Research Article
BibTex RIS Cite

A Sensitive Quantification of Agmatine Using a Hybrid Electrode Based on Zinc oxide Nanoparticles

Year 2018, Volume: 5 Issue: 3, 1205 - 1214, 01.09.2018
https://doi.org/10.18596/jotcsa.401450

Abstract

An electrochemical sensor was prepared by modifiying a hybrid
of multi-walled carbon nanotubes (MWCNTs) and zinc oxide nanoparticles (ZnONPs)
to a glassy carbon (GC) electrode surface to accurately determine agmatine. The
ZnONPs+MWCNTs/GC electrode surface was characterized using scanning electron
microscopy and energy dispersive X-ray. Agmatine did not exhibit any peak on
the GC electrode surface but exhibited a large oxidation peak at 637.9 mV
on the MWCNT/GC electrode surface. Furthermore, it was observed that the
electrochemical behavior of agmatine was greatly improved on the
MWCNT+ZnONPs/GC electrode surface and that this surface exhibited a
well-defined higher current peak at 581.9 mV. The electrochemical
responses of agmatine on the MWCNT+ZnONPs/GC electrode surface were performed
using square wave voltammetry.
A linear plot was obtained for the
current responses of agmatine against concentrations in the range of 0.1 µM–5.2 µM yielding a detection limit
of 4.13×10−6  M  (based on 3Sb/m). The accurate
quantification of agmatine makes the ZnONPs+MWCNTs/GC electrode system of great
interest for the
treatment of schizophrenia. 

