred in the presence of high amounts of starch. The addition of starch to LDPE reduced the tensile strength, elongation at break, crystallinity and water resistance of LDPE. This decline in the LDPE properties was dramatic when the starch content was increased to 30 wt% in the blend. In addition, silver nanoparticles as antibacterial agent were incorporated to the biodegradable LDPE blend where LDPE/starch weight ratio of 60/40. Antimicrobial activities of the nanocomposite films against gram-negative bacteria (E. coli) and gram-positive bacteria (S. aureus) were determined by measuring the inhibition zone around each film. The effects of these nanoparticles on morphological, mechanical, thermal and water resistance properties of the LDPE/starch biodegradable blend were also investigated. It was observed that the incorporation of nanoparticles to the LDPE/starch blend was completely changed the morphology of the film, and accordingly, the mechanical, thermal and water resistance properties were varied depending on the nanoparticle content in LDPE/starch blend film.
  • References
  • Rhim J-W, Park H-M, Ha C-S. Bio-nanocomposites for food packaging applications. Prog Polym Sci. 2013;38:1629-52. DOI: 10.1016/j.progpolymsci.2013.05.008.
  • Siracusa V, Rocculi P, Romani S, Rosa MD. Biodegradable polymers for food packaging: a review. Trends Food Sci Tech. 2008;19:634-43. DOI: 10.1016/j.tifs.2008.07.003.
  • Shah AA, Hasan F, Hameed A, Ahmed S. Biological degradation of plastics: A comprehensive review. Biotechnol Adv. 2008;26:246-65. DOI: 10.1016/j.biotechadv.2007.12.005.
  • Halley PJ. 6 - Themoplastic starch biodegradable polymers A2 - Smith, Ray. Biodegradable Polymers for Industrial Applications. Woodhead Publishing; 2005. 140-62 p. ISBN: 978-1-85573-934-5.
  • Platt DK. Biodegredable Polymers Market Report: Rapra Technology; 2007. 11-7 p. ISBN: 1-85957-519-6.
  • Bastioli C. Handbook of Biodegradable Polymers Rapra Technology Limited; 2005. 257 p. ISBN: 1-85957-389-4.
  • Wihodo M, Moraru CI. Physical and chemical methods used to enhance the structure and mechanical properties of protein films: A review. J Food Eng. 2013;114:292-302. DOI:10.1016/j.jfoodeng.2012.08.021.
  • Inceoglu F, Menceloglu YZ. Transparent low-density polyethylene/starch nanocomposite films. J Appl Polym Sci. 2013;129:1907-14. DOI: 10.1002/app.38811.
  • Guilbert S, Cuq B, Gontard N. Recent innovations in edible and/or biodegradable packaging materials. Food Addit Contam Part A-Chem. 1997;14:741-51. DOI: 10.1080/02652039709374585.
  • Chandra R, Rustgi R. Biodegradable polymers. Prog Polym Sci. 1998;23:1273-335. DOI: 10.1016/S0079-6700(97)00039-7.
  • Chiellini E, Corti A, Swift G. Biodegradation of thermally-oxidized, fragmented low-density polyethylenes. Polym Degrad Stab. 2003;81:341-51. DOI: 10.1016/s0141-3910(03)00105-8.
  • Pedroso AG, Rosa DS. Mechanical, thermal and morphological characterization of recycled LDPE/corn starch blends. Carbohydr Polym. 2005;59:1-9. DOI: 10.1016/j.carbpol.2004.08.018.
  • Pedroso AG, Rosa DS. Effects of the compatibilizer PE-g-GMA on the mechanical, thermal and morphological properties of virgin and reprocessed LDPE/corn starch blends. Polym Adv Technol. 2005;16:310-7. DOI: 10.1002/pat.581.
  • Peres AM, Pires RR, Orefice RL. Evaluation of the effect of reprocessing on the structure and properties of low density polyethylene/thermoplastic starch blends. Carbohydr Polym. 2016;136:210-5. DOI: 10.1016/j.carbpol.2015.09.047.
