Research Article
BibTex RIS Cite

MODIFICATION OF NOVEL ISOXAZOLINES OF FULVENE DERIVATIVES WITH 1,3-DIPOLAR CYCLOADDITION REACTION

Year 2018, Volume: 5 Issue: 3, 1351 - 1360, 01.09.2018
https://doi.org/10.18596/jotcsa.484885

Abstract

In this work, 1,3-Dipolar cycloaddition
reactions were studied to synthesize fulvene derivatives containing isoxazoline groups in good yields.
 1,3-Dipolar cycloaddition reactions are among the
most useful strategies for the preparation of organic compounds. All newly synthesized fulvene compounds were
structurally characterized by FTIR, 1H, 13C NMR and GC/MS
analyses.

References

  • 1. Gothelf KV, Jorgensen KA. Asymmetric 1,3-Dipolar Cycloaddition Reactions. Chem Rev. 1998;98(2):863-910.
  • 2. Pandey G, Banerjee P, Gadre SR. Construction of enantiopure pyrrolidine ring system via asymmetric [3+2]-cycloaddition of azomethine ylides. Chem Rev. 2006;106(11):4484-517.
  • 3. Stanley LM, Sibi MP. Enantioselective copper-catalyzed 1,3-dipolar cycloadditions. Chem Rev. 2008;108(8):2887-902.
  • 4. Adrio J, Carretero JC. Novel dipolarophiles and dipoles in the metal-catalyzed enantioselective 1,3-dipolar cycloaddition of azomethine ylides. Chem Commun (Camb). 2011;47(24):6784-94.
  • 5. Huisgen R, Mloston G, Polborn K. 1,3-Dipolar Activity in Cycloadditions of an Aliphatic Sulfine(,)(1). J Org Chem. 1996;61(19):6570-4.
  • 6. Woodward RB. Recent advances in the chemistry of natural products. Science. 1966;153(3735):487-93.
  • 7. Hoffmann R, Woodward RB. Orbital symmetry control of chemical reactions. Science. 1970;167(3919):825-31.
  • 8. Furukawa M, Sugita M, Kojima Y. Reaction of epoxides. V. 1,3-Dipolar cycloaddition reactions of epoxides with carbon-nitrogen double bond compounds. Chem Pharm Bull (Tokyo). 1974;22(7):1468-76.
  • 9. Kano T, Hashimoto T, Maruoka K. Asymmetric 1,3-dipolar cycloaddition reaction of nitrones and acrolein with a bis-titanium catalyst as chiral Lewis acid. J Am Chem Soc. 2005;127(34):11926-7.
  • 10. Siadati SA, Mahboobifar A, Nasiri R. A theoretical study on the reaction pathways and the mechanism of 1,3- dipolar cycloaddition of vinyl acetylene and methyl azide. Comb Chem High Throughput Screen. 2014;17(8):703-8.
  • 11. Beckhaus R, Lutzen A, Haase D, Saak W, Stroot J, Becke S, et al. A Novel Route to Fulvene Complexes of Titanium-Diastereoselective Complexation of Pentafulvenes to Cyclopentadienyltitanium Fragments. Angew Chem Int Ed Engl. 2001;40(11):2056-8.
  • 12. Bryan CS, Lautens M. A tandem catalytic approach to methyleneindenes: mechanistic insights into gem-dibromoolefin reactivity. Org Lett. 2010;12(12):2754-7.
  • 13. Ye S, Yang X, Wu J. Rapid access to 1-methyleneindenes via palladium-catalyzed tandem reactions of 1-(2,2-dibromovinyl)-2-alkynylbenzenes with arylboronic acids. Chem Commun (Camb). 2010;46(17):2950-2.
  • 14. Ye S, Gao K, Zhou H, Yang X, Wu J. Synthesis of 1-methyleneindenes via palladium-catalyzed tandem reactions. Chem Commun (Camb). 2009(36):5406-8.
  • 15. Abdur Rahman SM, Sonoda M, Ono M, Miki K, Tobe Y. Novel synthesis of bridged phenylthienylethenes and dithienylethenes via Pd-catalyzed double-cyclization reactions of diarylhexadienynes. Org Lett. 2006;8(6):1197-200.
  • 16. Schmittel M, Vavilala C. Kinetic isotope effects in the thermal C2-C6 cyclization of enyne-allenes: experimental evidence supports a stepwise mechanism. J Org Chem. 2005;70(12):4865-8.
  • 17. Kovalenko SV, Peabody S, Manoharan M, Clark RJ, Alabugin IV. 5-Exo-dig radical cyclization of enediynes: the first synthesis of tin-substituted benzofulvenes. Org Lett. 2004;6(14):2457-60.
