Research Article
BibTex RIS Cite
Year 2017, Volume: 4 Issue: 3, 775 - 786, 31.07.2017
https://doi.org/10.18596/jotcsa.308593

Abstract

References

  • 1. Padia JK, Field M, Hinton J, Meecham K, Pablo J, Pinnock R, Roth BD, Singh L, Suman-Chauhan N, Trivedi BK, Webdale, L. Novel nonpeptide CCK-B antagonists: design and development of quinazolinone derivatives as potent, selective, and orally active CCK-B antagonists. J Med Chem. 1998; 41(7):1042-1049.
  • 2. Xia Y, Yang ZY, Hour MJ, Kuo SC, Xia P, Bastow KF, Nakanishi Y, Nampoothiri P, Hackl T, Hamel E, Lee KH. Antitumor agents. Part 204: synthesis and biological evaluation of substituted 2-aryl quinazolinones. Bioorg Med Chem Lett. 2001; 11(9):1193-1196.
  • 3. Yadav MR, Shirude ST, Parmar A, Balaraman R, Giridhar R. Synthesis and anti-inflammatory activity of 2,3-diaryl-4(3H)-quinazolinones. Chem Heterocycl Compd. 2006; 42(8):1038-1045.
  • 4. Singh T, Sharma S, Srivastava VK, Kumar A. Synthesis, insecticidal and antimicrobial activities of some heterocyclic derivatives of quinazolinone. Indian J Chem B: Org Med Chem. 2006; 11:2558-2565.
  • 5. (a) Doyle LA, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 2003; 22(47):7340-7358. (b) Henderson EA, Bavetsias V, Theti DS, Wilson SC, Clauss R, Jackman AL. Targeting the α-folate receptor with cyclopenta[g]quinazoline-based inhibitors of thymidylate synthase. Bioorg Med Chem. 2006; 14(14):5020-5042.
  • 6. (a) Chien TC, Chen CS, Yu FH, Chern JW. Nucleosides XI. Synthesis and antiviral evaluation of 5′-alkylthio-5′-deoxy quinazolinone nucleoside derivatives as S-adenosyl-L-homocysteine analogs. Chem. Pharm. Bull. 2004; 52(12):1422-1426. (b) Herget, T, Freitag, M, Morbitzer, M, Kupfer, R, Stamminger, T, Marschall, M. Novel chemical class of pUL97 protein kinase-specific inhibitors with strong anticytomegaloviral activity. Antimicrob Agents Chemother. 2004; 48(11):4154-4162.
  • 7. (a) Waisser K, Gregor J, Dostál H, Kuneš J, Kubicová L, Klimešová V, Kaustová J. Influence of the replacement of the oxo function with the thioxo group on the antimycobacterial activity of 3-aryl-6,8-dichloro-2H-1,3-benzoxazine-2,4(3H)-diones and 3-arylquinazoline-2,4(1H,3H)-diones. Farmaco. 2001; 56(10):803-807. (b) Kuneš J, Bažant J, Pour M, Waisser K, Šlosárek M, Janota J. Quinazoline derivatives with antitubercular activity. Il Farmaco. 2000; 55(11):725-729.
  • 8. Aly MM, Mohamed YA, El-Bayouki KA, Basyouni WM, Abbas SY. Synthesis of some new 4(3H)-quinazolinone-2-carboxaldehyde thiosemicarbazones and their metal complexes and a study on their anticonvulsant, analgesic, cytotoxic and antimicrobial activities-Part-1. Eur J Med Chem. 2010; 45(8):3365-3373.
  • 9. Liverton NJ, Armstrong DJ, Claremon DA, Remy DC, Baldvin JJ, Lynch RJ, Zhang GX, Gould RJ. Nonpeptide glycoprotein IIb/IIIa inhibitors: substituted quinazolinediones and quinazolinones as potent fibrinogen receptor antagonists. Bioorg Med Chem Lett. 1998; 8(5):483-486.
