Research Article
BibTex RIS Cite
Year 2019, Volume: 6 Issue: 3, 319 - 328, 20.10.2019
https://doi.org/10.18596/jotcsa.572013

Abstract

Supporting Institution

İstanbul Teknik Üniversitesi

Thanks

İstanbul Teknik Üniversitesi

References

  • 1. Schmid G, Sommerauer M, Geyer M, Hanack M, Leznoff CC. A.B.P. Lever (Eds.), Phthalocyanines: Properties and Applications, vol. 4, VCH Publishers, New York, 1996, pp. 1–18.
  • 2. Basova TV., Parkhomenko RG, Polyakov M, Gürek AG, Atilla D, Yuksel F, et al. Effect of dispersion of gold nanoparticles on the properties and alignment of liquid crystalline copper phthalocyanine films. Dye Pigment. 2016; 125: 266–73.
  • 3. Çimen Y, Ermiş E, Dumludağ F, Özkaya AR, Salih B, Bekaroğlu Ö. Synthesis, characterization, electrochemistry and VOC sensing properties of novel ball-type dinuclear metallophthalocyanines. Sensors Actuators, B Chem. 2014; 202: 1137–47.
  • 4. Nagel S, Lener M, Keil C, Gerdes R,Lapok L, Gorun SM, Schlettwein D. Electrochromic Switching of Evaporated Thin Films of Bulky, Electronic Deficient Metallo-Phthalocyanines. J Phys Chem C. 2011; 115: 8759-8767.
  • 5. Maya EM, Garcia-Frutos EM, Vazquez P, Torres T, Martin G, Rojo G, Agullo-Lopez F, Gonzalez-Jonte RH, Ferro VR, Vega JMG, Ledoux I, Zyss J. Novel Push−Pull Phthalocyanines as Targets for Second-Order Nonlinear Applications. J Phys Chem A. 2003; 107: 2110-2117.
  • 6. Walter MG, Rudine AB, Wamser CC. Porphyrins and phthalocyanines in solar photovoltaic cells. J Porphyrins Phthalocyanines. 2010; 14: 759–792.
  • 7. Liu MO, Tai CH, Teh Hu A. The fluorescent and photoelectric conversion properties of phthalocyanineeperylene tetracarboxylic complexes. J Photochem Photobiol A. 2004; 165: 193-200.
  • 8. Nyokong T, Antunes E. in The Handbook of Porphyrin Science, ed. Kadish KM, Smith KM and Guilard R. World Scientific. Singapore, 2010, ch. 34, vol 7.
  • 9. Frahn MS, Abellon RD, Jager WF, Luthjens LH, Warman JM. Synthesis and characterization of a new fluorogenic probe molecule N-(1-pyrene)methacrylamide for monitoring radiation-induced polymerization. Nucl Instrum Methods Phys Res. Sect B. 2001; 185: 241-47.
  • 10. Lerner MG, Resczenski JM, Amin A, Johnson RR, Goldsmith JI, Johnson ATC. Toward quantifying the electrostatic transduction mechanism in carbon nanotube molecular sensors. J Am Chem Soc. 2012; 134: 14318.
  • 11. Valeur B. Molecular fluorescence principles and applications. Germany, Weinheim: Wiley-VCH; 2002.
  • 12. Karabacak M, Cinar M, Kurt M, Sundaraganesan N. Experimental and theoretical FTIR and FT-Raman spectroscopic analysis of 1-pyrenecarboxylic acid. Spectrochim Acta Part A: Mol Biomol Spectrosc. 2013; 114: 509-519.
  • 13. Roth A, Ragoussi ME, Wibmer L, Katsukis G, Torre G, Torres T, Guldi DM. Electron-accepting phthalocyanine–pyrene conjugates: towards liquid phase exfoliation of graphite and photoactive nanohybrid formation with graphene. Chem Sci. 2014; 5: 3432–3438.
  • 14. Kaya EN, Tuncel S, Basova TV, Banimuslem H, Hassan A, Gürek AG, Ahsen V, Durmuş M. Effect of pyrene substitution on the formation and sensor propertiesof phthalocyanine-single walled carbon nanotube hybrids. Sensors and Actuators B. 2014; 199: 277-283.