  • 18. Bekele T, Christian CF, Lipton MA, Singleton DA. "Concerted" transition state, stepwise mechanism. Dynamics effects in C2-C6 enyne allene cyclizations. J Am Chem Soc. 2005;127(25):9216-23.
  • 19. Clegg NJ, Paruthiyil S, Leitman DC, Scanlan TS. Differential response of estrogen receptor subtypes to 1,3-diarylindene and 2,3-diarylindene ligands. J Med Chem. 2005;48(19):5989-6003.
  • 20. Krief A, Laval AM. Coupling of Organic Halides with Carbonyl Compounds Promoted by SmI(2), the Kagan Reagent. Chem Rev. 1999;99(3):745-78.
  • 21. Hong BC, Shr YJ, Wu JL, Gupta AK, Lin KJ. Novel [6 + 2] cycloaddition of fulvenes with alkenes: a facile synthesis of the anislactone and hirsutane framework. Org Lett. 2002;4(13):2249-52.
  • 22. Barluenga J, Martinez S, Suarez-Sobrino AL, Tomas M. New reaction pathways for Fischer carbene complexes: [6 + 3] cycloaddition of chromium alkenyl carbene complexes with fulvenes. J Am Chem Soc. 2001;123(44):11113-4.
  • 23. Coskun N, Ma J, Azimi S, Gartner C, Erden I. 1,2-Dihydropentalenes from fulvenes by [6 + 2] cycloadditions with 1-isopropenylpyrrolidine. Org Lett. 2011;13(22):5952-5.
  • 24. Cassady JM, Baird WM, Chang CJ. Natural-Products as a Source of Potential Cancer Chemotherapeutic and Chemopreventive Agents. J Nat Prod. 1990;53(1):23-41.
  • 25. Vijesh AM, Isloor AM, Shetty P, Sundershan S, Fun HK. New pyrazole derivatives containing 1,2,4-triazoles and benzoxazoles as potent antimicrobial and analgesic agents. Eur J Med Chem. 2013;62:410-5.
  • 26. Soares MIL, Brito AF, Laranjo M, Paixao JA, Botelho MF, Melo TMVDPE. Chiral 6,7-bis(hydroxymethyl)-1H,3H-pyrrolo[1,2-c]thiazoles with anti-breast cancer properties. Eur J Med Chem. 2013;60:254-62.
  • 27. Kamal A, Bharathi EV, Reddy JS, Ramaiah MJ, Dastagiri D, Reddy MK, et al. Synthesis and biological evaluation of 3,5-diaryl isoxazoline/isoxazole linked 2,3-dihydroquinazolinone hybrids as anticancer agents. Eur J Med Chem. 2011;46(2):691-703.
  • 28. Shi L, Hu R, Wei Y, Liang Y, Yang Z, Ke S. Anthranilic acid-based diamides derivatives incorporating aryl-isoxazoline pharmacophore as potential anticancer agents: design, synthesis and biological evaluation. Eur J Med Chem. 2012;54:549-56.
  • 29. Shaala LA, Youssef DT, Sulaiman M, Behery FA, Foudah AI, Sayed KA. Subereamolline A as a potent breast cancer migration, invasion and proliferation inhibitor and bioactive dibrominated alkaloids from the Red Sea sponge Pseudoceratina arabica. Mar Drugs. 2012;10(11):2492-508.
  • 30. Sadashiva MP, Basappa, NanjundaSwamy S, Li F, Manu KA, Sengottuvelan M, et al. Anti-cancer activity of novel dibenzo[b,f]azepine tethered isoxazoline derivatives. BMC Chem Biol. 2012;12:5.
  • 31. Miller SA, Bercaw JE. Mechanism of isotactic polypropylene formation with C-1-symmetric metallocene catalysts. Organometallics. 2006;25(15):3576-92.
  • 32. Ocal N, Bagdatli E, Arslan M. Diels-Alder reactions of new methoxysubstituted-6-arylfulvenes. Turk J Chem. 2005;29(1):7-16.
  • 33. Puerto Galvis CE, Kouznetsov VV. An unexpected formation of the novel 7-oxa-2-azabicyclo[2.2.1]hept-5-ene skeleton during the reaction of furfurylamine with maleimides and their bioprospection using a zebrafish embryo model. Org Biomol Chem. 2013;11(3):407-11.
  • 34. Alam MI, Alam MA, Alam O, Nargotra A, Taneja SC, Koul S. Molecular modeling and snake venom phospholipase A(2) inhibition by phenolic compounds: Structure-activity relationship. Eur J Med Chem. 2016;114:209-19.
Year 2018, Volume: 5 Issue: 3, 1351 - 1360, 01.09.2018
https://doi.org/10.18596/jotcsa.484885