  • Psomiadou E, Arvanitoyannis I, Biliaderis CG, Ogawa H, Kawasaki N. Biodegradable films made from low density polyethylene (LDPE), wheat starch and soluble starch for food packaging applications. Part 2. Carbohydr Polym. 1997;33:227-42. DOI: 10.1016/S0144-8617(97)00032-5.
  • Róz ALD, Carvalho AJF, Gandini A, Curvelo AAS. The effect of plasticizers on thermoplastic starch compositions obtained by melt processing. Carbohydr Polym. 2006;63:417-24. DOI: 10.1016/j.carbpol.2005.09.017.
  • Griffin GJL. Environmentally Degradable PolymersStarch polymer blends. Polym Degrad Stab. 1994;45:241-7. DOI: 10.1016/0141-3910(94)90141-4.
  • Garg S, Jana AK. Studies on the properties and characteristics of starch-LDPE blend films using cross-linked, glycerol modified, cross-linked and glycerol modified starch. Eur Polym J. 2007;43:3976-87. DOI: 10.1016/j.eurpolymj.2007.06.030.
  • Wang YJ, Liu W, Sun Z. Effects of glycerol and PE-g-MA on morphology, thermal and tensile properties of LDPE and rice starch blends. J Appl Polym Sci. 2004;92:344-50. DOI: 10.1002/app.20015.
  • Yang JH, Yu JG, Ma XF. Study on the properties of ethylenebisformamide and sorbitol plasticized corn starch (ESPTPS). Carbohydr Polym. 2006;66:110-6. DOI: 10.1016/j.carbpol.2006.02.029.
  • Ma XF, Yu JG, Wan JJ. Urea and ethanolamine as a mixed plasticizer for thermoplastic starch. Carbohydr Polym. 2006;64:267-73. DOI: 10.1016/j.carbpol.2005.11.042.
  • Sabetzadeh M, Bagheri R, Masoomi M. Effect of corn starch content in thermoplastic starch/low-density polyethylene blends on their mechanical and flow properties. J Appl Polym Sci. 2012;126:E63-E9. DOI: 10.1002/app.36329.
  • Fabra MJ, López-Rubio A, Ambrosio-Martín J, Lagaron JM. Improving the barrier properties of thermoplastic corn starch-based films containing bacterial cellulose nanowhiskers by means of PHA electrospun coatings of interest in food packaging. Food Hydrocolloids. 2016;61:261-8. DOI: 10.1016/j.foodhyd.2016.05.025.
  • Khanoonkon N, Yoksan R, Ogale AA. Morphological characteristics of stearic acid-grafted starch-compatibilized linear low density polyethylene/thermoplastic starch blown film. Eur Polym J. 2016;76:266-77. DOI: 10.1016/j.eurpolymj.2016.02.001.
  • Nakamura EM, Cordi L, Almeida GSG, Duran N, Mei LHI. Study and development of LDPE/starch partially biodegradable compounds. J Mater Process Technol. 2005;162–163:236-41. DOI: 10.1016/j.jmatprotec.2005.02.007.
  • Thakore IM, Desai S, Sarawade BD, Devi S. Studies on biodegradability, morphology and thermo-mechanical properties of LDPE/modified starch blends. Eur Polym J. 2001;37:151-60. DOI: 10.1016/S0014-3057(00)00086-0.
  • Girija BG, Sailaja RRN. Low-density polyethylene/plasticized tapioca starch blends with the low-density polyethylene functionalized with maleate ester: Mechanical and thermal properties. J Appl Polym Sci. 2006;101:1109-20. DOI: 10.1002/app.24025.
  • Hoque ME, Ye TJ, Yong LC, Mohd Dahlan K. Sago Starch-Mixed Low-Density Polyethylene Biodegradable Polymer: Synthesis and Characterization. Journal of Materials. 2013;2013:7. DOI: 10.1155/2013/365380.
