Research Article
BibTex RIS Cite

Syntheses and spectroscopic investigations of 2-pyridyl(N/N)spirocyclotriphosphazenes

Year 2018, Volume: 5 Issue: 2, 621 - 634, 01.01.2018
https://doi.org/10.18596/jotcsa.379971

Abstract

The Cl substitution reaction of N3P3Cl6
(1) with
N-(2-pyridyl)-methyl-N'-methylpropane-1,3-diamine
(2)
afforded the partly substituted 2-pyridyl(N/N)spirocyclotriphosphazene
(3) (with a yield of 57%)
in dry THF.
When the Cl replacement reactions of 2 carried
out
with
excess pyrrolidine, morpholine and 1,4-dioxa-8-azaspiro[4,5]decane (DASD),
the corresponding 2-pyridyl(N/N)spirotetrapyrrolidino (3a),
tetramorpholino (3b) and tetra(
1,4-dioxa-8-azaspiro[4,5]decano) (3c) cyclotriphosphazenes were prepared in moderate
yields.
The structures of four cyclotriphosphazene
derivatives were elucidated by the
elemental
analyses,
Fourier transform infrared (FTIR),
heteronuclear
mass spectrometry (ESI-MS), heteronuclear multiple-bond
correlation (HMBC), single quantum coherence (HSQC), 1H, 13C,
and 31P NMR techniques.

