Research Article
BibTex RIS Cite

Electrochemical oxidation pathway of the anti-cancer agent dasatinib using disposable pencil graphite electrode and its adsorptive stripping voltammetric determination in biological samples

Year 2018, Volume: 5 Issue: 2, 381 - 392, 01.01.2018
https://doi.org/10.18596/jotcsa.345238

Abstract

The present study describes the
use of pencil graphite electrode (PGE) for the investigation of
electro-oxidation mechanism and voltammetric stripping determination of
dasatinib (DST) in Britton-Robinson buffer solution (BR). Relating to cyclic
voltammetric studies, an irreversible oxidation signal was obtained at about
1.0 V. The oxidation electrode process is adsorption-controlled and
pH-dependent. For quantitative determination of DST, square wave adsorptive
stripping voltammetry (AdsSWV) was employed in BR of pH 3.0. The oxidation peak
current varies linearly with the DST concentration in the range of 0.0092 – 1.0
µM. Dedection (LOD)
and quantification (LOQ) values are founded as 0.0028
µM and 0.0092 µM, respectively. The developed
AdsSWV method based on disposible and cheap PGE was applied successfuly to the real
urine samples and the recovery results are given in the range of 97.94% to
100.82%. 

References

  • 1. Das J, Chen P, Norris D, Padmanabha R, Lin J, Moquin RV and Pang S. 2-Aminothiazole as a novel kinase inhibitor template. Structure− activity relationship studies toward the discovery of N-(2-chloro-6-methylphenyl)-2-[[6-[4-(2-hydroxyethyl)-1-piperazinyl)]-2-methyl-4-pyrimidinyl] amino)]-1, 3-thiazole-5-carboxamide (dasatinib, BMS-354825) as a potent pan-Src kinase inhibitor. Journal of medicinal chemistry 2006; 49(23):6819-6832.
  • 2. Montero JC, Seoane S. Ocaña A and Pandiella A. Inhibition of SRC family kinases and receptor tyrosine kinases by dasatinib: possible combinations in solid tumors. Clinical cancer research, 2011; 17(17):5546-5552.
  • 3. Steinberg, M. Dasatinib: A tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia and philadelphia chromosome—positive acute lymphoblastic leukemia. Clinical therapeutics 2007; 29(11):2289-2308.
  • 4. Tokarski JS, Newitt JA, Chang CYJ, Cheng JD, Wittekind M, Kiefer SE and Xie D. The structure of Dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. Cancer research 2006; 66(11):5790-5797.
  • 5. Vandyke K, Fitter S and Zannettino ACW. The tyrosine kinase inhibitor dasatinib (SPRYCEL) inhibits chondrocyte activity and proliferation. Blood cancer journal 2011; 1(2), e2.
  • 6. Lankheet NA, Hillebrand MJ, Rosing H, Schellens JH, Beijnen JH and Huitema AD. Method development and validation for the quantification of dasatinib, erlotinib, gefitinib, imatinib, lapatinib, nilotinib, sorafenib and sunitinib in human plasma by liquid chromatography coupled with tandem mass spectrometry. Biomedical Chromatography 2013; 27(4):466-476.
  • 7. Kralj E, Trontelj J, Pajič T and Kristl A. Simultaneous measurement of imatinib, nilotinib and dasatinib in dried blood spot by ultra high performance liquid chromatography tandem mass spectrometry. Journal of Chromatography B 2012; 903:150-156.
