Research Article
BibTex RIS Cite

Comparative Studies of Photophysicochemical Properties of Non-Peripherally Anisole/Thioanisole-Tetrasubstituted Gallium (III) Phthalocyanines Containing Oxygen/ Sulfur Bridge

Year 2018, Volume: 5 Issue: 1, 269 - 282, 01.09.2017
https://doi.org/10.18596/jotcsa.357551

Abstract



This work reports on the synthesis and characterization
of gallium (III) phthalocyanines (4-6)
which is non-peripherally tetra-substituted with anisole or thioanisole
functional groups containing  oxygen or sulfur
bridge. Confirmation of the
phthalocyanine structures performed with a combination of elemental analysis,
FTIR, 1H-NMR, UV-vis and MALDI-MS spectral data. Also,
investigated and discussed the effects of non-peripherally tetra-substitution
with different functional groups on the
photochemical (Singlet oxygen quantum yields and photodegradation quantum
yields) and photophysical properties (Fluorescence quantum yields and
flouresans behavior).
In every substituent, we obtained very similar singlet oxygen
quantum yields as 0.64 for (4), 0.56 for (5) and 0.65 for (6)
suggesting its potential as photosensitizer in PDT treatment.



References

  • [1] N.B. McKeown, Phthalocyanine materials: Synthesis, structure and function, Cambridge University Press, Cambridge, 1998.
  • [2] E. Güzel, A. Günsel, A.T. Bilgiçli, G. Yaşa Atmaca, A. Erdoğmuş, M.N. Yarasir, Synthesis and photophysicochemical properties of novel thiadiazolesubstituted zinc (II), gallium (III) and silicon (IV) phthalocyanines for photodynamic therapy, Inorganica Chimica Acta 467 (2017) 169-176.
  • [3] A. Günsel, E. Güzel, A.T. Bilgiçli, G. Yaşa Atmaca, A. Erdoğmuş, M.N. Yarasir, Synthesis and investigation of photophysicochemical properties of novel ketone-substituted gallium (III) and indium (III) phthalocyanines with high singlet oxygen yield for photodynamic therapy, Journal of Luminescence 192 (2017) 888-892.
  • [4] A. Günsel, E. Güzel, A.T. Bilgiçli, İ. Şişman, M.N. Yarasir, Synthesis of non-peripheral thioanisole-substituted phthalocyanines: Photophysical, electrochemical, photovoltaic, and sensing properties, Journal of Photochemistry and Photobiology A: Chemistry 348 (2017) 57-67.
  • [5] A. Günsel, M. Kandaz, F. Yakuphanoglu, W.A. Farooq, Extraction of electronic parameters of organic diode fabricated with NIR absorbing functional manganase phthalocyanine organic semiconductor, Synthetic Metals 161 (2011) 1477-1482.
  • [6] Y.S. Krasnov, G.Y. Kolbasov, I.N. Tretyakova, L.A. Tomachynska, V.Y. Chernii, S.V. Volkov, Dynamics of redox processes and electrochromism of films of zirconium (IV) phthalocyanines with out-of-plane β-dicarbonyl ligands, Solid State Ionics 180 (2009) 928-933.
  • [7] G. De La Torre, P. Vazquez, F. Agullo-Lopez, T. Torres, Phthalocyanines and related compounds:organic targets for nonlinear optical applications, J. Mater. Chem. 8 (1998) 1671-1683.
  • [8] T.V. Basova, A. Hassan, M. Durmuş, A.G. Gürek, V. Ahsen, Orientation of the liquid crystalline nickel phthalocyanine films confined between electrodes, Synth. Met. 161 (2011) 1996-2000.
  • [9] A. Günsel, M.N. Yaraşir, M. Kandaz, A. Koca, Synthesis, H- or J-type aggregations, electrochemistry and in situ spectroelectrochemistry of metal ion sensing lead(II) phthalocyanines, Polyhedron 29 (2010) 3394-3404.
  • [10] T. Komatsu, K. Ohta, T. Fujimoto, I. Yamamoto, Chromic materials. Part 1.—Liquid-crystalline behaviour and electrochromism in bis(octakis-n-alkylphthalocyaninato)lutetium(III) complexes, Journal of Materials Chemistry 4 (1994)533-536.
  • [11] A. Tillo, M. Stolarska, M. Kryjewski, L. Popenda, L. Sobotta, S. Jurga, J. Mielcarek, T. Goslinski, Phthalocyanines with bulky substituents at non-peripheral positions e Synthesis and physico-chemical properties, Dyes and Pigments 127 (2016) 110-115.
  • [12] L. Sobotta, M. Wierzchowski, M. Mierzwicki, Z. Gdanie, J. Mielcarek, L. Persoons, T. Goslinski, J. Balzarini, Photochemical studies and nanomolar photodynamic activities of phthalocyanines functionalized with 1,4,7-trioxanonyl moieties at their non-peripheral positions, Journal of Inorganic Biochemistry 155 (2016) 76-81.
