Year 2018, Volume 5 , Issue 1, Pages 247 - 268 2017-09-01

THE LATEST ADVANCEMENTS IN THE ACYLATION REACTIONS VIA CROSS-DEHYDROGENATIVE COUPLING AND/OR METAL CATALYSTS

Soykan AĞAR [1] , Omer Tahir GUNKARA [2]


There are quite many examples in the scientific literature regarding the acylation reactions, especially the metal-catalyzed acylation reactions, metal-free acylation reactions, metal-catalyzed acylation via cross-dehydrogenative coupling (CDC) reactions and metal-free acylation via cross-dehydrogenative coupling (CDC) reactions. In this review paper, the most important examples of these domains were brought together and their mechanisms were exhibited in a clear, chronological format. Following these, the best example study towards green chemistry with a metal-free and high-yielding route was mentioned and discussed to demonstrate what has achieved in this field regarding the new acylation reaction mechanisms using the advantages of cross-dehydrogenative coupling (CDC) reactions. The most prominent studies regarding these domains have been examined thoroughly and the latest progress in this field was explained in detail.

Acylation, Cross-Dehydrogenative coupling (CDC) reactions, C-C bond formation, C-H bond activation, Metal Catalysts
  • 1. Hashimoto I, Kawaji T, Badea FD, Sawada T, Mataka S, Tashiro M, et al. Regioselectivity of Friedel-Crafts acylation of aromatic compounds with several cyclic anhydrides. Res Chem Intermediat. 1996;22(9):855-69.
  • 2. Freese U, Heinrich F, Roessner F. Acylation of aromatic compounds on H-Beta zeolites. Catal Today. 1999;49(1-3):237-44.
  • 3. Ma ZH, Zhang XL, Wang H, Han ZG, Zheng XZ, Lin J. Syntheses, structures and catalytic activity for Friedel-Crafts reactions of substituted indenyl rhenium carbonyl complexes. J Coord Chem. 2017;70(4):709-21.
  • 4. Yeung CS, Dong VM. Catalytic Dehydrogenative Cross-Coupling: Forming Carbon-Carbon Bonds by Oxidizing Two Carbon-Hydrogen Bonds. Chem Rev 2011;111(3):1215-1292.
  • 5. Beccalli EM, Broggini G, Martinelli M. Sottocornola S, C-C, C-O, C-N bond formation on sp(2) carbon by Pd(II)-catalyzed reactions involving oxidant agents. Chem Rev 2007;107(11):5318-5365.
  • 6. Huang H, Stewart T, Gutmann M, Ohhara T, Niimura N, Li YX, Wen JF, Bau R, Wong HNC. To Flip or Not To Flip? Assessing the Inversion Barrier of the Tetraphenylene Framework with Enantiopure 2,15-Dideuteriotetraphenylene and 2,7-Dimethyltetraphenylene. J Org Chem 2009;74(1):359-369.
  • 7. Ling CMS, Keita T, Qinghao C, Natalya P, Eric S, Jin-Quan Y. Remote Meta-C−H Activation Using a Pyridine-Based Template: Achieving Site-Selectivity via the Recognition of Distance and Geometry. ACS Cent. Sci. 2015;1:394−399.
  • 8. Lyons TW, Sanford MS. Palladium-Catalyzed Ligand-Directed C-H Functionalization Reactions. Chem Rev 2010;110(2):1147-1169.
  • 9. Li ZP, Li CJ. Catalytic allylic alkylation via the cross-dehydrogenative-coupling reaction between allylic sp(3) C-H and methylenic sp(3) C-H bonds. J Am Chem Soc 2006;128(1):56-57.
  • 10. Li XL, Hewgley JB, Mulrooney CA, Yang JM, Kozlowski MC. Enantioselective oxidative biaryl coupling reactions catalyzed by 1,5-diazadecalin metal complexes: Efficient formation of chiral functionalized BINOL derivatives. J Org Chem 2003;68(14):5500-5511.