References

  • 1. Chandrasekhar V, Narayanan RS. Phosphazenes. Organophosphorus Chem. 2017 Mar; 46: 342-417, Royal Sciety of Chemistry (RSC Publishing).
  • 2. Stewart FF. Phosphazenes. Organophosphorus Chem. 2015 Apr; 44: 397–430, Royal Sciety of Chemistry (RSC Publishing).
  • 3. Chandrasekhar V, Narayanan RS. Phosphazenes. Organophosphorus Chem. 2016 Mar; 45: 375-437, Royal Sciety of Chemistry (RSC Publishing).
  • 4. Medjdoub L, Mohammed B. New method for nucleophilic substitution on hexachlorocyclotriphosphazene by allyamine using an algerian proton exchanged montmorillonite clay (maghnite-H+) as a green solid catalyst. Bull. Chem. React. Eng.&Catal. 2016 Aug; 11: 151-160.
  • 5. Egemen G, Hayvalı M, Kılıç Z, Solak AO, Üstündağ Z. Phosphorus-Nitrogen Compounds. Part 17. The Synthesis, Spectral and Electrochemical Investigations of Porphyrinophosphazenes. J. Porphyrins Phthalocyanines. 2010 Mar; 14: 227-234.
  • 6. Okumuş A, Elmas G, Kılıç Z, Ramazanoğlu N, Açık L, Türk M, Akça G. The reactions of N3P3Cl6 with monodentate and bidentate ligands: The syntheses and structural characterizations, in vitro antimicrobial activities and DNA interactions of 4-fluorobenzyl(N/O)spirocyclotriphosphazenes. Turk. J. Chem. 2017 Mar; 41: 525-547.
  • 7. Tümer Y, Asmafiliz N, Zeyrek CT, Kılıç Z, Açık L, Çelik SP, Türk M, Tunalı BÇ, Ünver H, Hökelek T, Syntheses, spectroscopic and crystallographic characterizations of cis- and trans-dispirocyclic ferrocenylphosphazenes: molecular dockings, cytotoxic and antimicrobial activities. New J. Chem. 2018 Jan; 42: 1740-1756.
  • 8. Kılıç Z, Okumuş A, Demiriz Ş, Bilge S, Öztürk A, Çaylak N, Hökelek T. Phosphorus-nitrogen compounds: Part 16. Synthesis, stereogenism, anisochronism and the relationship between 31P NMR spectral and crystallographic data of monotopic spiro-crypta phosphazene derivatives. J. Incl. Phenom. Macrocycl. Chem. 2009 Dec; 65: 269-286.
  • 9. Okumuş A, Kılıç Z, Hökelek T, Dal H, Açık L, Öner Y, Koç L.Y. Phosphorus–nitrogen compounds part 22. syntheses, structural investigations, biological activities and DNA interactions of new mono and bis (4-fluorobenzyl)spirocyclophosphazenes. Polyhedron. 2011 Nov; 30: 2896-2907.
  • 10. Tümer Y, Koç LY, Asmafliz N, Kılıç Z, Hökelek T, Soltanzade H, Açık L, Yola ML, Solak AO. Phosphorus–nitrogen compounds: part 30. syntheses and structural investigations, antimicrobial and cytotoxic activities and DNA interactions of vanillinato-substituted NN or NO spirocyclic monoferrocenyl cyclotriphosphazenes. J. Biol. Inorg. Chem. 2015 Dec; 20: 165-178.
  • 11. Okumuş A, Akbaş H, Kılıç Z, Koç LY, Açık L, Aydın B, Türk M, Hökelek T, Dal H. Phosphorus–nitrogen compounds: part 33: in vitro cytotoxic and antimicrobial activities, DNA interactions, syntheses and structural investigations of new mono(nitrobenzyl)cyclotriphosphazenes. Res. Chem. Intermed. 2016; 42: 4221–4251.
  • 12. Jimenez J, Laguna A, Gascon E, Sanz JA, Serrano JL, Barbera J, Oriol L. New liquid crystalline materials based on two generations of dendronised cyclophosphazenes. Chem. Eur. J. 2012 Nov; 18: 16801-16814.
  • 13. Omotowa BA, Phillips BS, Zabinski JS, Shreeve JM. Phosphazene- based ionic liquids: synthesis, temperature-dependent viscosity, and effect as additives in water lubrication of silicon nitride ceramics. Inorg. Chem. 2004 July; 43: 5466-5471.
  • 14. Nishimoto T, Yasuda T, Lee S.Y, Kondo R, Adachi C. A six-carbazole-decorated cyclophosphazene as a host with high triplet energy to realize efficient delayed-fluorescence OLEDs. Mater. Horiz. 2014 Sep; 1: 264-269.
  • 15. Şenkuytu E, Eçik ET. Novel fully-BODIPY functionalized cyclotetraphosphazene photosensitizers having high singlet oxygen quantum yields. Spectrochim. Acta Part A, 2017 July; 182: 26-31.
  • 16. Coşut B. Highly efficient energy transfer in BODIPY–pyrene decorated cyclotriphosphazene. Dyes and Pigments, 2014 Jan; 100: 11-16.
  • 17. Asmafiliz N, Kılıç Z, Civan M, Avcı O, Gönder LY, Açık L, Aydın B, Türk M, Hökelek T. Phosphorus–nitrogen compounds. Part 36. Syntheses, Langmuir–Blodgett thin films and biological activities of spiro-bino-spiro trimeric phosphazenes. New. J. Chem. 2016 Nov; 40: 9609-9626.
