Research Article
BibTex RIS Cite
Year 2018, Volume: 5 Issue: 3, 1221 - 1232, 01.09.2018
https://doi.org/10.18596/jotcsa.448551

Abstract

References

  • 1. Keay BA, Hopkins JM, Dibble PW. Furans and their benzo derivatives: Applications. Comprehensive Heterocyclic Chemistry III. 2008:571-623.
  • 2. Mishra RC. Second Generation Benzofuranone Ring Substituted Noscapine Analogs: Synthesis and Biological Evaluation. Biochemical Pharmacology. 2011; 82:110-21.
  • 3. Tan YX, Wang HQ, Chen RY. Anti-inflammatory and cytotoxic 2-arylbenzofurans from Morus wittiorum. Fitoterapia. 2012; 83:750-3.
  • 4. Tan YX, Yang Y, Zhang T, Chen RY, Yu DQ. Bioactive 2-arylbenzofuran derivatives from Morus wittiorum. Fitoterapia. 2010; 81:742-6.
  • 5. Kim YJ, Sohn MJ, Kim WG. Chalcomoracin and moracin C, new inhibitors of Staphylococcus aureus enoyl-acyl carrier protein reductase from Morus alba. Biol Pharm Bull. 2012; 35: 791-5.
  • 6. Romagnoli R, Baraldi PG, Sarkar T, et al. Synthesis and biological evaluation of 2-aroyl-4-phenyl-5-hydroxybenzofurans as a new class of antitubulin agents. Med Chem. 2008; 4:558-64.
  • 7. Flynn BL, Gill GS, Grobelny DW, et al. Discovery of 7-hydroxy-6-methoxy-2-methyl-3-(3,4,5-trimethoxybenzoyl)benzofuran (BNC105), a tubulin polymerization inhibitor with potent antiproliferative and tumor vascular disrupting properties. J Med Chem. 2011; 54:6014-27.
  • 8. Shi W, Lowary TL. Structure-activity relationships in glycosylated 2-phenyl-indoles, 2-phenyl-benzo[b]thiophenes and 2-phenylbenzo[b]furans as DNA binding and potential antitumor agents. Bioorg. Med. Chem. 2011; 19:1779-89.
  • 9. Kossakowski J, Ostrowska K, Hejchman E, Wolska I. Synthesis and structural characterization of derivatives of 2- and 3-benzo[b]furan carboxylic acids with potential cytotoxic activity. II Farmaco. 2005; 60:519-27.
  • 10. George JH, Baldwin JE, Adlington RM. Enantiospecific, biosynthetically inspired formal total synthesis of (+)-liphagal. Org Lett. 2010; 12:2394-7.
  • 11. Caner H, Groner E, Levy L, Agranat I. Trends in the development of chiral drugs. Drug Discovery Today. 2004; 9(3):105-10.
  • 12. Carey JS, Laffan D, Thomson C, Williams MT. Analysis of the reactions used for the preparation of drug candidate molecules. Org. Biomol. Chem. 2006; 4:2337–47.
  • 13. Gotor V, Alfonso I, García-Urdiales E. Asymmetric Organic Synthesis with Enzymes. Weinheim, Germany: Wiley-VCH; 2008.
  • 14. Patel RN. Synthesis of chiral pharmaceutical intermediates by biocatalysis. Coord. Chem. Rev. 2008; 252:659–701.
  • 15. Hudlicky T, Reed JW. Applications of biotransformations and biocatalysis to complexity generation in organic synthesis. Chem. Soc. Rev. 2009; 38(11):3117–32.