Abstract

References

  • 1. Gothelf KV, Jorgensen KA. Asymmetric 1,3-Dipolar Cycloaddition Reactions. Chem Rev. 1998;98(2):863-910.
  • 2. Pandey G, Banerjee P, Gadre SR. Construction of enantiopure pyrrolidine ring system via asymmetric [3+2]-cycloaddition of azomethine ylides. Chem Rev. 2006;106(11):4484-517.
  • 3. Stanley LM, Sibi MP. Enantioselective copper-catalyzed 1,3-dipolar cycloadditions. Chem Rev. 2008;108(8):2887-902.
  • 4. Adrio J, Carretero JC. Novel dipolarophiles and dipoles in the metal-catalyzed enantioselective 1,3-dipolar cycloaddition of azomethine ylides. Chem Commun (Camb). 2011;47(24):6784-94.
  • 5. Huisgen R, Mloston G, Polborn K. 1,3-Dipolar Activity in Cycloadditions of an Aliphatic Sulfine(,)(1). J Org Chem. 1996;61(19):6570-4.
  • 6. Woodward RB. Recent advances in the chemistry of natural products. Science. 1966;153(3735):487-93.
  • 7. Hoffmann R, Woodward RB. Orbital symmetry control of chemical reactions. Science. 1970;167(3919):825-31.
  • 8. Furukawa M, Sugita M, Kojima Y. Reaction of epoxides. V. 1,3-Dipolar cycloaddition reactions of epoxides with carbon-nitrogen double bond compounds. Chem Pharm Bull (Tokyo). 1974;22(7):1468-76.
  • 9. Kano T, Hashimoto T, Maruoka K. Asymmetric 1,3-dipolar cycloaddition reaction of nitrones and acrolein with a bis-titanium catalyst as chiral Lewis acid. J Am Chem Soc. 2005;127(34):11926-7.
  • 10. Siadati SA, Mahboobifar A, Nasiri R. A theoretical study on the reaction pathways and the mechanism of 1,3- dipolar cycloaddition of vinyl acetylene and methyl azide. Comb Chem High Throughput Screen. 2014;17(8):703-8.
  • 11. Beckhaus R, Lutzen A, Haase D, Saak W, Stroot J, Becke S, et al. A Novel Route to Fulvene Complexes of Titanium-Diastereoselective Complexation of Pentafulvenes to Cyclopentadienyltitanium Fragments. Angew Chem Int Ed Engl. 2001;40(11):2056-8.
  • 12. Bryan CS, Lautens M. A tandem catalytic approach to methyleneindenes: mechanistic insights into gem-dibromoolefin reactivity. Org Lett. 2010;12(12):2754-7.
  • 13. Ye S, Yang X, Wu J. Rapid access to 1-methyleneindenes via palladium-catalyzed tandem reactions of 1-(2,2-dibromovinyl)-2-alkynylbenzenes with arylboronic acids. Chem Commun (Camb). 2010;46(17):2950-2.
  • 14. Ye S, Gao K, Zhou H, Yang X, Wu J. Synthesis of 1-methyleneindenes via palladium-catalyzed tandem reactions. Chem Commun (Camb). 2009(36):5406-8.
  • 15. Abdur Rahman SM, Sonoda M, Ono M, Miki K, Tobe Y. Novel synthesis of bridged phenylthienylethenes and dithienylethenes via Pd-catalyzed double-cyclization reactions of diarylhexadienynes. Org Lett. 2006;8(6):1197-200.
  • 16. Schmittel M, Vavilala C. Kinetic isotope effects in the thermal C2-C6 cyclization of enyne-allenes: experimental evidence supports a stepwise mechanism. J Org Chem. 2005;70(12):4865-8.
  • 17. Kovalenko SV, Peabody S, Manoharan M, Clark RJ, Alabugin IV. 5-Exo-dig radical cyclization of enediynes: the first synthesis of tin-substituted benzofulvenes. Org Lett. 2004;6(14):2457-60.
  • 18. Bekele T, Christian CF, Lipton MA, Singleton DA. "Concerted" transition state, stepwise mechanism. Dynamics effects in C2-C6 enyne allene cyclizations. J Am Chem Soc. 2005;127(25):9216-23.
  • 19. Clegg NJ, Paruthiyil S, Leitman DC, Scanlan TS. Differential response of estrogen receptor subtypes to 1,3-diarylindene and 2,3-diarylindene ligands. J Med Chem. 2005;48(19):5989-6003.