  • 18. Elmas G, Okumuş A, Sevinç P, Kılıç Z, Açık L, Atalan M, Türk M, Deniz G, Hökelek T. Phosphorus-nitrogen compounds. Part 37. Syntheses and structural characterizations, biological activities of mono and bis(4-fluorobenzyl)spirocyclotetraphosphazenes. New J. Chem. 2017 May; 41: 5818-5835.
  • 19. Labarre JF, Faucher JP, Levy G, Sournies F, Cros S, François G. Antitumour activity of some cyclophosphazenes. Eur. J. Cancer, 1979 May; 15: 637-643.
  • 20. Elmas G, Okumuş A, Kılıç Z, Çam M, Açık L, Hökelek T. Phosphorus-nitrogen compounds. Part 40. The syntheses of (4-fluorobenzyl) pendant armed cyclotetraphosphazene derivatives: Spectroscopic, crystallographic and stereogenic properties, DNA interactions and antimicrobial activities. Inorg. Chim. Acta. 2018 Jan; 476: 110-122.
  • 21. Elmas G, Okumuş A, Kılıç Z, Çelik SP, Açık L. The spectroscopic and thermal properties, antibacterial and antifungal activity and DNA interactions of 4-(fluorobenzyl)spiro(N/O) cyclotriphosphazenium salts, J. Turk. Chem. Soc. Sect. A: Chem. 2017 Sep; 4 (3): 993-1016.
  • 22. Mutlu G, Elmas G, Kılıç Z, Hökelek T, Koç LY, Türk M, Açık L, Aydın B, Dal H. Phosphorus-nitrogen compounds: part 31. syntheses, structural and stereogenic properties, in vitro cytotoxic and antimicrobial activities, DNA interactions of novel bicyclotetraphosphazenes containing bulky side group. Inorg. Chim. Acta. 2015 July; 436: 69-81.
  • 23. Akbaş H, Karadağ A, Aydın A, Destegül A, Kılıç Z. Synthesis, structural and thermal properties of hexapyrrolidinocyclotriphosphazenes-based protic molten salts: antiproliferative effects against HT29, HeLa, and C6 cancer cell lines. J. Mol. Liq. 2017 Jan; 230: 482-495.
  • 24. Okumuş A, Elmas G, Cemaloğlu R, Aydın B, Binici A, Şimşek H, Açık L, Türk M, Güzel R, Kılıç Z, Hökelek T. Phosphorus-nitrogen compounds. part 35. syntheses, spectroscopic and electrochemical properties, antituberculosis, antimicrobial and cytotoxic activities of mono-ferrocenyl-spirocyclotetraphosphazenes. New J. Chem. 2016 Apr; 40: 5588-5603.
  • 25. Sangshetti JN, Zambare AS, Kalam Khan FA, Gonjari I, Zaheer Z. Synthesis and biological activity of substituted 4,5,6,7-tetrahydrothieno pyridines: a review. Mini Rev. Med. Chem. 2014; 14 (12): 988-1020.
  • 26. Das RN, Chevret E, Desplat V, Rubio S, Mergny JL, Guillon J. Design, synthesis and biological evaluation of new substituted diquinolinyl-pyridine ligands as anticancer agents by targeting g-quadruplex. Molecules, 2018 Dec; 23 (1): 81-95.
  • 27. Bruker program 1D WIN-NMR (release 6.0) and 2D WIN-NMR (release 6.1).
  • 28. Hongyan L, Lo JM, Fanwick PE, Stowell JG, Green MA. Monoprotic tetradentate N3O-donor ligands and their Cu(II) and Ni(II) complexes. Inorg. Chem. 1999 Apr; 38: 2071-2078.
  • 29. Davidson RJ, Ainscough EW, Brodie AM, Harrison JA, Waterland MR. The Nature of the Phosphazene Nitrogen–Metal Bond: DFT Calculations on 2‐(Pyridyloxy)cyclophosphazene Complexes. Eur. J. Inorg. Chem. 2010 March; 11: 1619-1625.
  • 30. Elmas G, Okumuş A, Kılıç Z, Gönder LY, Açık L, Hökelek T. The Syntheses and Structural Characterizations, Antimicrobial Activity and in vitro DNA Binding of 4-Fluorobenzylspiro(N/O)cyclotriphosphazenes and their Phosphazenium Salts. J. Turk. Chem. Soc. Sect. A: Chem. 2016 Aug; 3 (3): 25-46.
  • 31. Koçak SB, Koçoğlu S, Okumuş A, Kılıç Z, Öztürk A, Hökelek T, Öner Y, Açık L. Syntheses, spectroscopic properties, crystal structures, biological activities, and dna interactions of heterocyclic amine substituted spiro-ansa-spiro- and spiro-bino-spiro-phosphazenes. Inorg. Chim. Acta. 2013 Sep; 406: 160-70.
  • 32. Elmas, G. The reactions of 2-trans-6-bis(4-fluorobenzyl)spirocyclotetraphosphazene with primary amines: spectroscopic and crystallographic characterizations. Phosphorus Sulfur Silicon Relat. Elem. 2017 Sep; 192 (11): 1224-1232.
  • 33. Elmas G, Okumuş A, Cemaloğlu R, Kılıç Z, Çelik SP, Açık L, Tunalı BÇ, Türk M, Çerçi NA, Güzel R, Hökelek T. Phosphorus-nitrogen compounds. part 38. Syntheses, characterizations, cytotoxic, antituberculosis and antimicrobial activities and DNA interactions of spirocyclotetraphosphazenes with bis-ferrocenyl pendant arms. J. Organometallic Chem. 2017 Dec; 853: 93-106.
Year 2018, Volume: 5 Issue: 2, 621 - 634, 01.01.2018
https://doi.org/10.18596/jotcsa.379971