  • 8. De Francia S, D’Avolio A, De Martino F, Pirro E, Baietto L, Siccardi M and Di Perri G. New HPLC–MS method for the simultaneous quantification of the antileukemia drugs imatinib, dasatinib, and nilotinib in human plasma. Journal of Chromatography B 2009; 877(18), 1721-1726.
  • 9. Hsieh Y, Galviz G, Zhou Q and Duncan C. Hydrophilic interaction liquid chromatography/tandem mass spectrometry for the simultaneous determination of dasatinib, imatinib and nilotinib in mouse plasma. Rapid Communications in Mass Spectrometry 2009; 23(9); 1364-1370.
  • 10. Roche S, McMahon G, Clynes M and O’Connor R. Development of a high-performance liquid chromatographic–mass spectrometric method for the determination of cellular levels of the tyrosine kinase inhibitors lapatinib and dasatinib. Journal of Chromatography B 2009; 877(31):3982-3990.
  • 11. Vadia N and Rajput S. Development of colorimetric method for determination of dasatinib in bulk and in tablet formulation. International Journal of Pharmacy and Pharmaceutical Sciences 2011; 3(2):188-190.
  • 12. Tığ GA, Günendi G and Pekyardımcı Ş. A selective sensor based on Au nanoparticles-graphene oxide-poly (2, 6-pyridinedicarboxylic acid) composite for simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid. Journal of Applied Electrochemistry 2017; 47(5):607-618.
  • 13. Pekin M, Bayraktepe DE and Yazan Z. Electrochemical sensor based on a sepiolite clay nanoparticle-based electrochemical sensor for ascorbic acid detection in real-life samples. Ionics 2017; 1-9.
  • 14. Gao W, Song J and Wu N. Voltammetric behavior and square-wave voltammetric determination of trepibutone at a pencil graphite electrode. Journal of Electroanalytical Chemistry 2005; 576(1):1-7.
  • 15. Jesus CS and Diculescu VC. Redox mechanism, spectrophotometrical characterisation and voltammetric determination in serum samples of kinases inhibitor and anticancer drug dasatinib. Journal of Electroanalytical Chemistry 2015; 752:47-53.
  • 16. Karimi-Maleh H, Shojaei AF, Tabatabaeian K, Karimi F. Shakeri S and Moradi R. Simultaneous determination of 6-mercaptopruine, 6-thioguanine and dasatinib as three important anticancer drugs using nanostructure voltammetric sensor employing Pt/MWCNTs and 1-butyl-3-methylimidazolium hexafluoro phosphate. Biosensors and Bioelectronics 2016; 86:879-884.
  • 17. Zare HR, Rajabzadeh N, Nasirizadeh N and Ardakani MM. Voltammetric studies of an oracet blue modified glassy carbon electrode and its application for the simultaneous determination of dopamine, ascorbic acid and uric acid. Journal of Electroanalytical Chemistry 2006; 589(1):60-69.
  • 18. Bayraktepe DE, Yazan Z and Polat K. Sensitive and selective voltammetric determination of anti˗ cancer agent shikonin on sepiolite clay/TiO 2 nanoparticle/MWCNTs composite carbon paste sensor and investigation of its electro˗ oxidation mechanism. Journal of Electroanalytical Chemistry 2016; 780:38-45.
  • 19. Wang, J. Analytical electrochemistry. John Wiley & Sons, 2006.
Year 2018, Volume: 5 Issue: 2, 381 - 392, 01.01.2018
https://doi.org/10.18596/jotcsa.345238