  • 11. Guo XW, Pan SG, Liu JH, Li ZP. One-Pot Synthesis of Symmetric and Unsymmetric 1,1-Bis-indolylmethanes via Tandem Iron-Catalyzed C-H Bond Oxidation and C-O Bond Cleavage. J Org Chem 2009;74(22):8848-8851.
  • 12. Li CJ, Li Z. Green chemistry: The development of cross-dehydrogenative coupling (CDC) for chemical synthesis. Pure Appl. Chem. 2006;78:935–945.
  • 13. Li Z, Bohle DS, Li CJ. Cu-catalyzed cross-dehydrogenative coupling: A versatile strategy for C–C bond formations via the oxidative activation of sp3 C–H bonds. Proc. Natl. Acad. Sci. U. S. A. 2006;103:8928–8933.
  • 14. Beccalli EM, Broggini G, Martinelli M, Sottocornola S. C−C, C−O, C−N Bond Formation on sp2 Carbon by Pd(II)-Catalyzed Reactions Involving Oxidant Agents. Chem. Rev. 2007;107(11):5318–5365.
  • 15. Li CJ. Cross-Dehydrogenative Coupling (CDC): Exploring C−C Bond Formations beyond Functional Group Transformations. Acc. Chem. Res. 2009;42(2):335–344.
  • 16. Scheuermann CJ. Beyond Traditional Cross Couplings: The Scope of the Cross Dehydrogenative Coupling Reaction. Chem. Asian J. 2010;5:436–451.
  • 17. Yoo, WJ, Li CJ. Cross-Dehydrogenative Coupling Reactions of sp3-Hybridized C–H Bonds. Top. Curr. Chem. 2010;292:281–302.
  • 18. Yeung CS, Dong VM. Catalytic Dehydrogenative Cross-Coupling: Forming Carbon−Carbon Bonds by Oxidizing Two Carbon−Hydrogen Bonds. Chem. Rev. 2011;111(3):1215–1292.
  • 19. Cho SH, Kim JY, Kwak J, Chang S. Recent advances in the transition metal-catalyzed twofold oxidative C–H bond activation strategy for C–C and C–N bond formation. Chem. Soc. Rev. 2011;40(10):5068–5083.
  • 20. Sun CL, Li BJ, Shi ZJ. Direct C−H Transformation via Iron Catalysis. Chem. Rev. 2011;111(3):1293–1314.
  • 21. Zhang C, Tang C, Jiao N. Recent advances in copper-catalyzed dehydrogenative functionalization via a single electron transfer (SET) process. Chem. Soc. Rev. 2012;41(9):3464–3484.
  • 22. Song G, Wang F, Li X. C–C, C–O and C–N bond formation via rhodium(III)-catalyzed oxidative C–H activation. Chem. Soc. Rev. 2012;41:3651–3678.
  • 23. Hirano K, Miura M. Copper-mediated oxidative direct C–C (hetero)aromatic cross-coupling. Chem. Commun. 2012;48:10704–10714.
  • 24. Liu C, Liu D, Lei A. Recent Advances of Transition-Metal Catalyzed Radical Oxidative Cross-Couplings. Acc. Chem. Res. 2014;47(12):3459–3470.
  • 25 Girard SA, Knauber T, Li CJ. The Cross-Dehydrogenative Coupling of Csp3-H Bonds: A Versatile Strategy for C-C Bond Formations. Angew. Chem., Int. Ed. 2014;53:74–100.
  • 26. Samanta R, Matcha K, Antonchick AP. Metal-Free Oxidative Carbon-Heteroatom Bond Formation Through C–H Bond Functionalization. Eur. J. Org. Chem. 2013;26:5769–5804.
  • 27. Tang BX, Song RJ, Wu CY, Liu Y, Zhou MB, Wei WT, Deng G, Yin D, Li J. Copper-Catalyzed Intramolecular C H Oxidation/Acylation of Formyl-N-arylformamides Leading to Indoline-2,3-diones. J Am Chem Soc. 2010;132(26):8900-+.
  • 28. Jiang HL, Xie J, Lin AJ, Cheng YX, Zhu CJ. The Au(III)-catalyzed coupling reactions between alcohols and N-heterocycles via C-H bond activation. Rsc Adv. 2012;2(28):10496-8.
  • 29. Cheng K, Zhao BL, Qi CZ. Silver-catalyzed decarboxylative acylation of arylglyoxylic acids with arylboronic acids. Rsc Adv. 2014;4(89):48698-702.