  • 10. Murata K, Takano F, Fushiya S, Oshima Y. Enhancement of NO production in activated macrophages in vivo by an antimalarial crude drug, Dichroa febrifuga. J Nat Prod. 1998; 61(6):729-733.
  • 11. Hamidian H, Tikdari AM, Khabazzadeh H. Synthesis of new 4(3H)-quinazolinone derivatives using 5(4H)-oxazolones. Molecules. 2006; 11(5):377-382
  • 12. Labade VB, Shinde PV, Shingare MS. A facile and rapid access towards the synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Tetrahedron Lett. 2013; 54(43):5778-5780.
  • 13. Hour MJ, Huang LJ, Kuo SC, Xia Y, Bastow K, Nakanishi Y, Hamel E, Lee KH. 6-Alkylamino-and 2,3-Dihydro-3‘-methoxy-2-phenyl-4-quinazolinones and related compounds: their synthesis, cytotoxicity, and inhibition of tubulin polymerization. J Med Chem. 2000; 43(23):4479-4487.
  • 14. Shi D, Rong L, Wang J, Zhuang Q, Wang X, Hu H. Synthesis of quinazolin-4 (3H)-ones and 1, 2-dihydroquinazolin-4(3H)-ones with the aid of a low-valent titanium reagent. Tetrahedron Lett. 2003; 44(15):3199-3201.
  • 15. Abdel-Jalil RJ, Voelter W, Saeed M. A novel method for the synthesis of 4(3H)-quinazolinones. Tetrahedron Lett. 2004; 45(17):3475-3476.
  • 16. Chen J, Su W, Wu H, Liu M, Jin C. Eco-friendly synthesis of 2,3-dihydroquinazolin-4(1H)-ones in ionic liquids or ionic liquid-water without additional catalyst. Green Chem. 2007; 9(9):972-975.
  • 17. Chinigo GM, Paige M, Grindrod S, Hamel E, Dakshanamurthy S, Chruszcz M, Minor W, Milton L, Brown ML. Asymmetric synthesis of 2,3-dihydro-2-arylquinazolin-4-ones: methodology and application to a potent fluorescent tubulin inhibitor with anticancer activity. J Med Chem. 2008; 51(15):4620-4631.
  • 18. Safari J, Gandomi-Ravandi S. Efficient synthesis of 2-aryl-2,3-dihydroquinazolin-4(1H)-ones in the presence of nanocomposites under microwave irradiation. J Mol Catal A: Chem 2014;390:1-6.
  • 19. Parthasaradhi Y, Rakhi C, Suresh S, Tangenda SJ. Polyethylene glycol (PEG-400) as a medium for novel andefficient synthesis of 2-phenyl-2,3-dihydroquinazolin-4(1H)-one derivatives. Eur J Chem. 2013; 4(4):462-466.
  • 20. Abdollahi-Alibeik M, Shabani E. Nanocrystalline sulfated zirconia as an efficient solid acid catalyst for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones. J Iranian Chem Soc. 2014; 11(2):351-359.
  • 21. Cai G, Xu X, Li Z, Lu P, Weber WP. A one‐pot synthesis of 2‐aryl‐2,3‐dihydro‐4 (1H)‐ quinazolinones by use of samarium iodide. J Heterocycl Chem. 2002; 39(6):1271-1272.
  • 22. Davoodnia A, Allameh S, Fakhari AR, Tavakoli-Hoseini N. Highly efficient solvent-free synthesis of quinazolin-4(3H)-ones and 2,3-dihydroquinazolin-4(1H)-ones using tetrabutyl ammonium bromide as novel ionic liquid catalyst. Chin Chem Lett. 2010; 21(5):550-553.
  • 23. Bakavoli M, Shiri A, Ebrahimpour Z, Rahimizadeh M. Clean heterocyclic synthesis in water: I2/KI catalyzed one-pot synthesis of quinazolin-4(3H)-ones. Chin Chem Lett. 2008; 19(12):1403-1406.