References

  • 1. Singh T, Bagga N, Kaur A, Kaur N, Gawande DY, Goel RK. Agmatine for combined treatment of epilepsy, depression and cognitive impairment in chronic epileptic animals. Biomedicine & Pharmacotherapy. 2017;92:720-5.
  • 2. Freitas AE, Neis VB, Rodrigues ALS. Agmatine, a potential novel therapeutic strategy for depression. European Neuropsychopharmacology. 2016;26(12):1885-99.
  • 3. Gilad GM, Salame K, Rabey JM, Gilad VH. Agmatine treatment is neuroprotective in rodent brain injury models. Life sciences. 1995;58(2):PL41-PL6.
  • 4. Feng Y, LeBlanc MH, Regunathan S. Agmatine reduces extracellular glutamate during pentylenetetrazole-induced seizures in rat brain: a potential mechanism for the anticonvulsive effects. Neuroscience letters. 2005;390(3):129-33.
  • 5. Reis DJ, Regunathan S. Is agmatine a novel neurotransmitter in brain? Trends in pharmacological sciences. 2000;21(5):187-93.
  • 6. Benítez J, García D, Romero N, González A, Martínez-Oyanedel J, Figueroa M, et al. Metabolic strategies for the degradation of the neuromodulator agmatine in mammals. Metabolism-Clinical and Experimental. 2018;81:35-44.
  • 7. Bahremand T, Payandemehr P, Riazi K, Noorian AR, Payandemehr B, Sharifzadeh M, et al. Modulation of the anticonvulsant effect of swim stress by agmatine. Epilepsy & Behavior. 2018;78:142-8.
  • 8. Gawali NB, Bulani VD, Chowdhury AA, Deshpande PS, Nagmoti DM, Juvekar AR. Agmatine ameliorates lipopolysaccharide induced depressive-like behaviour in mice by targeting the underlying inflammatory and oxido-nitrosative mediators. Pharmacology Biochemistry and Behavior. 2016;149:1-8.
  • 9. Uzbay TI. The pharmacological importance of agmatine in the brain. Neuroscience & Biobehavioral Reviews. 2012;36(1):502-19.
  • 10. Uzbay T, Goktalay G, Kayir H, Eker SS, Sarandol A, Oral S, et al. Increased plasma agmatine levels in patients with schizophrenia. Journal of psychiatric research. 2013;47(8):1054-60.
  • 11. Kotagale NR, Taksande BG, Wadhwani PJ, Palhade MW, Mendhi SM, Gawande DY, et al. Psychopharmacological study of agmatine in behavioral tests of schizophrenia in rodents. Pharmacology Biochemistry and Behavior. 2012;100(3):398-403.
  • 12. Uzbay IT, Kayir H, Göktalay G, Yildirim M. P. 3. b. 004 Agmatine induces schizophrenia-like symptom in Wistar rats. European Neuropsychopharmacology. 2008;18:S399.
  • 13. Zhang M, Wang S, Li T, Chen J, Zhu H, Du M. Nitrogen and gold nanoparticles co-doped carbon nanofiber hierarchical structures for efficient hydrogen evolution reactions. Electrochimica Acta. 2016;208:1-9.
  • 14. Baytak AK, Duzmen S, Teker T, Aslanoglu M. Voltammetric determination of methylparaben and its DNA interaction using a novel platform based on carbon nanofibers and cobalt-nickel-palladium nanoparticles. Sensors and Actuators B: Chemical. 2017;239:330-7.
  • 15. Wang L, Pumera M. Electrochemical catalysis at low dimensional carbons: Graphene, carbon nanotubes and beyond–A review. Applied Materials Today. 2016;5:134-41.
  • 16. Rahman MM, Ahmed J. Cd-doped Sb 2 O 4 nanostructures modified glassy carbon electrode for efficient detection of melamine by electrochemical approach. Biosensors and Bioelectronics. 2018;102:631-6.
  • 17. Ramamoorthy C, Rajendran V. Synthesis and characterization of CuS nanostructures: Structural, optical, electrochemical and photocatalytic activity by the hydro/solvothermal process. International Journal of Hydrogen Energy. 2017;42(42):26454-63.
  • 18. Baytak AK, Teker T, Duzmen S, Aslanoglu M. A composite material based on nanoparticles of yttrium (III) oxide for the selective and sensitive electrochemical determination of acetaminophen. Materials Science and Engineering: C. 2016;66:278-84.
  • 19. Baghayeri M, Zare EN, Lakouraj MM. A simple hydrogen peroxide biosensor based on a novel electro-magnetic poly (p-phenylenediamine)@ Fe3O4 nanocomposite. Biosensors and bioelectronics. 2014;55:259-65.
  • 20. Baytak AK, Teker T, Duzmen S, Aslanoglu M. A sensitive determination of terbutaline in pharmaceuticals and urine samples using a composite electrode based on zirconium oxide nanoparticles. Materials Science and Engineering: C. 2016;67:125-31.
  • 21. Xu C-X, Huang K-J, Fan Y, Wu Z-W, Li J, Gan T. Simultaneous electrochemical determination of dopamine and tryptophan using a TiO2-graphene/poly (4-aminobenzenesulfonic acid) composite film based platform. Materials Science and Engineering: C. 2012;32(4):969-74.
  • 22. Baytak AK, Aslanoglu M. Voltammetric quantification of tryptophan using a MWCNT modified GCE decorated with electrochemically produced nanoparticles of nickel. Sensors and Actuators B: Chemical. 2015;220:1161-8.
  • 23. Ye D, Luo L, Ding Y, Liu B, Liu X. Fabrication of Co 3 O 4 nanoparticles-decorated graphene composite for determination of L-tryptophan. Analyst. 2012;137(12):2840-5. 24. Wei M-Y, Huang R, Guo L-H. High catalytic activity of indium tin oxide nanoparticle modified electrode towards electro-oxidation of ascorbic acid. Journal of Electroanalytical Chemistry. 2012;664:156-60.
  • 25. Yang J, Lin C, Wang Z, Lin J. In (OH) 3 and In2O3 nanorod bundles and spheres: microemulsion-mediated hydrothermal synthesis and luminescence properties. Inorganic chemistry. 2006;45(22):8973-9.
  • 26. Sanguansak Y, Srimuk P, Krittayavathananon A, Luanwuthi S, Chinvipas N, Chiochan P, et al. Permselective properties of graphene oxide and reduced graphene oxide electrodes. Carbon. 2014;68:662-9.
  • 27. Fayemi OE, Adekunle AS, Ebenso EE. Electrochemical determination of serotonin in urine samples based on metal oxide nanoparticles/MWCNT on modified glassy carbon electrode. Sensing and Bio-Sensing Research,2017;13: 17-27.
Year 2018, Volume: 5 Issue: 3, 1205 - 1214, 01.09.2018
https://doi.org/10.18596/jotcsa.401450