Abstract

References

  • 1. Chandrasekhar V, Narayanan RS. Phosphazenes. Organophosphorus Chem. 2017 Mar; 46: 342-417, Royal Sciety of Chemistry (RSC Publishing).
  • 2. Stewart FF. Phosphazenes. Organophosphorus Chem. 2015 Apr; 44: 397–430, Royal Sciety of Chemistry (RSC Publishing).
  • 3. Chandrasekhar V, Narayanan RS. Phosphazenes. Organophosphorus Chem. 2016 Mar; 45: 375-437, Royal Sciety of Chemistry (RSC Publishing).
  • 4. Medjdoub L, Mohammed B. New method for nucleophilic substitution on hexachlorocyclotriphosphazene by allyamine using an algerian proton exchanged montmorillonite clay (maghnite-H+) as a green solid catalyst. Bull. Chem. React. Eng.&Catal. 2016 Aug; 11: 151-160.
  • 5. Egemen G, Hayvalı M, Kılıç Z, Solak AO, Üstündağ Z. Phosphorus-Nitrogen Compounds. Part 17. The Synthesis, Spectral and Electrochemical Investigations of Porphyrinophosphazenes. J. Porphyrins Phthalocyanines. 2010 Mar; 14: 227-234.
  • 6. Okumuş A, Elmas G, Kılıç Z, Ramazanoğlu N, Açık L, Türk M, Akça G. The reactions of N3P3Cl6 with monodentate and bidentate ligands: The syntheses and structural characterizations, in vitro antimicrobial activities and DNA interactions of 4-fluorobenzyl(N/O)spirocyclotriphosphazenes. Turk. J. Chem. 2017 Mar; 41: 525-547.
  • 7. Tümer Y, Asmafiliz N, Zeyrek CT, Kılıç Z, Açık L, Çelik SP, Türk M, Tunalı BÇ, Ünver H, Hökelek T, Syntheses, spectroscopic and crystallographic characterizations of cis- and trans-dispirocyclic ferrocenylphosphazenes: molecular dockings, cytotoxic and antimicrobial activities. New J. Chem. 2018 Jan; 42: 1740-1756.
  • 8. Kılıç Z, Okumuş A, Demiriz Ş, Bilge S, Öztürk A, Çaylak N, Hökelek T. Phosphorus-nitrogen compounds: Part 16. Synthesis, stereogenism, anisochronism and the relationship between 31P NMR spectral and crystallographic data of monotopic spiro-crypta phosphazene derivatives. J. Incl. Phenom. Macrocycl. Chem. 2009 Dec; 65: 269-286.
  • 9. Okumuş A, Kılıç Z, Hökelek T, Dal H, Açık L, Öner Y, Koç L.Y. Phosphorus–nitrogen compounds part 22. syntheses, structural investigations, biological activities and DNA interactions of new mono and bis (4-fluorobenzyl)spirocyclophosphazenes. Polyhedron. 2011 Nov; 30: 2896-2907.
  • 10. Tümer Y, Koç LY, Asmafliz N, Kılıç Z, Hökelek T, Soltanzade H, Açık L, Yola ML, Solak AO. Phosphorus–nitrogen compounds: part 30. syntheses and structural investigations, antimicrobial and cytotoxic activities and DNA interactions of vanillinato-substituted NN or NO spirocyclic monoferrocenyl cyclotriphosphazenes. J. Biol. Inorg. Chem. 2015 Dec; 20: 165-178.
  • 11. Okumuş A, Akbaş H, Kılıç Z, Koç LY, Açık L, Aydın B, Türk M, Hökelek T, Dal H. Phosphorus–nitrogen compounds: part 33: in vitro cytotoxic and antimicrobial activities, DNA interactions, syntheses and structural investigations of new mono(nitrobenzyl)cyclotriphosphazenes. Res. Chem. Intermed. 2016; 42: 4221–4251.