  • 15. Sanusi K, Nyokong T. Effects of pyrene on the photophysical and two-photon absorption-based nonlinear optical properties of indium(III) phthalocyanines. Journal of Coordination Chemistry. 2014; 67: 2911-2924.
  • 16. Kumar RS, Son YA. Synthesis, photophysical and aggregation properties of novel phenanthrene and pyrene substituted phthalocyanines. Korean Chem Eng Res. 2018; 56(6): 792-797.
  • 17. Bartelmess J, Ballesteros B, Torre G, Kiessling D, Campidelli S, Prato M, Torres T, Guldi DM. Phthalocyanine-pyrene conjugates: A powerful approach toward carbon nanotube solar cells. J Am Chem Soc. 2010; 132: 16202-16211.
  • 18. Kaya EN, Basova TV, Polyakov M, Durmuş M, Kadem B, Hassan A. Hybrid materials of pyrene substituted phthalocyanines with single-walled carbon nanotubes: structure and sensing properties. RSC Adv. 2015; 5: 91855-91862.
  • 19. Su Q, Pang S, Alijani V, Li C, Feng X, Müllen K. Composites of graphene with large aromatic molecules. Adv Mater. 2009; 21: 3191-3195.
  • 20. Mann JA, Rodriguez-Lopez J, Abruna HD, Dichtel WR. Multivalent binding motifs for the noncovalent functionalization of graphene. J Am Chem Soc. 2011; 133: 17614-17617.
  • 21. Özçeşmeci İ, Gelir A, Gül A. Synthesis and photophysical properties phthalocyanineepyrene dyads. Dye Pigment. 2012; 92: 954-960.
  • 22. Sürgün S, Arslanoğlu Y, Hamuryudan E. Synthesis of non-peripherally and peripherally substituted zinc (II) phthalocyanines bearing pyrene groups via different routes and their photophysical properties. Dye Pigment. 2014; 100: 32-40.
  • 23. Ogbodu RO, Antunes E, Nyokong T. Physicochemical properties of a zinc phthalocyanine – pyrene conjugate adsorbed onto single walled carbon nanotubes. Dalton Trans. 2013; 42: 10769-10777.
  • 24. Ke L, Min J, Adam M, Gasparini N, Hou Y, Perea JD, Chen W, Zhang H, Fladischer S, Sale , Erdmann Spiecker AC, Tykwinski RR, Brabec CJ, Ameri T. A series of pyrene-substituted silicon phthalocyanines as near-ir sensitizers in organic ternary solar cells. Adv Energy Mater. 2016; 6 (1502355): 1-13.
  • 25. Maree SE, Nyokong T. Syntheses and photochemical properties of octasubstituted phthalocyaninato zinc complexes. J Porphyrins Phthalocyanines. 2001; 5: 782–792.
  • 26. Maya EM, Vazquez P, Torres T. Homo- and hetero-dimetallic ethynyl- and butadiynyl-bridged bisphthalocyaninato complexes. Chem Commun. 1997; 1175-76.
  • 27. Garcia-Iglesias M, Torres T, Gonzalez-Rodriguez D. Well-defined, persistent, chiral phthalocyanine nanoclusters via G-quadruplex assembly. Chem Commun. 2016; 52: 9446-9449.
  • 28. Karaoğlu HRP, Yenilmez HY, Koçak MB. Phthalocyanines formed from several precursors: synthesis, characterization, and comparative fluorescence and quinone quenching. Journal of Coordination Chemistry. 2018; 71(15): 2340-2357.
  • 29. Zorlu Y, Dumoulin F, Durmuş M, Ahsen V. Comparative studies of photophysical and photochemical properties of solketal substituted platinum (II) and zinc (II) phthalocyanine sets. Tetrahedron. 2010; 66 (17): 3248-3258.
