Research Article
BibTex RIS Cite

Investigation of Organic Solvents Effects on Kenaf (Hibiscus cannabinus L.) Biomass Conversion in Subcritical Water

Year 2018, Volume: 5 Issue: 3, 1423 - 1430, 01.09.2018
https://doi.org/10.18596/jotcsa.427258

Abstract

Kenaf
biomass material was hydrolyzed in subcritical water condition in presence of
various organic solvents. The solvents tested were tetrahydrofurane (THF),
acetone, xylene and methanol. The organic compounds released into hydrolysates,
total organic contents, water soluble total phenol and the molecular weight
distributions of the polysaccharides in the hydrolysates, solid residues
leftover after hydrolysis and gaseous products formed during the solubilization
process were determined.



The
results showed that organic solvents significantly enhanced the dissolution of
kenaf biomass (methanol < xylene ≤ acetone ~ tetrahydrofurane). The
hydrolysis percentage was found to be between 75-82% depending on the type of
the solvent. Hydrolysis yield and total organic carbons released into
hydrolysates highly differed when the solubilization process was performed
under carbondioxide pressure and this effect considerably varied based on the
type of solvent used in hydrolysis process. The main gas product formed during
hydrolysis process was carbon dioxide with ~80% composition.



Morphological
measurements of the solid biomass residues left after hydrolysis showed
substantial degradations with increasing number of pores on the biomass
surfaces.