  • 16. Schnell B, Faber K, Kroutil W. Enzymatic Racemisation and its Application to Synthetic Biotransformations. Adv. Synth. Catal. 2003; 345: 653-66.
  • 17. Demir AS, Caliskan Z, Sahin E. Enantioselective synthesis of 4,5,6,7-tetrahydro-4-oxo-benzofuran-5-yl acetate and 1-benzyl-4,5,6,7-tetrahydro-4-oxo-1(H)-indol-5-yl acetate using chemoenzymatic methods. Journal of Molecular Catalysis B: Enzymatic. 2007; 44:87-92.
  • 18. Caliskan ZZ, Ersez MS. Stereoselective synthesis of optically active1-benzyl-4,5,6,7-tetrahydro-6,6-dimethyl-4-oxo-1H-indol-7-ylacetate and 1-benzyl-6,7-dihydro-7-hydroxy-6,6-dimethyl-1H-indol-4(5H)-onethrough lipase-catalyzed esterification and transesterificationprocesses. J. Mol. Catal. B: Enzym. 2015; 111:64-70.
  • 19. Matsumoto M, Watanabe N. A facile synthesis of 4-oxo-4,5,6,7-tetrahydroindoles. Heterocycles. 1984; 22:2313-6.
  • 20. Xia L, Lee YR, Kim SH, Lyoo WS. AgBF4/[Bmim]BF4-catalyzed [3+2] cycloaddition of cyclic diazodicarbonyl compounds. Efficient synthesis of 2,3-dihydrofurans and conversion to 3-acylfurans. Bulletin of the Korean Chemical Society. 2011; 32(5): 1554-8.
  • 21. Mueller P, Allenbach YF, Bernardinelli G. On the Enantioselectivity of Transition Metal‐Catalyzed 1,3‐Cycloadditions of 2‐Diazocyclohexane‐1,3‐diones. Helvetica Chimica Acta. 2003; 86(9): 3164-78.
  • 22.(a) Heiba EI, Dessau RM, Koehl WJJr. Oxidation by metal salts. IV. A new method for the preparation of γ-lactones by the reaction of manganic acetate with olefins. J. Am. Chem. Soc. 1968; 90(21):5905-6. (b) Bush JB Jr, Finkbeiner H. Oxidation reactions of manganese(III) acetate. II. Formation of γ-lactones from olefins and acetic acid. J. Am. Chem. Soc. 1968; 90(21):5903-5. (c) Heiba EI, Dessau RM. Oxidation by metal salts. XI. Formation of dihydrofurans. J. Org. Chem. 1974; 39:3456-7.
  • 23. Williams GJ, Hunter NR. Situselective α'-acetoxylation of some α, β-enones by manganic acetate oxidation. Can. J. Chem. 1976; 54(24):3830–2.
  • 24. Tanyeli C, Caliskan ZZ. A Facile Synthesis of Various Butenolides. Synth. Commun. 2000; 30(16):2855–62.
  • 25. Demir AS, Caliskan Z, Aydın AE, Bicer I. A new and efficient chemoenzymatic route to both enantiomers of α’-acetoxy and α’-hydroxy-α-methoxy cyclic enones. Tetrahedron: Asymmetry. 2006; 17:786-91.
  • 26. Ashok K, Kartik D, Shamsher SK, Pankaj KA. Lipase catalysis in organic solvents: advantages and applications. Biol Proced Online. 2016; 18/2: 1-11.
  • 27. http://www.worthington-biochem.com/introbiochem/effectspH.html.
  • 28. Shih-Hsiung Wu, Su-Yuan Lai, Shu-Ling Lin, Fei-Ya Chu, Kung-Tsung Wang. Enantiomeric separation of 2-(phenoxy)propionate derivatives by chiral high-performance liquid chromatography. Chirality. 1991; 3(6):476–9.