Abstract

References

  • 1. Singh T, Bagga N, Kaur A, Kaur N, Gawande DY, Goel RK. Agmatine for combined treatment of epilepsy, depression and cognitive impairment in chronic epileptic animals. Biomedicine & Pharmacotherapy. 2017;92:720-5.
  • 2. Freitas AE, Neis VB, Rodrigues ALS. Agmatine, a potential novel therapeutic strategy for depression. European Neuropsychopharmacology. 2016;26(12):1885-99.
  • 3. Gilad GM, Salame K, Rabey JM, Gilad VH. Agmatine treatment is neuroprotective in rodent brain injury models. Life sciences. 1995;58(2):PL41-PL6.
  • 4. Feng Y, LeBlanc MH, Regunathan S. Agmatine reduces extracellular glutamate during pentylenetetrazole-induced seizures in rat brain: a potential mechanism for the anticonvulsive effects. Neuroscience letters. 2005;390(3):129-33.
  • 5. Reis DJ, Regunathan S. Is agmatine a novel neurotransmitter in brain? Trends in pharmacological sciences. 2000;21(5):187-93.
  • 6. Benítez J, García D, Romero N, González A, Martínez-Oyanedel J, Figueroa M, et al. Metabolic strategies for the degradation of the neuromodulator agmatine in mammals. Metabolism-Clinical and Experimental. 2018;81:35-44.
  • 7. Bahremand T, Payandemehr P, Riazi K, Noorian AR, Payandemehr B, Sharifzadeh M, et al. Modulation of the anticonvulsant effect of swim stress by agmatine. Epilepsy & Behavior. 2018;78:142-8.
  • 8. Gawali NB, Bulani VD, Chowdhury AA, Deshpande PS, Nagmoti DM, Juvekar AR. Agmatine ameliorates lipopolysaccharide induced depressive-like behaviour in mice by targeting the underlying inflammatory and oxido-nitrosative mediators. Pharmacology Biochemistry and Behavior. 2016;149:1-8.
  • 9. Uzbay TI. The pharmacological importance of agmatine in the brain. Neuroscience & Biobehavioral Reviews. 2012;36(1):502-19.
  • 10. Uzbay T, Goktalay G, Kayir H, Eker SS, Sarandol A, Oral S, et al. Increased plasma agmatine levels in patients with schizophrenia. Journal of psychiatric research. 2013;47(8):1054-60.
  • 11. Kotagale NR, Taksande BG, Wadhwani PJ, Palhade MW, Mendhi SM, Gawande DY, et al. Psychopharmacological study of agmatine in behavioral tests of schizophrenia in rodents. Pharmacology Biochemistry and Behavior. 2012;100(3):398-403.
  • 12. Uzbay IT, Kayir H, Göktalay G, Yildirim M. P. 3. b. 004 Agmatine induces schizophrenia-like symptom in Wistar rats. European Neuropsychopharmacology. 2008;18:S399.
  • 13. Zhang M, Wang S, Li T, Chen J, Zhu H, Du M. Nitrogen and gold nanoparticles co-doped carbon nanofiber hierarchical structures for efficient hydrogen evolution reactions. Electrochimica Acta. 2016;208:1-9.
  • 14. Baytak AK, Duzmen S, Teker T, Aslanoglu M. Voltammetric determination of methylparaben and its DNA interaction using a novel platform based on carbon nanofibers and cobalt-nickel-palladium nanoparticles. Sensors and Actuators B: Chemical. 2017;239:330-7.
  • 15. Wang L, Pumera M. Electrochemical catalysis at low dimensional carbons: Graphene, carbon nanotubes and beyond–A review. Applied Materials Today. 2016;5:134-41.