References

  • 1. Hasyierah Noor MS, Zulkali MMD, Syahidah Ku KI. Ferulic acid from lignocellulosic biomass: Review. Malaysian Universities Conferences on Engineering and Techonology March 8-10, 2008, Putra Brasmana, Perlis, Malaysia.
  • 2. Saha BC. Hemicellulose bioconversion. J Ind Microbiol Biotechnol. 2003; 30:279 - 91.
  • 3. Meryemoglu B, Hesenov A, Irmak S, Atanur OM and Erbatur O. Aqueous-phase reforming of biomass using various types of supported precious metal and raney-nickel catalysts for hydrogen production. Int.J. Hydrogen Energy 2010;35:12580-7.
  • 4. Meryemoglu B, Hasanoglu A, Kaya B, Irmak S, Erbatur O. Hydrogen production from aqueous-phase reforming of sorghum biomass: An application of the response surface methodology. Renew Energ. 2014;(62):535-41.
  • 5. Shuai L, Yang Q, Zhu JY, Lu FC, Weimer PJ, Ralph J, Pan XJ. Comparative study of SPORL and dilute-acid pretreatments of spruce for cellulosic ethanol production. Bioresour. Technol. 2010;(101):3106–14.
  • 6. Xin D, Yang Z, Liu F, Xu X, Zhang J. Comparison of aqueous ammonia and dilute acid pretreatment of bamboo fractions: structure properties and enzymatic hydrolysis. Bioresour. Technol. 2015;(175):529–36.
  • 7. Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S. Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresour. Technol. 2010;101:4900 – 6.
  • 8. Kootstra AMJ, Beeftink HH, Scott EL, Sanders JPM. Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochem. Eng. J. 2009;46:126–31.
  • 9. Hsu TC, Guo GL, Chen WH, Hwang WS. Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresour. Technol. 2010;101:4907–13.
  • 10. Yan L, Zhang L, Yang B. Enhancement of total sugar and lignin yields through dissolution of poplar wood by hot water and dilute acid flowthrough pretreatment. Biotechnol. Biofuels. 2014;7:76.
  • 11. Akpinar O, Levent O, Sabanci S, Uysal RS, Sapci B. Optimization and comparison of dilute acid pretreatment of selected agricultural residues for recovery of xylose. Bio Resources 2011;6:4103–16.
  • 12. Caboni E, Tonelli MG, Lauri P, Iacovacci P, Kevers C, Damiano C, Gaspar T. Biochemical aspects of almond microcuttings related to in vitro rooting ability. Biologia Plant. 1997; 39: 91-7.
  • 13. Ni Y, and Hu Q. Alcell Lignin Solubility in Ethanol-Water Mixtures. Journal of Applied Polymer Science. 1995;57:1441-6.
  • 14. Wang Q, Chen K, Li J, Yang G, Liu S, Xu J. The solubility of lignin from bagasse in a 1,4-butanediol/water system. BioResources.2011;6;3034-43.
  • 15. Boeriu CG, Fiţigău FI, Gosselink RJA, Frissen AE, Stoutjesdijk J, Peter F. Fractionation of five technical lignins by selective extraction in green solvents and characterisation of isolated fractions. Ind Crops Prod. 2014;62:481–90.
  • 16. Ye Y, Liu Y, and Chang J. Application of solubility parameter theory to organosolv extraction of lignin from enzymatically hydrolyzed cornstalks. BioRes. 2014;9:3417-27.
  • 17. Reichardt C, Welton T. Solvents and Solvent Effects in Organic Chemistry, Wiley-VCH, Weinheim, 2006.
  • 18. Maurel P. Relevance of Dielectric Constant and Solvent Hydrophobicity to the Organic Solvent Effect in Enzymology J. Biol. Chem. 1978;253:1677–83.
  • 19. Mariella RP, Raube RR, Budde J, Moore CE. The effect of the dielectric constant of the solvent on the ultraviolet absorption spectra of some non-aromatic ketones J. Org. Chem. 1954; 19: 678–82.
  • 20. Sun RC, Sun XF, Ma XH. Effect of ultrasound on the structural and physicochemical properties of organosolv soluble hemicelluloses from wheat straw. Ultrasonics Sonochemistry. 2002; 9: 95-101.
  • 21. Sun RC, Tomkınson J. Separation and Characterization of Cellulose from Wheat Straw. Separation Science and Technology. 2004;39: 391-411.
  • 22. Buranov AU, Mazza G. Extraction and characterization of hemicelluloses from flax shives by different methods. Carbohydrate Polymers. 2010;79: 17–25.
  • 23. Corredor DY. Pretreatment and enzymatic hydrolysis of lignocellulosic biomass. PhD dissertation. Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, Kansas, 2008.
  • 24. Espinoza-Acosta JL, Torres-Chávez PI, Carvajal-Millán E, Ramírez-Wong B, Bello-Pérez LA, Montaño-Leyva B. Ionic liquids and organic solvents for recovering lignin from lignocellulosic biomass. BioResources. 2014; 9:3660– 87.
  • 25. Araque E, Parra C, Freer J, Contreras D, Rodríguez J, Mendonça R, Baeza J. Evaluation of organosolv pretreatment for the conversion of Pinus radiata D. Don to ethanol. Enzyme Microb. Technol. 2008; 43:214–9.
  • 26. Ghozatloo A, Mohammadi-Rovshandeh J, Hashemi S. Optimization of pulp properties by dimethyl formamide pulping of rice straw. Cellul. Chem. Technol. 2006;40:659–67.
  • 27. Zhao X, Cheng K, Liu D. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl. Microbiol. Biotechnol. 2009;82:815–27.
  • 28. Sun R, Lawther JM, Banks WB. Fractional and structural characterization of wheat straw hemicelluloses. Carbohydrrate Polymers. 1999;49:415-23.
  • 29. Sene CFB, Mccan MC, Wilson RH and Grinter R. Fourier-transform Raman and Fourier-transform infrared spectroscopy. An investigation of five higher plant cell walls and their components. Plant Physiology. 1994;106:1623-31.
  • 30. Pandey KK. A study of chemical structure of soft- and hardwood and wood polymers by FTIR spectroscopy. J. Appl Polym Sci. 1999;71:1969–75.
  • 31. Faix O. Fourier Transform Infrared Spectroscopy, In: Methods in Lignin Chemistry, T.E. Timell (Ed.), Springer-Verlag, Germany, 1992.
  • 32. Sun RC, Tomkınson J. Separation and Characterization of Cellulose from Wheat Straw. Separation Science and Technology 2004;39:391-411.
  • 33. Micic M, Benitez I, Ruano M, Mavers M, Jeremic M, Radotic K, Moy V, Leblanc RM. Probing the lignin nanomechanical properties and lignin-lignin interactions using the atomic force microscopy. Chemical Physics Letters. 2001;347:41-5.
  • 34. Donohoe BS, Decker SR, Tucker MP, Himmel ME, Vinzant TB. Visualizing Lignin Coalescence and Migration Through Maize Cell Walls Following Thermochemical Pretreatment. Biotechnology and Bioengineering. 2008;101:913-25.
  • 35. Selig MJ, Viamajala S, Decker SR, Tucker MP, Himmel MP, Vinzant TB. Deposition of Lignin Droplets Produced During Dilute Acid Pretreatment of Maize Stems Retards Enzymatic Hydrolysis of Cellulose, Biotechnology Progress. 2007;23:1333-9.
Year 2018, Volume: 5 Issue: 3, 1423 - 1430, 01.09.2018
https://doi.org/10.18596/jotcsa.427258