  • 30. Du H, Fuh RCA, Li J, Corkan LA, Lindsey JS. PhotochemCAD: A Computer-Aided Design and Research Tool in Photochemistry. Photochem. Photobiol. 1998; 68: 141-142.
  • 31. Rose J. Advanced Physico-chemical Experiments, first ed., Sir Isaac Pitman & Sons Ltd., London, 1964, 257.
  • 32. Kalkan A, Koca A, Bayır ZA. Unsymmetrical phthalocyanines with alkynyl substituents. Polyhedron. 2004; 23: 3155–3162.
  • 33. Haas M, Liu SX, Kahnt A, Leiggener C, Guldi DM, Hauser A, Decurtins S. Photoinduced energy transfer processes within dyads of metallophthalocyanines compactly fused to a ruthenium(II) polypyridine chromophore. J Org Chem. 2007; 72: 7533-7543.
  • 34. Kimura T, Kanota N, Matsui K, Tanaka I, Tsuboi T, Takaguchi Y, Yomogita A, Wakahara T, Kuwahara S, Nagatsugi F, Akasaka T. Preparation and electrochemical and optical properties of unsymmetrically substituted phthalocyanines with one or two trithiole rings and related symmetric derivatives. Inorg Chem. 2008; 47: 3577-3583.
  • 35. Leznoff CC, Hall TW. The synthesis of a soluble, unsymmetrical phthalocyanine on a polymer support. Tetrahedron Lett. 1982; 23: 3023-3026.
  • 36. Erdem SS, Nesterova IV, Soper SA, Hammer RP. Solid-phase synthesis of asymmetrically substituted “AB3-type” phthalocyanines. J Org Chem. 2008; 73: 5003-5007.
  • 37. Kobayashi N, Kondo R, Nakajima S, Osa T. New route to unsymmetrical phthalocyanine analogs by the use of structurally distorted subphthalocyanines. J Am Chem Soc. 1990; 112: 9640-9641.
  • 38. Kobayashi N, Ishizaki T, Ishii K, Konami H. Synthesis, spectroscopy, and molecular orbital calculations of subazaporphyrins, subphthalocyanines, subnaphthalocyanines, and compounds derived therefrom by ring expansion. J Am Chem Soc. 1999: 121; 9096-9110.
  • 39. Kobayashi N, Nonomura T. First observation of the circular dichroism spectra of chiral subphthalocyanines with C3 symmetry. Tetrahedron Lett. 2002; 43: 4253–4255.
  • 40. Meller A, Ossko A. Phthalocyaninartige Bor-Komplexe. Monatsh Chem. 1972; 103: 150-155.
  • 41. Dabak S, Gül A, Bekaroğlu Ö. Hexakis(alkylthio)‐substituted unsymmetrical phthalocyanines. Chem Ber. 1994; 127: 2009-2012.
  • 42. Bhatt MV, Kulkarni SU. Cleavage of ethers. Synthesis. 1983; 249-282.
  • 43. Hirth A, Sobbi AK, Wöhrle D. Synthesis of a monofunctional phthalocyanine on silica. J. Porphyrins Phthalocyanines. 1997; 1: 275-279.
  • 44. De la Torre G, Claessens CG, Torres T. Phthalocyanines: The need for selective synthetic approaches. Eur J Org Chem. 2000; 16: 2821-2830.
  • 45. K. Sonagashira, in: F. Diederich, P.J. Stang (Eds.), Metal- catalyzed cross-coupling reactions. Wiley-V CH, Weinheim, 1998, pp. 203–229.
  • 46. Özçeşmeci M, Nar I, Hamuryudan E. Synthesis and electrochemical and spectroelectrochemical characterization of chloromanganese(III) phthalocyanines. Turk. J. Chem. 2014; 38: 1064-1072.
  • 47. McKeown NB, Li H, Helliwell M, J. Porphyr. Phthalocyanines. A non-planar, hexadeca-substituted, metal-free phthalocyanine. 2005; 9(12): 841-845.