  • 30. Kamitani M, Ito M, Itazaki M, Nakazawa H. Effective dehydrogenation of 2-pyridylmethanol derivatives catalyzed by an iron complex. Chem Commun (Camb). 2014;50(59):7941-4.
  • 31. Toh QY, McNally A, Vera S, Erdmann N, Gaunt MJ. Organocatalytic C-H bond arylation of aldehydes to bis-heteroaryl ketones. J Am Chem Soc. 2013;135(10):3772-5.
  • 32. Bao YS, Zhang DL, Jia ML, Bao ZRGT. Replacing Pd(OAc)(2) with supported palladium nanoparticles in ortho-directed CDC reactions of alkylbenzenes. Green Chem. 2016;18(7):2072-7.
  • 33. Kianmehr E, Pakbaznia A, Faghih N, Forournadi A. Metal-free chemo- and regioselective acylation of pyridine derivatives with alcohols in water. Tetrahedron. 2017;73(11):1407-12.
  • 34. Chen J, Wan M, Hua J, Sun Y, Lv Z, Li W, et al. TBHP/TFA mediated oxidative cross-dehydrogenative coupling of N-heterocycles with aldehydes. Org Biomol Chem. 2015;13(47):11561-6.
  • 35. Adib M, Rajai-Daryasarei S, Pashazadeh R, Tajik M, Mirzaei P. Regioselective transition metal-free acylation of coumarins via cross-dehydrogenative coupling reaction of coumarins and aldehydes. Tetrahedron Lett. 2016;57(33):3701-3705.
  • 36. Yuan JW, Yin QY, Yang LR, Mai WP, Mao P, Xiao YM, Qu LB. Iron-catalyzed regioselective direct coupling of aromatic aldehydes with coumarins leading to 3-aroyl coumarins. RSC Adv. 2015;5: 88258-88265.
  • 37. Zhao W, Xu L, Ding Y, Niu B, Xie P, Bian Z, Zhang D, Zhou A. Regioselective Coupling Reactions of Coumarins with Aldehydes or Di-tert-butyl Peroxide (DTBP) through a C(sp2)–H Functionalization Process. Eur. J. Org. Chem. 2016;2:325-330.
  • 38. Wang H, Zhou SL, Guo LN, Duan XH. Diacylation of coumarins by silver-catalyzed decarboxylative cross-coupling. Tetrahedron. 2015;71(4):, 630-636.
  • 39. Adib M, Pashazadeh R, Rajai-Daryasarei S, Kabirib R, Jahania M. Transition metal-free cross-dehydrogenative coupling acylation of coumarins by the K2S2O8/ Aliquat 336 catalytic system: a versatile strategy towards 4-aroylcoumarin derivatives. RSC Adv. 2016;6: 110656-110660.
  • 40. Starks CM. Phase-transfer catalysis. I. Heterogeneous reactions involving anion transfer by quaternary ammonium and phosphonium salts. J. Am. Chem. Soc. 1971;93(1):195-199.
  • 41. Grudpan K, Taylor CG. Use of Aliquat-336 for the extraction of cadmium from aqueous solutions. Analyst, 1984;109:585-588. 42. Mikkola JP, Virtanen P, Sjoholm R. Aliquat 336®—a versatile and affordable cation source for an entirely new family of hydrophobic ionic liquids. Green Chem. 2006;8:250-255.
Subjects Engineering, Engineering, Chemical
Published Date Winter
Journal Section REVIEW ARTICLES
Authors

Orcid: 0000-0002-9870-6882
Author: Soykan AĞAR
Institution: İSTANBUL TEKNİK ÜNİVERSİTESİ
Country: Turkey


Orcid: 0000-0003-3528-5045
Author: Omer Tahir GUNKARA
Institution: Yildiz Technical University
Country: Turkey


Dates

Application Date : September 15, 2017
Acceptance Date : December 25, 2017
Publication Date : September 1, 2017

Vancouver AĞAR S , GUNKARA O . THE LATEST ADVANCEMENTS IN THE ACYLATION REACTIONS VIA CROSS-DEHYDROGENATIVE COUPLING AND/OR METAL CATALYSTS. Journal of the Turkish Chemical Society Section A: Chemistry. 2017; 268-247.