Abstract

References

  • 1. Hasyierah Noor MS, Zulkali MMD, Syahidah Ku KI. Ferulic acid from lignocellulosic biomass: Review. Malaysian Universities Conferences on Engineering and Techonology March 8-10, 2008, Putra Brasmana, Perlis, Malaysia.
  • 2. Saha BC. Hemicellulose bioconversion. J Ind Microbiol Biotechnol. 2003; 30:279 - 91.
  • 3. Meryemoglu B, Hesenov A, Irmak S, Atanur OM and Erbatur O. Aqueous-phase reforming of biomass using various types of supported precious metal and raney-nickel catalysts for hydrogen production. Int.J. Hydrogen Energy 2010;35:12580-7.
  • 4. Meryemoglu B, Hasanoglu A, Kaya B, Irmak S, Erbatur O. Hydrogen production from aqueous-phase reforming of sorghum biomass: An application of the response surface methodology. Renew Energ. 2014;(62):535-41.
  • 5. Shuai L, Yang Q, Zhu JY, Lu FC, Weimer PJ, Ralph J, Pan XJ. Comparative study of SPORL and dilute-acid pretreatments of spruce for cellulosic ethanol production. Bioresour. Technol. 2010;(101):3106–14.
  • 6. Xin D, Yang Z, Liu F, Xu X, Zhang J. Comparison of aqueous ammonia and dilute acid pretreatment of bamboo fractions: structure properties and enzymatic hydrolysis. Bioresour. Technol. 2015;(175):529–36.
  • 7. Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S. Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresour. Technol. 2010;101:4900 – 6.
  • 8. Kootstra AMJ, Beeftink HH, Scott EL, Sanders JPM. Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochem. Eng. J. 2009;46:126–31.
  • 9. Hsu TC, Guo GL, Chen WH, Hwang WS. Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresour. Technol. 2010;101:4907–13.
  • 10. Yan L, Zhang L, Yang B. Enhancement of total sugar and lignin yields through dissolution of poplar wood by hot water and dilute acid flowthrough pretreatment. Biotechnol. Biofuels. 2014;7:76.
  • 11. Akpinar O, Levent O, Sabanci S, Uysal RS, Sapci B. Optimization and comparison of dilute acid pretreatment of selected agricultural residues for recovery of xylose. Bio Resources 2011;6:4103–16.
  • 12. Caboni E, Tonelli MG, Lauri P, Iacovacci P, Kevers C, Damiano C, Gaspar T. Biochemical aspects of almond microcuttings related to in vitro rooting ability. Biologia Plant. 1997; 39: 91-7.
  • 13. Ni Y, and Hu Q. Alcell Lignin Solubility in Ethanol-Water Mixtures. Journal of Applied Polymer Science. 1995;57:1441-6.
  • 14. Wang Q, Chen K, Li J, Yang G, Liu S, Xu J. The solubility of lignin from bagasse in a 1,4-butanediol/water system. BioResources.2011;6;3034-43.
  • 15. Boeriu CG, Fiţigău FI, Gosselink RJA, Frissen AE, Stoutjesdijk J, Peter F. Fractionation of five technical lignins by selective extraction in green solvents and characterisation of isolated fractions. Ind Crops Prod. 2014;62:481–90.
  • 16. Ye Y, Liu Y, and Chang J. Application of solubility parameter theory to organosolv extraction of lignin from enzymatically hydrolyzed cornstalks. BioRes. 2014;9:3417-27.
  • 17. Reichardt C, Welton T. Solvents and Solvent Effects in Organic Chemistry, Wiley-VCH, Weinheim, 2006.
  • 18. Maurel P. Relevance of Dielectric Constant and Solvent Hydrophobicity to the Organic Solvent Effect in Enzymology J. Biol. Chem. 1978;253:1677–83.
  • 19. Mariella RP, Raube RR, Budde J, Moore CE. The effect of the dielectric constant of the solvent on the ultraviolet absorption spectra of some non-aromatic ketones J. Org. Chem. 1954; 19: 678–82.