Synthesis of Dihydrobenzofuranone Derivatives with Biotechnological Methods

Year 2018, Volume: 5 Issue: 3, 1221 - 1232, 01.09.2018
https://doi.org/10.18596/jotcsa.448551

Abstract

Benzofuranone 
derivatives are important structural units in many biologically active
compounds thus, synthesis of these types of compounds in optically pure form
found increased interest in pharmaceutical chemistry. In this study, the
enantioselective synthesis of 4,5,6,7-tetrahydro-6-phenyl-4-oxo-benzofuranone-5-yl
acetate (3) and 4,5,6,7-tetrahydro-6-
phenyl-4-oxo-benzofuranone-5-yl hydroxy derivative (4) was carried out for the first time,  by enzyme-mediated hydrolysis reactions with
high enantiomeric excesses. Several lipases were used for the kinetic
resolution in different pH values and different solvent systems of racemic 4,5,6,7-tetrahydro-6-phenyl-4-oxo-benzofuranone-5-yl
acetate (rac-3) in which the lipases
from HPL, PPL,  RNL and PCL displayed
high enentioselectivity towards 4,5,6,7-tetrahydro-6- phenyl-4-oxo-benzofuranone-5-yl
hydroxy derivative (4)  at pH=7. 

References

  • 1. Keay BA, Hopkins JM, Dibble PW. Furans and their benzo derivatives: Applications. Comprehensive Heterocyclic Chemistry III. 2008:571-623.
  • 2. Mishra RC. Second Generation Benzofuranone Ring Substituted Noscapine Analogs: Synthesis and Biological Evaluation. Biochemical Pharmacology. 2011; 82:110-21.
  • 3. Tan YX, Wang HQ, Chen RY. Anti-inflammatory and cytotoxic 2-arylbenzofurans from Morus wittiorum. Fitoterapia. 2012; 83:750-3.
  • 4. Tan YX, Yang Y, Zhang T, Chen RY, Yu DQ. Bioactive 2-arylbenzofuran derivatives from Morus wittiorum. Fitoterapia. 2010; 81:742-6.
  • 5. Kim YJ, Sohn MJ, Kim WG. Chalcomoracin and moracin C, new inhibitors of Staphylococcus aureus enoyl-acyl carrier protein reductase from Morus alba. Biol Pharm Bull. 2012; 35: 791-5.
  • 6. Romagnoli R, Baraldi PG, Sarkar T, et al. Synthesis and biological evaluation of 2-aroyl-4-phenyl-5-hydroxybenzofurans as a new class of antitubulin agents. Med Chem. 2008; 4:558-64.
  • 7. Flynn BL, Gill GS, Grobelny DW, et al. Discovery of 7-hydroxy-6-methoxy-2-methyl-3-(3,4,5-trimethoxybenzoyl)benzofuran (BNC105), a tubulin polymerization inhibitor with potent antiproliferative and tumor vascular disrupting properties. J Med Chem. 2011; 54:6014-27.
  • 8. Shi W, Lowary TL. Structure-activity relationships in glycosylated 2-phenyl-indoles, 2-phenyl-benzo[b]thiophenes and 2-phenylbenzo[b]furans as DNA binding and potential antitumor agents. Bioorg. Med. Chem. 2011; 19:1779-89.
  • 9. Kossakowski J, Ostrowska K, Hejchman E, Wolska I. Synthesis and structural characterization of derivatives of 2- and 3-benzo[b]furan carboxylic acids with potential cytotoxic activity. II Farmaco. 2005; 60:519-27.
  • 10. George JH, Baldwin JE, Adlington RM. Enantiospecific, biosynthetically inspired formal total synthesis of (+)-liphagal. Org Lett. 2010; 12:2394-7.
  • 11. Caner H, Groner E, Levy L, Agranat I. Trends in the development of chiral drugs. Drug Discovery Today. 2004; 9(3):105-10.
  • 12. Carey JS, Laffan D, Thomson C, Williams MT. Analysis of the reactions used for the preparation of drug candidate molecules. Org. Biomol. Chem. 2006; 4:2337–47.
  • 13. Gotor V, Alfonso I, García-Urdiales E. Asymmetric Organic Synthesis with Enzymes. Weinheim, Germany: Wiley-VCH; 2008.