  • 12. Jimenez J, Laguna A, Gascon E, Sanz JA, Serrano JL, Barbera J, Oriol L. New liquid crystalline materials based on two generations of dendronised cyclophosphazenes. Chem. Eur. J. 2012 Nov; 18: 16801-16814.
  • 13. Omotowa BA, Phillips BS, Zabinski JS, Shreeve JM. Phosphazene- based ionic liquids: synthesis, temperature-dependent viscosity, and effect as additives in water lubrication of silicon nitride ceramics. Inorg. Chem. 2004 July; 43: 5466-5471.
  • 14. Nishimoto T, Yasuda T, Lee S.Y, Kondo R, Adachi C. A six-carbazole-decorated cyclophosphazene as a host with high triplet energy to realize efficient delayed-fluorescence OLEDs. Mater. Horiz. 2014 Sep; 1: 264-269.
  • 15. Şenkuytu E, Eçik ET. Novel fully-BODIPY functionalized cyclotetraphosphazene photosensitizers having high singlet oxygen quantum yields. Spectrochim. Acta Part A, 2017 July; 182: 26-31.
  • 16. Coşut B. Highly efficient energy transfer in BODIPY–pyrene decorated cyclotriphosphazene. Dyes and Pigments, 2014 Jan; 100: 11-16.
  • 17. Asmafiliz N, Kılıç Z, Civan M, Avcı O, Gönder LY, Açık L, Aydın B, Türk M, Hökelek T. Phosphorus–nitrogen compounds. Part 36. Syntheses, Langmuir–Blodgett thin films and biological activities of spiro-bino-spiro trimeric phosphazenes. New. J. Chem. 2016 Nov; 40: 9609-9626.
  • 18. Elmas G, Okumuş A, Sevinç P, Kılıç Z, Açık L, Atalan M, Türk M, Deniz G, Hökelek T. Phosphorus-nitrogen compounds. Part 37. Syntheses and structural characterizations, biological activities of mono and bis(4-fluorobenzyl)spirocyclotetraphosphazenes. New J. Chem. 2017 May; 41: 5818-5835.
  • 19. Labarre JF, Faucher JP, Levy G, Sournies F, Cros S, François G. Antitumour activity of some cyclophosphazenes. Eur. J. Cancer, 1979 May; 15: 637-643.
  • 20. Elmas G, Okumuş A, Kılıç Z, Çam M, Açık L, Hökelek T. Phosphorus-nitrogen compounds. Part 40. The syntheses of (4-fluorobenzyl) pendant armed cyclotetraphosphazene derivatives: Spectroscopic, crystallographic and stereogenic properties, DNA interactions and antimicrobial activities. Inorg. Chim. Acta. 2018 Jan; 476: 110-122.
  • 21. Elmas G, Okumuş A, Kılıç Z, Çelik SP, Açık L. The spectroscopic and thermal properties, antibacterial and antifungal activity and DNA interactions of 4-(fluorobenzyl)spiro(N/O) cyclotriphosphazenium salts, J. Turk. Chem. Soc. Sect. A: Chem. 2017 Sep; 4 (3): 993-1016.
  • 22. Mutlu G, Elmas G, Kılıç Z, Hökelek T, Koç LY, Türk M, Açık L, Aydın B, Dal H. Phosphorus-nitrogen compounds: part 31. syntheses, structural and stereogenic properties, in vitro cytotoxic and antimicrobial activities, DNA interactions of novel bicyclotetraphosphazenes containing bulky side group. Inorg. Chim. Acta. 2015 July; 436: 69-81.
  • 23. Akbaş H, Karadağ A, Aydın A, Destegül A, Kılıç Z. Synthesis, structural and thermal properties of hexapyrrolidinocyclotriphosphazenes-based protic molten salts: antiproliferative effects against HT29, HeLa, and C6 cancer cell lines. J. Mol. Liq. 2017 Jan; 230: 482-495.