  • [13] M. Aydın, E.H. Alıcı, A.T. Bilgiçli, M.N. Yarasir, G. Arabaci, Synthesis, characterization, aggregation, fluorescence and antioxidant properties of bearing (4-(methylthio)phenylthio) tetra substituted phthalocyanines, Inorganica Chimica Acta 464 (2017) 1-10.
  • [14] O. Benavente-Garcia, J. Castillo, F.R. Marin, A. Ortuno, J.A. Del Rio, Uses and properties of citrus flavonoids. Journal of Agricultural and Food Chemistry, 45 (1997) 4505-4515.
  • [15] E. Middleton, C. Kandaswami, T.C. Theoharides, The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease and cancer. Pharmacological Reviews, 52 (2000) 673-751.
  • [16] C.A. Olivati, A.J. Riul, D.T. Balogh, O.J. Oliveira, M. Ferreira, Detection of phenolic compounds using impedance spectroscopy measurements. Bioprocess Biosyst Eng 32 (2009) 41-46 .
  • [17] R. Allison, K. Moghissi, G. Downie, K. Dixon, Photodynamic therapy (PDT) for lung cancer, Photodiagn. Photodyn. 8 (2011) 231-239.
  • [18] I. Okura, Photosensitization of porphyrins and phthalocyanines, Gordon and Breach Science Publishers, Amsterdam, 2001.
  • [19] B. Qinglong, Z. Chunhua, C. Chuanhui, L. Wancheng, W. Jin, D. Guotong, Synthesis, photophysical properties and near ınfrared electroluminescence of 1(4),8(11),15(18),22(25)-tetra-(methoxy-phenoxy) phthalocyanine, Chin. J. Chem. 2012, 30, 689-694.
  • [20] A. Günsel, E. Güzel, A.T. Bilgiçli, I. Şişman, M.N. Yarasir, Synthesis of non-peripheral thioanisole-substituted phthalocyanines: Photophysical, electrochemical, photovoltaic, and sensing properties, Journal of Photochemistry and Photobiology A: Chemistry 348 (2017) 57-67.
  • [21] E. Güzel, Ş. Çetin, A. Günsel, A. T. Bilgiçli, İ. Şisman, M.N. Yarasir, Comparative studies of photophysical and electrochemical properties of sulfur-containing substituted metal-free and metallophthalocyanines, Res Chem Intermed (2017) 1-19.
  • [22] G.Y. Atmaca, C. Dizman, T. Eren, A. Erdoğmuş, Novel axially carborane-cage substituted silicon phthalocyanine photosensitizer; synthesis, characterization and photophysicochemical properties, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 137 (2015) 244-249.
  • [23] P. Sen, G.Y. Atmaca, A. Erdogmus, N. Deger, H. Genc, Y.Atalay, S.Z. Yildiz, The Synthesis, Characterization, Crystal Structure and Photophysical Properties of a New Meso-BODIPY Substituted Phthalonitrile, J Fluorescein 25 (2015) 1225-1234.
  • [24] E. Güzel, G.Y. Atmaca, A. Erdoğmuş, M. B. Koçak, Novel sulfonated hydrophilic indium (III) and gallium (III) phthalocyanine photosensitizers: Preparation and investigation of photophysicochemical properties, Journal of Coordination Chemistry, 70:15 (2017) 2659-2670.
  • [25] G.Yaşa, A. Erdoğmus, A.L. Uğur, M.K. Şener, U. Avciata, T. Nyokong, Photophysical and photochemical properties of novel phthalocyanines bearing non-peripherally substituted mercaptoquinoline moiety, J. Porphyr. Phthalocyanine 16 (2012) 845-854.
  • [26] E. Kirbac, G.Y. Atmaca, A. Erdogmus, Novel highly soluble fluoro, chloro, bromo-phenoxy-phenoxy substituted zinc phthalocyanines; synthesis, characterization and photophysicochemical properties, J. Organom. Chem. 752 (2014) 115-122.
  • [27] O. Tayfuroglu, G.Y. Atmaca, A. Erdogmus, Novel peripherally substituted zinc phthalocyanine: synthesis, characterization, investigation of photophysicochemical properties and theoretical studyJournal of Coordination Chemistry, 70 (2017) 3095-3109.
  • [28] N. Kobayashi, N. Sasaki, Y. Higashi, T. Osa, Regiospecific and nonlinear substituent effects on the electronic and fluorescence spectra of phthalocyanines, Inorg. Chem. 34 (1995) 1636-1637.
  • [29] I. Özçeşmeci, A.K. Burat, Z.A. Bayır, Synthesis and photophysical properties of novel unsymmetrical metal-free and metallophthalocyanines, J. Organomet. Chem. 750 (2014) 125-131.
Year 2018, Volume: 5 Issue: 1, 269 - 282, 01.09.2017
https://doi.org/10.18596/jotcsa.357551