  • 24. Shang YH, Fan LY, Li XX, Liu MX. Y(OTf)3 catalyzed heterocyclic formation via aerobic oxygenation: An approach to dihydro quinazolinones and quinazolinones. Chin Chem Lett. 2015; 26(11):1355-1358.
  • 25. Fiorito S, Taddeo VA, Epifano F, Genovese S. Ultrasound-promoted synthesis of 4(3H)-quinazolines under Yb(OTf)3 catalysis. Org Chem. 2017; ii:68-75.
  • 26. Xie ZB, Zhang SG, Jiang GF, Sun DZ, Le ZG. The green synthesis of 2,3-dihydro quinazolin-4(1H)-ones via direct cyclocondensation reaction under catalyst-free conditions. Green Chem Lett Rev. 2015; 8(3-4):95-98.
  • 27. Zhang SG, Xie ZB, Liu LS, Liang M, Le ZG. Synthesis of 2,3-dihydroquinazolin-4(1H)-ones catalyzed by α-chymotrypsin. Chin Chem Lett. 2017; 28(1):101-104.
  • 28. Wang M, Zhang TT, Song ZG. Eco-friendly synthesis of 2-substituted-2,3-dihydro-4(1H)-quinazolinones in water. Chin Chem Lett. 2011; 22(4):427-430.
  • 29. Shaterian HR, Oveisi AR. PPA‐SiO2 as a Heterogeneous Catalyst for efficient synthesis of 2‐substituted‐1,2,3,4‐tetrahydro‐4‐quinazolinones under solvent‐free conditions. Chin J Chem. 2009; 27(12):2418-2422.
  • 30. Wang M, Gao JJ, Song ZG, Wang L. Synthesis of 2-substituted-2,3-dihydro-4(1H)-quinazolinones using sodium bisulfate as a catalyst by the grinding technique. Org Prep Proced Int. 2012; 44(2):159-163.
  • 31. Islam MS, Hamdan S, Rahman MR, Jusoh I, Ahmen AS. Dynamic Young’s modulus, morphological, and thermal stability of 5 tropical light hardwoods modified by benzene diazonium salt treatment. BioResources. 2011; 6(1):737-750.
  • 32. Sandeep PB, Nityanand DD, Prashant BS, Hemant SC. Efficient access to 2,3-dihydro quinazolin-4(1H)-ones by environmentally benign L-Proline nitrate as recyclable catalyst. Synlett. 2015; 26(18):2575-2577.
  • 33. Wang M, GAO J, Song Z, Wang L. Cerium(IV) ammonium nitrate catalyzed green synthesis of 2-substituted 2,3-dihydroquinazolin-4(1H)-ones using a grinding technique. Chem Heterocycl Compd. 2011; 47(7):851-855.
  • 34. Maleki A, Aghaei M, Ghamari N, Kamalzare M. Efficient synthesis of 2,3-dihydroquinazolin-4(1H)-ones in the presence of ferrite/chitosan as a green and reusable nanocatalyst. Int J Nanosci Nanotechnol. 2016; 12(4):215-222
  • 35. Murthy PVNS, Rambabu D, Krishna GR, Reddy CM, Prasad KRS, Rao MVB, Manojit, P. Amberlyst-15 mediated synthesis of 2-substituted 2,3-dihydroquinazolin-4(1H)-ones and their crystal structure analysis. Tetrahedron Lett. 2012; 53(7):863-867.
  • 36. Shaabani A, Maleki A, Mofakham H. Click Reaction: highly efficient synthesis of 2,3-dihydro quinazolin-4(1H)-ones. Synth Commun. 38(21):3751-3759.
  • 37. Rostami A, Tavakoli A. Sulfamic acid as a reusable and green catalyst for efficient and simple synthesis of 2-substituted-2,3-dihydroquinazolin-4(1H)-ones in water or methanol. Chin Chem Lett. 2011; 22(11):1317-1320.
  • 38. Karimi-Jaberi Z, Zarei L. Rapid synthesis of 2-substituted-2,3-dihydro-4(1H)-quinazolinones using boric acid or sodium dihydrogen phosphate under solvent-free conditions. S Afr J Chem. 2012; 65:36-38.