Synthesis and photophysical properties of usymmetrically substituted phthalocyanine-pyrene conjugate

Year 2019, Volume: 6 Issue: 3, 319 - 328, 20.10.2019
https://doi.org/10.18596/jotcsa.572013

Abstract

Unsymmetrical zinc phthalocyanine (Pc) bearing one pyrene (Py) and six tert-butylphenoxy units was synthesized in 3 steps. The unsymmetric zinc phthalocyanine carrying the protecting group was synthesized in the first step. In the second stage, the protecting group was removed and in the final stage pyrene structure was introduced under the condition of the Sonagashira coupling reaction. The new compound was characterized by using spectroscopic techniques. The photophysical measurements of the conjugated structure were performed to determine the effect of the pyrene group on the fluorescence of Pc. It was determined that the absorption of the pyrene structure around 350 nm was overlapping with the B-band of phthalocyanine after conjugation. Fluorescence quantum yield and lifetime were calculated. The fluorescence quenching examinations were performed by adding the different concentration of benzoquinone in DMF and the Ksv and kq values of unsymmetrical zinc phthalocyanine (5) were determined.

References

  • 1. Schmid G, Sommerauer M, Geyer M, Hanack M, Leznoff CC. A.B.P. Lever (Eds.), Phthalocyanines: Properties and Applications, vol. 4, VCH Publishers, New York, 1996, pp. 1–18.
  • 2. Basova TV., Parkhomenko RG, Polyakov M, Gürek AG, Atilla D, Yuksel F, et al. Effect of dispersion of gold nanoparticles on the properties and alignment of liquid crystalline copper phthalocyanine films. Dye Pigment. 2016; 125: 266–73.
  • 3. Çimen Y, Ermiş E, Dumludağ F, Özkaya AR, Salih B, Bekaroğlu Ö. Synthesis, characterization, electrochemistry and VOC sensing properties of novel ball-type dinuclear metallophthalocyanines. Sensors Actuators, B Chem. 2014; 202: 1137–47.
  • 4. Nagel S, Lener M, Keil C, Gerdes R,Lapok L, Gorun SM, Schlettwein D. Electrochromic Switching of Evaporated Thin Films of Bulky, Electronic Deficient Metallo-Phthalocyanines. J Phys Chem C. 2011; 115: 8759-8767.
  • 5. Maya EM, Garcia-Frutos EM, Vazquez P, Torres T, Martin G, Rojo G, Agullo-Lopez F, Gonzalez-Jonte RH, Ferro VR, Vega JMG, Ledoux I, Zyss J. Novel Push−Pull Phthalocyanines as Targets for Second-Order Nonlinear Applications. J Phys Chem A. 2003; 107: 2110-2117.
  • 6. Walter MG, Rudine AB, Wamser CC. Porphyrins and phthalocyanines in solar photovoltaic cells. J Porphyrins Phthalocyanines. 2010; 14: 759–792.
  • 7. Liu MO, Tai CH, Teh Hu A. The fluorescent and photoelectric conversion properties of phthalocyanineeperylene tetracarboxylic complexes. J Photochem Photobiol A. 2004; 165: 193-200.
  • 8. Nyokong T, Antunes E. in The Handbook of Porphyrin Science, ed. Kadish KM, Smith KM and Guilard R. World Scientific. Singapore, 2010, ch. 34, vol 7.
  • 9. Frahn MS, Abellon RD, Jager WF, Luthjens LH, Warman JM. Synthesis and characterization of a new fluorogenic probe molecule N-(1-pyrene)methacrylamide for monitoring radiation-induced polymerization. Nucl Instrum Methods Phys Res. Sect B. 2001; 185: 241-47.
  • 10. Lerner MG, Resczenski JM, Amin A, Johnson RR, Goldsmith JI, Johnson ATC. Toward quantifying the electrostatic transduction mechanism in carbon nanotube molecular sensors. J Am Chem Soc. 2012; 134: 14318.
  • 11. Valeur B. Molecular fluorescence principles and applications. Germany, Weinheim: Wiley-VCH; 2002.
  • 12. Karabacak M, Cinar M, Kurt M, Sundaraganesan N. Experimental and theoretical FTIR and FT-Raman spectroscopic analysis of 1-pyrenecarboxylic acid. Spectrochim Acta Part A: Mol Biomol Spectrosc. 2013; 114: 509-519.