  • 14. Patel RN. Synthesis of chiral pharmaceutical intermediates by biocatalysis. Coord. Chem. Rev. 2008; 252:659–701.
  • 15. Hudlicky T, Reed JW. Applications of biotransformations and biocatalysis to complexity generation in organic synthesis. Chem. Soc. Rev. 2009; 38(11):3117–32.
  • 16. Schnell B, Faber K, Kroutil W. Enzymatic Racemisation and its Application to Synthetic Biotransformations. Adv. Synth. Catal. 2003; 345: 653-66.
  • 17. Demir AS, Caliskan Z, Sahin E. Enantioselective synthesis of 4,5,6,7-tetrahydro-4-oxo-benzofuran-5-yl acetate and 1-benzyl-4,5,6,7-tetrahydro-4-oxo-1(H)-indol-5-yl acetate using chemoenzymatic methods. Journal of Molecular Catalysis B: Enzymatic. 2007; 44:87-92.
  • 18. Caliskan ZZ, Ersez MS. Stereoselective synthesis of optically active1-benzyl-4,5,6,7-tetrahydro-6,6-dimethyl-4-oxo-1H-indol-7-ylacetate and 1-benzyl-6,7-dihydro-7-hydroxy-6,6-dimethyl-1H-indol-4(5H)-onethrough lipase-catalyzed esterification and transesterificationprocesses. J. Mol. Catal. B: Enzym. 2015; 111:64-70.
  • 19. Matsumoto M, Watanabe N. A facile synthesis of 4-oxo-4,5,6,7-tetrahydroindoles. Heterocycles. 1984; 22:2313-6.
  • 20. Xia L, Lee YR, Kim SH, Lyoo WS. AgBF4/[Bmim]BF4-catalyzed [3+2] cycloaddition of cyclic diazodicarbonyl compounds. Efficient synthesis of 2,3-dihydrofurans and conversion to 3-acylfurans. Bulletin of the Korean Chemical Society. 2011; 32(5): 1554-8.
  • 21. Mueller P, Allenbach YF, Bernardinelli G. On the Enantioselectivity of Transition Metal‐Catalyzed 1,3‐Cycloadditions of 2‐Diazocyclohexane‐1,3‐diones. Helvetica Chimica Acta. 2003; 86(9): 3164-78.
  • 22.(a) Heiba EI, Dessau RM, Koehl WJJr. Oxidation by metal salts. IV. A new method for the preparation of γ-lactones by the reaction of manganic acetate with olefins. J. Am. Chem. Soc. 1968; 90(21):5905-6. (b) Bush JB Jr, Finkbeiner H. Oxidation reactions of manganese(III) acetate. II. Formation of γ-lactones from olefins and acetic acid. J. Am. Chem. Soc. 1968; 90(21):5903-5. (c) Heiba EI, Dessau RM. Oxidation by metal salts. XI. Formation of dihydrofurans. J. Org. Chem. 1974; 39:3456-7.
  • 23. Williams GJ, Hunter NR. Situselective α'-acetoxylation of some α, β-enones by manganic acetate oxidation. Can. J. Chem. 1976; 54(24):3830–2.
  • 24. Tanyeli C, Caliskan ZZ. A Facile Synthesis of Various Butenolides. Synth. Commun. 2000; 30(16):2855–62.
  • 25. Demir AS, Caliskan Z, Aydın AE, Bicer I. A new and efficient chemoenzymatic route to both enantiomers of α’-acetoxy and α’-hydroxy-α-methoxy cyclic enones. Tetrahedron: Asymmetry. 2006; 17:786-91.
  • 26. Ashok K, Kartik D, Shamsher SK, Pankaj KA. Lipase catalysis in organic solvents: advantages and applications. Biol Proced Online. 2016; 18/2: 1-11.
  • 27. http://www.worthington-biochem.com/introbiochem/effectspH.html.
  • 28. Shih-Hsiung Wu, Su-Yuan Lai, Shu-Ling Lin, Fei-Ya Chu, Kung-Tsung Wang. Enantiomeric separation of 2-(phenoxy)propionate derivatives by chiral high-performance liquid chromatography. Chirality. 1991; 3(6):476–9.
There are 28 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Articles
Authors

Zerrin Zerenler Çalışkan

Ebru Nur Ay This is me

Publication Date September 1, 2018
Submission Date July 27, 2018
Acceptance Date October 23, 2018
Published in Issue Year 2018 Volume: 5 Issue: 3

Cite

Vancouver Zerenler Çalışkan Z, Ay EN. Synthesis of Dihydrobenzofuranone Derivatives with Biotechnological Methods. JOTCSA. 2018;5(3):1221-32.