  • 24. Okumuş A, Elmas G, Cemaloğlu R, Aydın B, Binici A, Şimşek H, Açık L, Türk M, Güzel R, Kılıç Z, Hökelek T. Phosphorus-nitrogen compounds. part 35. syntheses, spectroscopic and electrochemical properties, antituberculosis, antimicrobial and cytotoxic activities of mono-ferrocenyl-spirocyclotetraphosphazenes. New J. Chem. 2016 Apr; 40: 5588-5603.
  • 25. Sangshetti JN, Zambare AS, Kalam Khan FA, Gonjari I, Zaheer Z. Synthesis and biological activity of substituted 4,5,6,7-tetrahydrothieno pyridines: a review. Mini Rev. Med. Chem. 2014; 14 (12): 988-1020.
  • 26. Das RN, Chevret E, Desplat V, Rubio S, Mergny JL, Guillon J. Design, synthesis and biological evaluation of new substituted diquinolinyl-pyridine ligands as anticancer agents by targeting g-quadruplex. Molecules, 2018 Dec; 23 (1): 81-95.
  • 27. Bruker program 1D WIN-NMR (release 6.0) and 2D WIN-NMR (release 6.1).
  • 28. Hongyan L, Lo JM, Fanwick PE, Stowell JG, Green MA. Monoprotic tetradentate N3O-donor ligands and their Cu(II) and Ni(II) complexes. Inorg. Chem. 1999 Apr; 38: 2071-2078.
  • 29. Davidson RJ, Ainscough EW, Brodie AM, Harrison JA, Waterland MR. The Nature of the Phosphazene Nitrogen–Metal Bond: DFT Calculations on 2‐(Pyridyloxy)cyclophosphazene Complexes. Eur. J. Inorg. Chem. 2010 March; 11: 1619-1625.
  • 30. Elmas G, Okumuş A, Kılıç Z, Gönder LY, Açık L, Hökelek T. The Syntheses and Structural Characterizations, Antimicrobial Activity and in vitro DNA Binding of 4-Fluorobenzylspiro(N/O)cyclotriphosphazenes and their Phosphazenium Salts. J. Turk. Chem. Soc. Sect. A: Chem. 2016 Aug; 3 (3): 25-46.
  • 31. Koçak SB, Koçoğlu S, Okumuş A, Kılıç Z, Öztürk A, Hökelek T, Öner Y, Açık L. Syntheses, spectroscopic properties, crystal structures, biological activities, and dna interactions of heterocyclic amine substituted spiro-ansa-spiro- and spiro-bino-spiro-phosphazenes. Inorg. Chim. Acta. 2013 Sep; 406: 160-70.
  • 32. Elmas, G. The reactions of 2-trans-6-bis(4-fluorobenzyl)spirocyclotetraphosphazene with primary amines: spectroscopic and crystallographic characterizations. Phosphorus Sulfur Silicon Relat. Elem. 2017 Sep; 192 (11): 1224-1232.
  • 33. Elmas G, Okumuş A, Cemaloğlu R, Kılıç Z, Çelik SP, Açık L, Tunalı BÇ, Türk M, Çerçi NA, Güzel R, Hökelek T. Phosphorus-nitrogen compounds. part 38. Syntheses, characterizations, cytotoxic, antituberculosis and antimicrobial activities and DNA interactions of spirocyclotetraphosphazenes with bis-ferrocenyl pendant arms. J. Organometallic Chem. 2017 Dec; 853: 93-106.
There are 33 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Articles
Authors

Gamze Elmas

Publication Date January 1, 2018
Submission Date January 17, 2018
Acceptance Date March 31, 2018
Published in Issue Year 2018 Volume: 5 Issue: 2

Cite

Vancouver Elmas G. Syntheses and spectroscopic investigations of 2-pyridyl(N/N)spirocyclotriphosphazenes. JOTCSA. 2018;5(2):621-34.

Cited By