FeCl3/Egg shell: An Effective Catalytic System for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones at Room Temperature

Year 2017, Volume: 4 Issue: 3, 775 - 786, 31.07.2017
https://doi.org/10.18596/jotcsa.308593

Abstract

The FeCl3/eggshell has been a new and
efficient catalyst for the rapid and simple synthesis of 2,3-dihydroquinazolin-4-ones
in ethanol at room temperature. The present method has advantages of low cost,
mild reaction conditions, simple workup process, better recovery and
reusability of catalyst, excellent yields and environmentally friendly procedure.

References

  • 1. Padia JK, Field M, Hinton J, Meecham K, Pablo J, Pinnock R, Roth BD, Singh L, Suman-Chauhan N, Trivedi BK, Webdale, L. Novel nonpeptide CCK-B antagonists: design and development of quinazolinone derivatives as potent, selective, and orally active CCK-B antagonists. J Med Chem. 1998; 41(7):1042-1049.
  • 2. Xia Y, Yang ZY, Hour MJ, Kuo SC, Xia P, Bastow KF, Nakanishi Y, Nampoothiri P, Hackl T, Hamel E, Lee KH. Antitumor agents. Part 204: synthesis and biological evaluation of substituted 2-aryl quinazolinones. Bioorg Med Chem Lett. 2001; 11(9):1193-1196.
  • 3. Yadav MR, Shirude ST, Parmar A, Balaraman R, Giridhar R. Synthesis and anti-inflammatory activity of 2,3-diaryl-4(3H)-quinazolinones. Chem Heterocycl Compd. 2006; 42(8):1038-1045.
  • 4. Singh T, Sharma S, Srivastava VK, Kumar A. Synthesis, insecticidal and antimicrobial activities of some heterocyclic derivatives of quinazolinone. Indian J Chem B: Org Med Chem. 2006; 11:2558-2565.
  • 5. (a) Doyle LA, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 2003; 22(47):7340-7358. (b) Henderson EA, Bavetsias V, Theti DS, Wilson SC, Clauss R, Jackman AL. Targeting the α-folate receptor with cyclopenta[g]quinazoline-based inhibitors of thymidylate synthase. Bioorg Med Chem. 2006; 14(14):5020-5042.
  • 6. (a) Chien TC, Chen CS, Yu FH, Chern JW. Nucleosides XI. Synthesis and antiviral evaluation of 5′-alkylthio-5′-deoxy quinazolinone nucleoside derivatives as S-adenosyl-L-homocysteine analogs. Chem. Pharm. Bull. 2004; 52(12):1422-1426. (b) Herget, T, Freitag, M, Morbitzer, M, Kupfer, R, Stamminger, T, Marschall, M. Novel chemical class of pUL97 protein kinase-specific inhibitors with strong anticytomegaloviral activity. Antimicrob Agents Chemother. 2004; 48(11):4154-4162.
  • 7. (a) Waisser K, Gregor J, Dostál H, Kuneš J, Kubicová L, Klimešová V, Kaustová J. Influence of the replacement of the oxo function with the thioxo group on the antimycobacterial activity of 3-aryl-6,8-dichloro-2H-1,3-benzoxazine-2,4(3H)-diones and 3-arylquinazoline-2,4(1H,3H)-diones. Farmaco. 2001; 56(10):803-807. (b) Kuneš J, Bažant J, Pour M, Waisser K, Šlosárek M, Janota J. Quinazoline derivatives with antitubercular activity. Il Farmaco. 2000; 55(11):725-729.
  • 8. Aly MM, Mohamed YA, El-Bayouki KA, Basyouni WM, Abbas SY. Synthesis of some new 4(3H)-quinazolinone-2-carboxaldehyde thiosemicarbazones and their metal complexes and a study on their anticonvulsant, analgesic, cytotoxic and antimicrobial activities-Part-1. Eur J Med Chem. 2010; 45(8):3365-3373.
  • 9. Liverton NJ, Armstrong DJ, Claremon DA, Remy DC, Baldvin JJ, Lynch RJ, Zhang GX, Gould RJ. Nonpeptide glycoprotein IIb/IIIa inhibitors: substituted quinazolinediones and quinazolinones as potent fibrinogen receptor antagonists. Bioorg Med Chem Lett. 1998; 8(5):483-486.