  • 20. Sun RC, Sun XF, Ma XH. Effect of ultrasound on the structural and physicochemical properties of organosolv soluble hemicelluloses from wheat straw. Ultrasonics Sonochemistry. 2002; 9: 95-101.
  • 21. Sun RC, Tomkınson J. Separation and Characterization of Cellulose from Wheat Straw. Separation Science and Technology. 2004;39: 391-411.
  • 22. Buranov AU, Mazza G. Extraction and characterization of hemicelluloses from flax shives by different methods. Carbohydrate Polymers. 2010;79: 17–25.
  • 23. Corredor DY. Pretreatment and enzymatic hydrolysis of lignocellulosic biomass. PhD dissertation. Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, Kansas, 2008.
  • 24. Espinoza-Acosta JL, Torres-Chávez PI, Carvajal-Millán E, Ramírez-Wong B, Bello-Pérez LA, Montaño-Leyva B. Ionic liquids and organic solvents for recovering lignin from lignocellulosic biomass. BioResources. 2014; 9:3660– 87.
  • 25. Araque E, Parra C, Freer J, Contreras D, Rodríguez J, Mendonça R, Baeza J. Evaluation of organosolv pretreatment for the conversion of Pinus radiata D. Don to ethanol. Enzyme Microb. Technol. 2008; 43:214–9.
  • 26. Ghozatloo A, Mohammadi-Rovshandeh J, Hashemi S. Optimization of pulp properties by dimethyl formamide pulping of rice straw. Cellul. Chem. Technol. 2006;40:659–67.
  • 27. Zhao X, Cheng K, Liu D. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl. Microbiol. Biotechnol. 2009;82:815–27.
  • 28. Sun R, Lawther JM, Banks WB. Fractional and structural characterization of wheat straw hemicelluloses. Carbohydrrate Polymers. 1999;49:415-23.
  • 29. Sene CFB, Mccan MC, Wilson RH and Grinter R. Fourier-transform Raman and Fourier-transform infrared spectroscopy. An investigation of five higher plant cell walls and their components. Plant Physiology. 1994;106:1623-31.
  • 30. Pandey KK. A study of chemical structure of soft- and hardwood and wood polymers by FTIR spectroscopy. J. Appl Polym Sci. 1999;71:1969–75.
  • 31. Faix O. Fourier Transform Infrared Spectroscopy, In: Methods in Lignin Chemistry, T.E. Timell (Ed.), Springer-Verlag, Germany, 1992.
  • 32. Sun RC, Tomkınson J. Separation and Characterization of Cellulose from Wheat Straw. Separation Science and Technology 2004;39:391-411.
  • 33. Micic M, Benitez I, Ruano M, Mavers M, Jeremic M, Radotic K, Moy V, Leblanc RM. Probing the lignin nanomechanical properties and lignin-lignin interactions using the atomic force microscopy. Chemical Physics Letters. 2001;347:41-5.
  • 34. Donohoe BS, Decker SR, Tucker MP, Himmel ME, Vinzant TB. Visualizing Lignin Coalescence and Migration Through Maize Cell Walls Following Thermochemical Pretreatment. Biotechnology and Bioengineering. 2008;101:913-25.
  • 35. Selig MJ, Viamajala S, Decker SR, Tucker MP, Himmel MP, Vinzant TB. Deposition of Lignin Droplets Produced During Dilute Acid Pretreatment of Maize Stems Retards Enzymatic Hydrolysis of Cellulose, Biotechnology Progress. 2007;23:1333-9.
There are 35 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Articles
Authors

Bahar Meryemoğlu

Arif Hasanoglu

Mehtap Kurtulus This is me

Sibel Irmak

Publication Date September 1, 2018
Submission Date May 25, 2018
Acceptance Date December 30, 2018
Published in Issue Year 2018 Volume: 5 Issue: 3

Cite

Vancouver Meryemoğlu B, Hasanoglu A, Kurtulus M, Irmak S. Investigation of Organic Solvents Effects on Kenaf (Hibiscus cannabinus L.) Biomass Conversion in Subcritical Water. JOTCSA. 2018;5(3):1423-30.