  • 13. Roth A, Ragoussi ME, Wibmer L, Katsukis G, Torre G, Torres T, Guldi DM. Electron-accepting phthalocyanine–pyrene conjugates: towards liquid phase exfoliation of graphite and photoactive nanohybrid formation with graphene. Chem Sci. 2014; 5: 3432–3438.
  • 14. Kaya EN, Tuncel S, Basova TV, Banimuslem H, Hassan A, Gürek AG, Ahsen V, Durmuş M. Effect of pyrene substitution on the formation and sensor propertiesof phthalocyanine-single walled carbon nanotube hybrids. Sensors and Actuators B. 2014; 199: 277-283.
  • 15. Sanusi K, Nyokong T. Effects of pyrene on the photophysical and two-photon absorption-based nonlinear optical properties of indium(III) phthalocyanines. Journal of Coordination Chemistry. 2014; 67: 2911-2924.
  • 16. Kumar RS, Son YA. Synthesis, photophysical and aggregation properties of novel phenanthrene and pyrene substituted phthalocyanines. Korean Chem Eng Res. 2018; 56(6): 792-797.
  • 17. Bartelmess J, Ballesteros B, Torre G, Kiessling D, Campidelli S, Prato M, Torres T, Guldi DM. Phthalocyanine-pyrene conjugates: A powerful approach toward carbon nanotube solar cells. J Am Chem Soc. 2010; 132: 16202-16211.
  • 18. Kaya EN, Basova TV, Polyakov M, Durmuş M, Kadem B, Hassan A. Hybrid materials of pyrene substituted phthalocyanines with single-walled carbon nanotubes: structure and sensing properties. RSC Adv. 2015; 5: 91855-91862.
  • 19. Su Q, Pang S, Alijani V, Li C, Feng X, Müllen K. Composites of graphene with large aromatic molecules. Adv Mater. 2009; 21: 3191-3195.
  • 20. Mann JA, Rodriguez-Lopez J, Abruna HD, Dichtel WR. Multivalent binding motifs for the noncovalent functionalization of graphene. J Am Chem Soc. 2011; 133: 17614-17617.
  • 21. Özçeşmeci İ, Gelir A, Gül A. Synthesis and photophysical properties phthalocyanineepyrene dyads. Dye Pigment. 2012; 92: 954-960.
  • 22. Sürgün S, Arslanoğlu Y, Hamuryudan E. Synthesis of non-peripherally and peripherally substituted zinc (II) phthalocyanines bearing pyrene groups via different routes and their photophysical properties. Dye Pigment. 2014; 100: 32-40.
  • 23. Ogbodu RO, Antunes E, Nyokong T. Physicochemical properties of a zinc phthalocyanine – pyrene conjugate adsorbed onto single walled carbon nanotubes. Dalton Trans. 2013; 42: 10769-10777.
  • 24. Ke L, Min J, Adam M, Gasparini N, Hou Y, Perea JD, Chen W, Zhang H, Fladischer S, Sale , Erdmann Spiecker AC, Tykwinski RR, Brabec CJ, Ameri T. A series of pyrene-substituted silicon phthalocyanines as near-ir sensitizers in organic ternary solar cells. Adv Energy Mater. 2016; 6 (1502355): 1-13.
  • 25. Maree SE, Nyokong T. Syntheses and photochemical properties of octasubstituted phthalocyaninato zinc complexes. J Porphyrins Phthalocyanines. 2001; 5: 782–792.
  • 26. Maya EM, Vazquez P, Torres T. Homo- and hetero-dimetallic ethynyl- and butadiynyl-bridged bisphthalocyaninato complexes. Chem Commun. 1997; 1175-76.
  • 27. Garcia-Iglesias M, Torres T, Gonzalez-Rodriguez D. Well-defined, persistent, chiral phthalocyanine nanoclusters via G-quadruplex assembly. Chem Commun. 2016; 52: 9446-9449.
  • 28. Karaoğlu HRP, Yenilmez HY, Koçak MB. Phthalocyanines formed from several precursors: synthesis, characterization, and comparative fluorescence and quinone quenching. Journal of Coordination Chemistry. 2018; 71(15): 2340-2357.
  • 29. Zorlu Y, Dumoulin F, Durmuş M, Ahsen V. Comparative studies of photophysical and photochemical properties of solketal substituted platinum (II) and zinc (II) phthalocyanine sets. Tetrahedron. 2010; 66 (17): 3248-3258.