  • 10. Murata K, Takano F, Fushiya S, Oshima Y. Enhancement of NO production in activated macrophages in vivo by an antimalarial crude drug, Dichroa febrifuga. J Nat Prod. 1998; 61(6):729-733.
  • 11. Hamidian H, Tikdari AM, Khabazzadeh H. Synthesis of new 4(3H)-quinazolinone derivatives using 5(4H)-oxazolones. Molecules. 2006; 11(5):377-382
  • 12. Labade VB, Shinde PV, Shingare MS. A facile and rapid access towards the synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Tetrahedron Lett. 2013; 54(43):5778-5780.
  • 13. Hour MJ, Huang LJ, Kuo SC, Xia Y, Bastow K, Nakanishi Y, Hamel E, Lee KH. 6-Alkylamino-and 2,3-Dihydro-3‘-methoxy-2-phenyl-4-quinazolinones and related compounds: their synthesis, cytotoxicity, and inhibition of tubulin polymerization. J Med Chem. 2000; 43(23):4479-4487.
  • 14. Shi D, Rong L, Wang J, Zhuang Q, Wang X, Hu H. Synthesis of quinazolin-4 (3H)-ones and 1, 2-dihydroquinazolin-4(3H)-ones with the aid of a low-valent titanium reagent. Tetrahedron Lett. 2003; 44(15):3199-3201.
  • 15. Abdel-Jalil RJ, Voelter W, Saeed M. A novel method for the synthesis of 4(3H)-quinazolinones. Tetrahedron Lett. 2004; 45(17):3475-3476.
  • 16. Chen J, Su W, Wu H, Liu M, Jin C. Eco-friendly synthesis of 2,3-dihydroquinazolin-4(1H)-ones in ionic liquids or ionic liquid-water without additional catalyst. Green Chem. 2007; 9(9):972-975.
  • 17. Chinigo GM, Paige M, Grindrod S, Hamel E, Dakshanamurthy S, Chruszcz M, Minor W, Milton L, Brown ML. Asymmetric synthesis of 2,3-dihydro-2-arylquinazolin-4-ones: methodology and application to a potent fluorescent tubulin inhibitor with anticancer activity. J Med Chem. 2008; 51(15):4620-4631.
  • 18. Safari J, Gandomi-Ravandi S. Efficient synthesis of 2-aryl-2,3-dihydroquinazolin-4(1H)-ones in the presence of nanocomposites under microwave irradiation. J Mol Catal A: Chem 2014;390:1-6.
  • 19. Parthasaradhi Y, Rakhi C, Suresh S, Tangenda SJ. Polyethylene glycol (PEG-400) as a medium for novel andefficient synthesis of 2-phenyl-2,3-dihydroquinazolin-4(1H)-one derivatives. Eur J Chem. 2013; 4(4):462-466.
  • 20. Abdollahi-Alibeik M, Shabani E. Nanocrystalline sulfated zirconia as an efficient solid acid catalyst for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones. J Iranian Chem Soc. 2014; 11(2):351-359.
  • 21. Cai G, Xu X, Li Z, Lu P, Weber WP. A one‐pot synthesis of 2‐aryl‐2,3‐dihydro‐4 (1H)‐ quinazolinones by use of samarium iodide. J Heterocycl Chem. 2002; 39(6):1271-1272.
  • 22. Davoodnia A, Allameh S, Fakhari AR, Tavakoli-Hoseini N. Highly efficient solvent-free synthesis of quinazolin-4(3H)-ones and 2,3-dihydroquinazolin-4(1H)-ones using tetrabutyl ammonium bromide as novel ionic liquid catalyst. Chin Chem Lett. 2010; 21(5):550-553.
  • 23. Bakavoli M, Shiri A, Ebrahimpour Z, Rahimizadeh M. Clean heterocyclic synthesis in water: I2/KI catalyzed one-pot synthesis of quinazolin-4(3H)-ones. Chin Chem Lett. 2008; 19(12):1403-1406.
  • 24. Shang YH, Fan LY, Li XX, Liu MX. Y(OTf)3 catalyzed heterocyclic formation via aerobic oxygenation: An approach to dihydro quinazolinones and quinazolinones. Chin Chem Lett. 2015; 26(11):1355-1358.
  • 25. Fiorito S, Taddeo VA, Epifano F, Genovese S. Ultrasound-promoted synthesis of 4(3H)-quinazolines under Yb(OTf)3 catalysis. Org Chem. 2017; ii:68-75.