Abstract

References

  • [1] N.B. McKeown, Phthalocyanine materials: Synthesis, structure and function, Cambridge University Press, Cambridge, 1998.
  • [2] E. Güzel, A. Günsel, A.T. Bilgiçli, G. Yaşa Atmaca, A. Erdoğmuş, M.N. Yarasir, Synthesis and photophysicochemical properties of novel thiadiazolesubstituted zinc (II), gallium (III) and silicon (IV) phthalocyanines for photodynamic therapy, Inorganica Chimica Acta 467 (2017) 169-176.
  • [3] A. Günsel, E. Güzel, A.T. Bilgiçli, G. Yaşa Atmaca, A. Erdoğmuş, M.N. Yarasir, Synthesis and investigation of photophysicochemical properties of novel ketone-substituted gallium (III) and indium (III) phthalocyanines with high singlet oxygen yield for photodynamic therapy, Journal of Luminescence 192 (2017) 888-892.
  • [4] A. Günsel, E. Güzel, A.T. Bilgiçli, İ. Şişman, M.N. Yarasir, Synthesis of non-peripheral thioanisole-substituted phthalocyanines: Photophysical, electrochemical, photovoltaic, and sensing properties, Journal of Photochemistry and Photobiology A: Chemistry 348 (2017) 57-67.
  • [5] A. Günsel, M. Kandaz, F. Yakuphanoglu, W.A. Farooq, Extraction of electronic parameters of organic diode fabricated with NIR absorbing functional manganase phthalocyanine organic semiconductor, Synthetic Metals 161 (2011) 1477-1482.
  • [6] Y.S. Krasnov, G.Y. Kolbasov, I.N. Tretyakova, L.A. Tomachynska, V.Y. Chernii, S.V. Volkov, Dynamics of redox processes and electrochromism of films of zirconium (IV) phthalocyanines with out-of-plane β-dicarbonyl ligands, Solid State Ionics 180 (2009) 928-933.
  • [7] G. De La Torre, P. Vazquez, F. Agullo-Lopez, T. Torres, Phthalocyanines and related compounds:organic targets for nonlinear optical applications, J. Mater. Chem. 8 (1998) 1671-1683.
  • [8] T.V. Basova, A. Hassan, M. Durmuş, A.G. Gürek, V. Ahsen, Orientation of the liquid crystalline nickel phthalocyanine films confined between electrodes, Synth. Met. 161 (2011) 1996-2000.
  • [9] A. Günsel, M.N. Yaraşir, M. Kandaz, A. Koca, Synthesis, H- or J-type aggregations, electrochemistry and in situ spectroelectrochemistry of metal ion sensing lead(II) phthalocyanines, Polyhedron 29 (2010) 3394-3404.
  • [10] T. Komatsu, K. Ohta, T. Fujimoto, I. Yamamoto, Chromic materials. Part 1.—Liquid-crystalline behaviour and electrochromism in bis(octakis-n-alkylphthalocyaninato)lutetium(III) complexes, Journal of Materials Chemistry 4 (1994)533-536.
  • [11] A. Tillo, M. Stolarska, M. Kryjewski, L. Popenda, L. Sobotta, S. Jurga, J. Mielcarek, T. Goslinski, Phthalocyanines with bulky substituents at non-peripheral positions e Synthesis and physico-chemical properties, Dyes and Pigments 127 (2016) 110-115.
  • [12] L. Sobotta, M. Wierzchowski, M. Mierzwicki, Z. Gdanie, J. Mielcarek, L. Persoons, T. Goslinski, J. Balzarini, Photochemical studies and nanomolar photodynamic activities of phthalocyanines functionalized with 1,4,7-trioxanonyl moieties at their non-peripheral positions, Journal of Inorganic Biochemistry 155 (2016) 76-81.
  • [13] M. Aydın, E.H. Alıcı, A.T. Bilgiçli, M.N. Yarasir, G. Arabaci, Synthesis, characterization, aggregation, fluorescence and antioxidant properties of bearing (4-(methylthio)phenylthio) tetra substituted phthalocyanines, Inorganica Chimica Acta 464 (2017) 1-10.
  • [14] O. Benavente-Garcia, J. Castillo, F.R. Marin, A. Ortuno, J.A. Del Rio, Uses and properties of citrus flavonoids. Journal of Agricultural and Food Chemistry, 45 (1997) 4505-4515.
  • [15] E. Middleton, C. Kandaswami, T.C. Theoharides, The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease and cancer. Pharmacological Reviews, 52 (2000) 673-751.