  • 30. Du H, Fuh RCA, Li J, Corkan LA, Lindsey JS. PhotochemCAD: A Computer-Aided Design and Research Tool in Photochemistry. Photochem. Photobiol. 1998; 68: 141-142.
  • 31. Rose J. Advanced Physico-chemical Experiments, first ed., Sir Isaac Pitman & Sons Ltd., London, 1964, 257.
  • 32. Kalkan A, Koca A, Bayır ZA. Unsymmetrical phthalocyanines with alkynyl substituents. Polyhedron. 2004; 23: 3155–3162.
  • 33. Haas M, Liu SX, Kahnt A, Leiggener C, Guldi DM, Hauser A, Decurtins S. Photoinduced energy transfer processes within dyads of metallophthalocyanines compactly fused to a ruthenium(II) polypyridine chromophore. J Org Chem. 2007; 72: 7533-7543.
  • 34. Kimura T, Kanota N, Matsui K, Tanaka I, Tsuboi T, Takaguchi Y, Yomogita A, Wakahara T, Kuwahara S, Nagatsugi F, Akasaka T. Preparation and electrochemical and optical properties of unsymmetrically substituted phthalocyanines with one or two trithiole rings and related symmetric derivatives. Inorg Chem. 2008; 47: 3577-3583.
  • 35. Leznoff CC, Hall TW. The synthesis of a soluble, unsymmetrical phthalocyanine on a polymer support. Tetrahedron Lett. 1982; 23: 3023-3026.
  • 36. Erdem SS, Nesterova IV, Soper SA, Hammer RP. Solid-phase synthesis of asymmetrically substituted “AB3-type” phthalocyanines. J Org Chem. 2008; 73: 5003-5007.
  • 37. Kobayashi N, Kondo R, Nakajima S, Osa T. New route to unsymmetrical phthalocyanine analogs by the use of structurally distorted subphthalocyanines. J Am Chem Soc. 1990; 112: 9640-9641.
  • 38. Kobayashi N, Ishizaki T, Ishii K, Konami H. Synthesis, spectroscopy, and molecular orbital calculations of subazaporphyrins, subphthalocyanines, subnaphthalocyanines, and compounds derived therefrom by ring expansion. J Am Chem Soc. 1999: 121; 9096-9110.
  • 39. Kobayashi N, Nonomura T. First observation of the circular dichroism spectra of chiral subphthalocyanines with C3 symmetry. Tetrahedron Lett. 2002; 43: 4253–4255.
  • 40. Meller A, Ossko A. Phthalocyaninartige Bor-Komplexe. Monatsh Chem. 1972; 103: 150-155.
  • 41. Dabak S, Gül A, Bekaroğlu Ö. Hexakis(alkylthio)‐substituted unsymmetrical phthalocyanines. Chem Ber. 1994; 127: 2009-2012.
  • 42. Bhatt MV, Kulkarni SU. Cleavage of ethers. Synthesis. 1983; 249-282.
  • 43. Hirth A, Sobbi AK, Wöhrle D. Synthesis of a monofunctional phthalocyanine on silica. J. Porphyrins Phthalocyanines. 1997; 1: 275-279.
  • 44. De la Torre G, Claessens CG, Torres T. Phthalocyanines: The need for selective synthetic approaches. Eur J Org Chem. 2000; 16: 2821-2830.
  • 45. K. Sonagashira, in: F. Diederich, P.J. Stang (Eds.), Metal- catalyzed cross-coupling reactions. Wiley-V CH, Weinheim, 1998, pp. 203–229.
  • 46. Özçeşmeci M, Nar I, Hamuryudan E. Synthesis and electrochemical and spectroelectrochemical characterization of chloromanganese(III) phthalocyanines. Turk. J. Chem. 2014; 38: 1064-1072.
  • 47. McKeown NB, Li H, Helliwell M, J. Porphyr. Phthalocyanines. A non-planar, hexadeca-substituted, metal-free phthalocyanine. 2005; 9(12): 841-845.
There are 47 citations in total.

Details

Primary Language English
Subjects Inorganic Chemistry
Journal Section Articles
Authors

Hande Pekbelgin Karaoğlu 0000-0001-5145-0819

Ayfer Kalkan Burat 0000-0002-6916-3006

Publication Date October 20, 2019
Submission Date May 30, 2019
Acceptance Date July 17, 2019
Published in Issue Year 2019 Volume: 6 Issue: 3

Cite

Vancouver Pekbelgin Karaoğlu H, Kalkan Burat A. Synthesis and photophysical properties of usymmetrically substituted phthalocyanine-pyrene conjugate. JOTCSA. 2019;6(3):319-28.