  • 26. Xie ZB, Zhang SG, Jiang GF, Sun DZ, Le ZG. The green synthesis of 2,3-dihydro quinazolin-4(1H)-ones via direct cyclocondensation reaction under catalyst-free conditions. Green Chem Lett Rev. 2015; 8(3-4):95-98.
  • 27. Zhang SG, Xie ZB, Liu LS, Liang M, Le ZG. Synthesis of 2,3-dihydroquinazolin-4(1H)-ones catalyzed by α-chymotrypsin. Chin Chem Lett. 2017; 28(1):101-104.
  • 28. Wang M, Zhang TT, Song ZG. Eco-friendly synthesis of 2-substituted-2,3-dihydro-4(1H)-quinazolinones in water. Chin Chem Lett. 2011; 22(4):427-430.
  • 29. Shaterian HR, Oveisi AR. PPA‐SiO2 as a Heterogeneous Catalyst for efficient synthesis of 2‐substituted‐1,2,3,4‐tetrahydro‐4‐quinazolinones under solvent‐free conditions. Chin J Chem. 2009; 27(12):2418-2422.
  • 30. Wang M, Gao JJ, Song ZG, Wang L. Synthesis of 2-substituted-2,3-dihydro-4(1H)-quinazolinones using sodium bisulfate as a catalyst by the grinding technique. Org Prep Proced Int. 2012; 44(2):159-163.
  • 31. Islam MS, Hamdan S, Rahman MR, Jusoh I, Ahmen AS. Dynamic Young’s modulus, morphological, and thermal stability of 5 tropical light hardwoods modified by benzene diazonium salt treatment. BioResources. 2011; 6(1):737-750.
  • 32. Sandeep PB, Nityanand DD, Prashant BS, Hemant SC. Efficient access to 2,3-dihydro quinazolin-4(1H)-ones by environmentally benign L-Proline nitrate as recyclable catalyst. Synlett. 2015; 26(18):2575-2577.
  • 33. Wang M, GAO J, Song Z, Wang L. Cerium(IV) ammonium nitrate catalyzed green synthesis of 2-substituted 2,3-dihydroquinazolin-4(1H)-ones using a grinding technique. Chem Heterocycl Compd. 2011; 47(7):851-855.
  • 34. Maleki A, Aghaei M, Ghamari N, Kamalzare M. Efficient synthesis of 2,3-dihydroquinazolin-4(1H)-ones in the presence of ferrite/chitosan as a green and reusable nanocatalyst. Int J Nanosci Nanotechnol. 2016; 12(4):215-222
  • 35. Murthy PVNS, Rambabu D, Krishna GR, Reddy CM, Prasad KRS, Rao MVB, Manojit, P. Amberlyst-15 mediated synthesis of 2-substituted 2,3-dihydroquinazolin-4(1H)-ones and their crystal structure analysis. Tetrahedron Lett. 2012; 53(7):863-867.
  • 36. Shaabani A, Maleki A, Mofakham H. Click Reaction: highly efficient synthesis of 2,3-dihydro quinazolin-4(1H)-ones. Synth Commun. 38(21):3751-3759.
  • 37. Rostami A, Tavakoli A. Sulfamic acid as a reusable and green catalyst for efficient and simple synthesis of 2-substituted-2,3-dihydroquinazolin-4(1H)-ones in water or methanol. Chin Chem Lett. 2011; 22(11):1317-1320.
  • 38. Karimi-Jaberi Z, Zarei L. Rapid synthesis of 2-substituted-2,3-dihydro-4(1H)-quinazolinones using boric acid or sodium dihydrogen phosphate under solvent-free conditions. S Afr J Chem. 2012; 65:36-38.
There are 38 citations in total.

Details

Subjects Engineering, Chemical Engineering
Journal Section Articles
Authors

Zakaria Benzekri This is me

Houda Serrar This is me

Said Boukhris

Abdelaziz Souizi

Publication Date July 31, 2017
Submission Date April 24, 2017
Acceptance Date July 22, 2017
Published in Issue Year 2017 Volume: 4 Issue: 3

Cite

Vancouver Benzekri Z, Serrar H, Boukhris S, Souizi A. FeCl3/Egg shell: An Effective Catalytic System for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones at Room Temperature. JOTCSA. 2017;4(3):775-86.