  • Carlson C, Hussain SM, Schrand AM, K. Braydich-Stolle L, Hess KL, Jones RL, et al. Unique Cellular Interaction of Silver Nanoparticles: Size-Dependent Generation of Reactive Oxygen Species. The Journal of Physical Chemistry B. 2008;112:13608-19. DOI: 10.1021/jp712087m.
  • Dallas P, Sharma VK, Zboril R. Silver polymeric nanocomposites as advanced antimicrobial agents: Classification, synthetic paths, applications, and perspectives. Adv Colloid Interface Sci. 2011;166:119-35. DOI: 10.1016/j.cis.2011.05.008.
  • Russell AD, Hugo WB. 7 Antimicrobial Activity and Action of Silver. Ellis GP, Luscombe DK, editors. Progress in Medicinal Chemistry. Elsevier; 1994. 351-70 p. ISBN: 0079-6468.
  • Azeredo HMCd. Nanocomposites for food packaging applications. Food Res Int. 2009;42:1240-53. DOI: 10.1016/j.foodres.2009.03.019.
  • Cheviron P, Gouanvé F, Espuche E. Effect of silver nanoparticles' generation routes on the morphology, oxygen, and water transport properties of starch nanocomposite films. J Nanopart Res. 2015;17:1-16. DOI: 10.1007/s11051-015-3173-4.
  • Jokar M, Rahman RA, Ibrahim NA, Abdullah LC, Tan CP. Melt Production and Antimicrobial Efficiency of Low-Density Polyethylene (LDPE)-Silver Nanocomposite Film. Food Bioprocess Technol. 2012;5:719-28. DOI: 10.1007/s11947-010-0329-1.
  • Appendini P, Hotchkiss JH. Review of antimicrobial food packaging. Innov Food Sci Emerg. 2002;3:113-26. DOI: 10.1016/S1466-8564(02)00012-7.
  • Alkan U, Kilic M, Karabul Y, Yamak HB, Okutan M, Icelli O. Electrical and Mechanical Properties of LDPE/PANI Composites. J Nanoelectron Optoelectron. 2016;11:343-8. DOI: 10.1166/jno.2016.1889.
  • Beg MDH, Kormin S, Bijarimi M, Zaman HU. Preparation and Characterization of Low-Density Polyethylene/Thermoplastic Starch Composites. Adv Polym Tech. 2016;35:n/a-n/a. DOI: 10.1002/adv.21521.
  • Oromiehie AR, Lari TT, Rabiee A. Physical and thermal mechanical properties of corn starch/LDPE composites. J Appl Polym Sci. 2013;127:1128-34. DOI: 10.1002/app.37877.
  • Gupta AP, Sharma M, Kumar V. Preparation and characterization of potato starch based low density polyethylene/low density polyethylene grafted maleic anhydride biodegradable polymer composite. Polym-Plast Technol Eng. 2008;47:953-9. DOI: 10.1080/03602550802274597.
  • Gupta AP, Sharma M. Characterization of Biodegradable Packaging Films Derived from Potato Starch and LDPE Grafted with Maleic Anhydride–LDPE Composition. Part-II. J Polym Environ. 2010;18:492-9. DOI: 10.1007/s10924-010-0214-z.
  • Wang H, Zeng CC, Elkovitch M, Lee LJ, Koelling KW. Processing and properties of polymeric nano-composites. Polym Eng Sci. 2001;41:2036-46. DOI: 10.1002/pen.10899.
  • Wunderlich B, Czornyj G. A Study of Equilibrium Melting of Polyethylene. Macromolecules. 1977;10:906-13. DOI: 10.1021/ma60059a006.
  • Gupta AP, Kumar V, Sharma M. Formulation and Characterization of Biodegradable Packaging Film Derived from Potato Starch & LDPE Grafted with Maleic Anhydride—LDPE Composition. J Polym Environ. 2010;18:484-91. DOI: 10.1007/s10924-010-0213-0.