Abstract

References

  • 1. Das J, Chen P, Norris D, Padmanabha R, Lin J, Moquin RV and Pang S. 2-Aminothiazole as a novel kinase inhibitor template. Structure− activity relationship studies toward the discovery of N-(2-chloro-6-methylphenyl)-2-[[6-[4-(2-hydroxyethyl)-1-piperazinyl)]-2-methyl-4-pyrimidinyl] amino)]-1, 3-thiazole-5-carboxamide (dasatinib, BMS-354825) as a potent pan-Src kinase inhibitor. Journal of medicinal chemistry 2006; 49(23):6819-6832.
  • 2. Montero JC, Seoane S. Ocaña A and Pandiella A. Inhibition of SRC family kinases and receptor tyrosine kinases by dasatinib: possible combinations in solid tumors. Clinical cancer research, 2011; 17(17):5546-5552.
  • 3. Steinberg, M. Dasatinib: A tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia and philadelphia chromosome—positive acute lymphoblastic leukemia. Clinical therapeutics 2007; 29(11):2289-2308.
  • 4. Tokarski JS, Newitt JA, Chang CYJ, Cheng JD, Wittekind M, Kiefer SE and Xie D. The structure of Dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. Cancer research 2006; 66(11):5790-5797.
  • 5. Vandyke K, Fitter S and Zannettino ACW. The tyrosine kinase inhibitor dasatinib (SPRYCEL) inhibits chondrocyte activity and proliferation. Blood cancer journal 2011; 1(2), e2.
  • 6. Lankheet NA, Hillebrand MJ, Rosing H, Schellens JH, Beijnen JH and Huitema AD. Method development and validation for the quantification of dasatinib, erlotinib, gefitinib, imatinib, lapatinib, nilotinib, sorafenib and sunitinib in human plasma by liquid chromatography coupled with tandem mass spectrometry. Biomedical Chromatography 2013; 27(4):466-476.
  • 7. Kralj E, Trontelj J, Pajič T and Kristl A. Simultaneous measurement of imatinib, nilotinib and dasatinib in dried blood spot by ultra high performance liquid chromatography tandem mass spectrometry. Journal of Chromatography B 2012; 903:150-156.
  • 8. De Francia S, D’Avolio A, De Martino F, Pirro E, Baietto L, Siccardi M and Di Perri G. New HPLC–MS method for the simultaneous quantification of the antileukemia drugs imatinib, dasatinib, and nilotinib in human plasma. Journal of Chromatography B 2009; 877(18), 1721-1726.
  • 9. Hsieh Y, Galviz G, Zhou Q and Duncan C. Hydrophilic interaction liquid chromatography/tandem mass spectrometry for the simultaneous determination of dasatinib, imatinib and nilotinib in mouse plasma. Rapid Communications in Mass Spectrometry 2009; 23(9); 1364-1370.
  • 10. Roche S, McMahon G, Clynes M and O’Connor R. Development of a high-performance liquid chromatographic–mass spectrometric method for the determination of cellular levels of the tyrosine kinase inhibitors lapatinib and dasatinib. Journal of Chromatography B 2009; 877(31):3982-3990.
  • 11. Vadia N and Rajput S. Development of colorimetric method for determination of dasatinib in bulk and in tablet formulation. International Journal of Pharmacy and Pharmaceutical Sciences 2011; 3(2):188-190.
  • 12. Tığ GA, Günendi G and Pekyardımcı Ş. A selective sensor based on Au nanoparticles-graphene oxide-poly (2, 6-pyridinedicarboxylic acid) composite for simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid. Journal of Applied Electrochemistry 2017; 47(5):607-618.
  • 13. Pekin M, Bayraktepe DE and Yazan Z. Electrochemical sensor based on a sepiolite clay nanoparticle-based electrochemical sensor for ascorbic acid detection in real-life samples. Ionics 2017; 1-9.
  • 14. Gao W, Song J and Wu N. Voltammetric behavior and square-wave voltammetric determination of trepibutone at a pencil graphite electrode. Journal of Electroanalytical Chemistry 2005; 576(1):1-7.
  • 15. Jesus CS and Diculescu VC. Redox mechanism, spectrophotometrical characterisation and voltammetric determination in serum samples of kinases inhibitor and anticancer drug dasatinib. Journal of Electroanalytical Chemistry 2015; 752:47-53.
  • 16. Karimi-Maleh H, Shojaei AF, Tabatabaeian K, Karimi F. Shakeri S and Moradi R. Simultaneous determination of 6-mercaptopruine, 6-thioguanine and dasatinib as three important anticancer drugs using nanostructure voltammetric sensor employing Pt/MWCNTs and 1-butyl-3-methylimidazolium hexafluoro phosphate. Biosensors and Bioelectronics 2016; 86:879-884.
  • 17. Zare HR, Rajabzadeh N, Nasirizadeh N and Ardakani MM. Voltammetric studies of an oracet blue modified glassy carbon electrode and its application for the simultaneous determination of dopamine, ascorbic acid and uric acid. Journal of Electroanalytical Chemistry 2006; 589(1):60-69.
  • 18. Bayraktepe DE, Yazan Z and Polat K. Sensitive and selective voltammetric determination of anti˗ cancer agent shikonin on sepiolite clay/TiO 2 nanoparticle/MWCNTs composite carbon paste sensor and investigation of its electro˗ oxidation mechanism. Journal of Electroanalytical Chemistry 2016; 780:38-45.
  • 19. Wang, J. Analytical electrochemistry. John Wiley & Sons, 2006.
There are 19 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Articles
Authors

Dilek Eskiköy Bayraktepe

Kamran Polat

Zehra Yazan

Publication Date January 1, 2018
Submission Date October 19, 2017
Acceptance Date February 17, 2018
Published in Issue Year 2018 Volume: 5 Issue: 2

Cite

Vancouver Eskiköy Bayraktepe D, Polat K, Yazan Z. Electrochemical oxidation pathway of the anti-cancer agent dasatinib using disposable pencil graphite electrode and its adsorptive stripping voltammetric determination in biological samples. JOTCSA. 2018;5(2):381-92.

Cited By