  • 16. Rahman MM, Ahmed J. Cd-doped Sb 2 O 4 nanostructures modified glassy carbon electrode for efficient detection of melamine by electrochemical approach. Biosensors and Bioelectronics. 2018;102:631-6.
  • 17. Ramamoorthy C, Rajendran V. Synthesis and characterization of CuS nanostructures: Structural, optical, electrochemical and photocatalytic activity by the hydro/solvothermal process. International Journal of Hydrogen Energy. 2017;42(42):26454-63.
  • 18. Baytak AK, Teker T, Duzmen S, Aslanoglu M. A composite material based on nanoparticles of yttrium (III) oxide for the selective and sensitive electrochemical determination of acetaminophen. Materials Science and Engineering: C. 2016;66:278-84.
  • 19. Baghayeri M, Zare EN, Lakouraj MM. A simple hydrogen peroxide biosensor based on a novel electro-magnetic poly (p-phenylenediamine)@ Fe3O4 nanocomposite. Biosensors and bioelectronics. 2014;55:259-65.
  • 20. Baytak AK, Teker T, Duzmen S, Aslanoglu M. A sensitive determination of terbutaline in pharmaceuticals and urine samples using a composite electrode based on zirconium oxide nanoparticles. Materials Science and Engineering: C. 2016;67:125-31.
  • 21. Xu C-X, Huang K-J, Fan Y, Wu Z-W, Li J, Gan T. Simultaneous electrochemical determination of dopamine and tryptophan using a TiO2-graphene/poly (4-aminobenzenesulfonic acid) composite film based platform. Materials Science and Engineering: C. 2012;32(4):969-74.
  • 22. Baytak AK, Aslanoglu M. Voltammetric quantification of tryptophan using a MWCNT modified GCE decorated with electrochemically produced nanoparticles of nickel. Sensors and Actuators B: Chemical. 2015;220:1161-8.
  • 23. Ye D, Luo L, Ding Y, Liu B, Liu X. Fabrication of Co 3 O 4 nanoparticles-decorated graphene composite for determination of L-tryptophan. Analyst. 2012;137(12):2840-5. 24. Wei M-Y, Huang R, Guo L-H. High catalytic activity of indium tin oxide nanoparticle modified electrode towards electro-oxidation of ascorbic acid. Journal of Electroanalytical Chemistry. 2012;664:156-60.
  • 25. Yang J, Lin C, Wang Z, Lin J. In (OH) 3 and In2O3 nanorod bundles and spheres: microemulsion-mediated hydrothermal synthesis and luminescence properties. Inorganic chemistry. 2006;45(22):8973-9.
  • 26. Sanguansak Y, Srimuk P, Krittayavathananon A, Luanwuthi S, Chinvipas N, Chiochan P, et al. Permselective properties of graphene oxide and reduced graphene oxide electrodes. Carbon. 2014;68:662-9.
  • 27. Fayemi OE, Adekunle AS, Ebenso EE. Electrochemical determination of serotonin in urine samples based on metal oxide nanoparticles/MWCNT on modified glassy carbon electrode. Sensing and Bio-Sensing Research,2017;13: 17-27.
There are 26 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Articles
Authors

Hilal İncebay

Publication Date September 1, 2018
Submission Date March 5, 2018
Acceptance Date October 17, 2018
Published in Issue Year 2018 Volume: 5 Issue: 3

Cite

Vancouver İncebay H. A Sensitive Quantification of Agmatine Using a Hybrid Electrode Based on Zinc oxide Nanoparticles. JOTCSA. 2018;5(3):1205-14.