  • [16] C.A. Olivati, A.J. Riul, D.T. Balogh, O.J. Oliveira, M. Ferreira, Detection of phenolic compounds using impedance spectroscopy measurements. Bioprocess Biosyst Eng 32 (2009) 41-46 .
  • [17] R. Allison, K. Moghissi, G. Downie, K. Dixon, Photodynamic therapy (PDT) for lung cancer, Photodiagn. Photodyn. 8 (2011) 231-239.
  • [18] I. Okura, Photosensitization of porphyrins and phthalocyanines, Gordon and Breach Science Publishers, Amsterdam, 2001.
  • [19] B. Qinglong, Z. Chunhua, C. Chuanhui, L. Wancheng, W. Jin, D. Guotong, Synthesis, photophysical properties and near ınfrared electroluminescence of 1(4),8(11),15(18),22(25)-tetra-(methoxy-phenoxy) phthalocyanine, Chin. J. Chem. 2012, 30, 689-694.
  • [20] A. Günsel, E. Güzel, A.T. Bilgiçli, I. Şişman, M.N. Yarasir, Synthesis of non-peripheral thioanisole-substituted phthalocyanines: Photophysical, electrochemical, photovoltaic, and sensing properties, Journal of Photochemistry and Photobiology A: Chemistry 348 (2017) 57-67.
  • [21] E. Güzel, Ş. Çetin, A. Günsel, A. T. Bilgiçli, İ. Şisman, M.N. Yarasir, Comparative studies of photophysical and electrochemical properties of sulfur-containing substituted metal-free and metallophthalocyanines, Res Chem Intermed (2017) 1-19.
  • [22] G.Y. Atmaca, C. Dizman, T. Eren, A. Erdoğmuş, Novel axially carborane-cage substituted silicon phthalocyanine photosensitizer; synthesis, characterization and photophysicochemical properties, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 137 (2015) 244-249.
  • [23] P. Sen, G.Y. Atmaca, A. Erdogmus, N. Deger, H. Genc, Y.Atalay, S.Z. Yildiz, The Synthesis, Characterization, Crystal Structure and Photophysical Properties of a New Meso-BODIPY Substituted Phthalonitrile, J Fluorescein 25 (2015) 1225-1234.
  • [24] E. Güzel, G.Y. Atmaca, A. Erdoğmuş, M. B. Koçak, Novel sulfonated hydrophilic indium (III) and gallium (III) phthalocyanine photosensitizers: Preparation and investigation of photophysicochemical properties, Journal of Coordination Chemistry, 70:15 (2017) 2659-2670.
  • [25] G.Yaşa, A. Erdoğmus, A.L. Uğur, M.K. Şener, U. Avciata, T. Nyokong, Photophysical and photochemical properties of novel phthalocyanines bearing non-peripherally substituted mercaptoquinoline moiety, J. Porphyr. Phthalocyanine 16 (2012) 845-854.
  • [26] E. Kirbac, G.Y. Atmaca, A. Erdogmus, Novel highly soluble fluoro, chloro, bromo-phenoxy-phenoxy substituted zinc phthalocyanines; synthesis, characterization and photophysicochemical properties, J. Organom. Chem. 752 (2014) 115-122.
  • [27] O. Tayfuroglu, G.Y. Atmaca, A. Erdogmus, Novel peripherally substituted zinc phthalocyanine: synthesis, characterization, investigation of photophysicochemical properties and theoretical studyJournal of Coordination Chemistry, 70 (2017) 3095-3109.
  • [28] N. Kobayashi, N. Sasaki, Y. Higashi, T. Osa, Regiospecific and nonlinear substituent effects on the electronic and fluorescence spectra of phthalocyanines, Inorg. Chem. 34 (1995) 1636-1637.
  • [29] I. Özçeşmeci, A.K. Burat, Z.A. Bayır, Synthesis and photophysical properties of novel unsymmetrical metal-free and metallophthalocyanines, J. Organomet. Chem. 750 (2014) 125-131.
There are 29 citations in total.

Details

Subjects Engineering, Chemical Engineering
Journal Section Articles
Authors

Armağan Günsel

Publication Date September 1, 2017
Submission Date November 24, 2017
Acceptance Date December 28, 2017
Published in Issue Year 2018 Volume: 5 Issue: 1

Cite

Vancouver Günsel A. Comparative Studies of Photophysicochemical Properties of Non-Peripherally Anisole/Thioanisole-Tetrasubstituted Gallium (III) Phthalocyanines Containing Oxygen/ Sulfur Bridge. JOTCSA. 2017;5(1):269-82.