  • Yamak HB, Yildirim H. Improvement of film properties of vinyl acetate based emulsion polymers by using different types of maleic acid diesters. Prog Org Coat. 2013;76:1874-8. DOI: 10.1016/j.porgcoat.2013.05.032.
Subjects Engineering, Chemical, Engineering
Journal Section Articles
Authors

Author: Hale Berber Yamak

Dates

Application Date : July 4, 2016
Acceptance Date : December 6, 2019
Publication Date : January 8, 2017

Bibtex @ { jotcsa287300, journal = {Journal of the Turkish Chemical Society Section A: Chemistry}, issn = {}, eissn = {2149-0120}, address = {}, publisher = {Turkish Chemical Society}, year = {2017}, volume = {3}, pages = {637 - 656}, doi = {10.18596/jotcsa.287300}, title = {Thermal, Mechanical and Water Resistance Properties of LDPE/Starch Bio-Based Polymer Blends for Food Packing Applications}, key = {cite}, author = {Berber Yamak, Hale} }
APA Berber Yamak, H . (2017). Thermal, Mechanical and Water Resistance Properties of LDPE/Starch Bio-Based Polymer Blends for Food Packing Applications. Journal of the Turkish Chemical Society Section A: Chemistry , 3 (3) , 637-656 . DOI: 10.18596/jotcsa.287300
MLA Berber Yamak, H . "Thermal, Mechanical and Water Resistance Properties of LDPE/Starch Bio-Based Polymer Blends for Food Packing Applications". Journal of the Turkish Chemical Society Section A: Chemistry 3 (2017 ): 637-656 <https://dergipark.org.tr/en/pub/jotcsa/issue/27290/287300>
Chicago Berber Yamak, H . "Thermal, Mechanical and Water Resistance Properties of LDPE/Starch Bio-Based Polymer Blends for Food Packing Applications". Journal of the Turkish Chemical Society Section A: Chemistry 3 (2017 ): 637-656
RIS TY - JOUR T1 - Thermal, Mechanical and Water Resistance Properties of LDPE/Starch Bio-Based Polymer Blends for Food Packing Applications AU - Hale Berber Yamak Y1 - 2017 PY - 2017 N1 - doi: 10.18596/jotcsa.287300 DO - 10.18596/jotcsa.287300 T2 - Journal of the Turkish Chemical Society Section A: Chemistry JF - Journal JO - JOR SP - 637 EP - 656 VL - 3 IS - 3 SN - -2149-0120 M3 - doi: 10.18596/jotcsa.287300 UR - https://doi.org/10.18596/jotcsa.287300 Y2 - 2019 ER -
EndNote %0 Journal of the Turkish Chemical Society Section A: Chemistry Thermal, Mechanical and Water Resistance Properties of LDPE/Starch Bio-Based Polymer Blends for Food Packing Applications %A Hale Berber Yamak %T Thermal, Mechanical and Water Resistance Properties of LDPE/Starch Bio-Based Polymer Blends for Food Packing Applications %D 2017 %J Journal of the Turkish Chemical Society Section A: Chemistry %P -2149-0120 %V 3 %N 3 %R doi: 10.18596/jotcsa.287300 %U 10.18596/jotcsa.287300
ISNAD Berber Yamak, Hale . "Thermal, Mechanical and Water Resistance Properties of LDPE/Starch Bio-Based Polymer Blends for Food Packing Applications". Journal of the Turkish Chemical Society Section A: Chemistry 3 / 3 (January 2017): 637-656 . https://doi.org/10.18596/jotcsa.287300
AMA Berber Yamak H . Thermal, Mechanical and Water Resistance Properties of LDPE/Starch Bio-Based Polymer Blends for Food Packing Applications. JOTCSA. 2017; 3(3): 637-656.
Vancouver Berber Yamak H . Thermal, Mechanical and Water Resistance Properties of LDPE/Starch Bio-Based Polymer Blends for Food Packing Applications. Journal of the Turkish Chemical Society Section A: Chemistry. 2017; 3(3): 656-637.