  • 20. Krief A, Laval AM. Coupling of Organic Halides with Carbonyl Compounds Promoted by SmI(2), the Kagan Reagent. Chem Rev. 1999;99(3):745-78.
  • 21. Hong BC, Shr YJ, Wu JL, Gupta AK, Lin KJ. Novel [6 + 2] cycloaddition of fulvenes with alkenes: a facile synthesis of the anislactone and hirsutane framework. Org Lett. 2002;4(13):2249-52.
  • 22. Barluenga J, Martinez S, Suarez-Sobrino AL, Tomas M. New reaction pathways for Fischer carbene complexes: [6 + 3] cycloaddition of chromium alkenyl carbene complexes with fulvenes. J Am Chem Soc. 2001;123(44):11113-4.
  • 23. Coskun N, Ma J, Azimi S, Gartner C, Erden I. 1,2-Dihydropentalenes from fulvenes by [6 + 2] cycloadditions with 1-isopropenylpyrrolidine. Org Lett. 2011;13(22):5952-5.
  • 24. Cassady JM, Baird WM, Chang CJ. Natural-Products as a Source of Potential Cancer Chemotherapeutic and Chemopreventive Agents. J Nat Prod. 1990;53(1):23-41.
  • 25. Vijesh AM, Isloor AM, Shetty P, Sundershan S, Fun HK. New pyrazole derivatives containing 1,2,4-triazoles and benzoxazoles as potent antimicrobial and analgesic agents. Eur J Med Chem. 2013;62:410-5.
  • 26. Soares MIL, Brito AF, Laranjo M, Paixao JA, Botelho MF, Melo TMVDPE. Chiral 6,7-bis(hydroxymethyl)-1H,3H-pyrrolo[1,2-c]thiazoles with anti-breast cancer properties. Eur J Med Chem. 2013;60:254-62.
  • 27. Kamal A, Bharathi EV, Reddy JS, Ramaiah MJ, Dastagiri D, Reddy MK, et al. Synthesis and biological evaluation of 3,5-diaryl isoxazoline/isoxazole linked 2,3-dihydroquinazolinone hybrids as anticancer agents. Eur J Med Chem. 2011;46(2):691-703.
  • 28. Shi L, Hu R, Wei Y, Liang Y, Yang Z, Ke S. Anthranilic acid-based diamides derivatives incorporating aryl-isoxazoline pharmacophore as potential anticancer agents: design, synthesis and biological evaluation. Eur J Med Chem. 2012;54:549-56.
  • 29. Shaala LA, Youssef DT, Sulaiman M, Behery FA, Foudah AI, Sayed KA. Subereamolline A as a potent breast cancer migration, invasion and proliferation inhibitor and bioactive dibrominated alkaloids from the Red Sea sponge Pseudoceratina arabica. Mar Drugs. 2012;10(11):2492-508.
  • 30. Sadashiva MP, Basappa, NanjundaSwamy S, Li F, Manu KA, Sengottuvelan M, et al. Anti-cancer activity of novel dibenzo[b,f]azepine tethered isoxazoline derivatives. BMC Chem Biol. 2012;12:5.
  • 31. Miller SA, Bercaw JE. Mechanism of isotactic polypropylene formation with C-1-symmetric metallocene catalysts. Organometallics. 2006;25(15):3576-92.
  • 32. Ocal N, Bagdatli E, Arslan M. Diels-Alder reactions of new methoxysubstituted-6-arylfulvenes. Turk J Chem. 2005;29(1):7-16.
  • 33. Puerto Galvis CE, Kouznetsov VV. An unexpected formation of the novel 7-oxa-2-azabicyclo[2.2.1]hept-5-ene skeleton during the reaction of furfurylamine with maleimides and their bioprospection using a zebrafish embryo model. Org Biomol Chem. 2013;11(3):407-11.
  • 34. Alam MI, Alam MA, Alam O, Nargotra A, Taneja SC, Koul S. Molecular modeling and snake venom phospholipase A(2) inhibition by phenolic compounds: Structure-activity relationship. Eur J Med Chem. 2016;114:209-19.
There are 34 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Articles
Authors

Omer Gunkara

Publication Date September 1, 2018
Submission Date November 19, 2018
Acceptance Date December 9, 2018
Published in Issue Year 2018 Volume: 5 Issue: 3

Cite

Vancouver Gunkara O. MODIFICATION OF NOVEL ISOXAZOLINES OF FULVENE DERIVATIVES WITH 1,3-DIPOLAR CYCLOADDITION REACTION. JOTCSA. 2018;5(3):1351-60.