Year 2020,
Volume: 7 Issue: 1, 215 - 224, 15.02.2020
Yasemin Tümer
,
Mahmut Çayırbaşı
Onur Şahin
Tuncer Hökelek
References
- 1. Chandrasekhar V, Narayanan RS, Mamidala R, Venkatasubbaiah K. Phosphazenes. In Organophosphorus Chemistry Volume 47, Eds. Allen, DW, Loakes, D and Tebby, JC. Royal Society of Chemistry, Cambridge, UK; 2018, 363-424.
- 2. Stewart FF. Phosphazenes. In Organophosphorus Chemistry Volume 44, Eds. : Allen DW, Loakes D, Tebby JC. Royal Society of Chemistry, Cambridge, UK; 2015, 397-430.
- 3. Chandrasekhar V, Krishnan V. Advances in the chemistry of chloro-cyclophosphazenes. Advances in Inorganic Chemistry. 2002;53:159-211.
- 4. Beşli S, Coles SJ, Coles LS, Davies DB, Kılıç A. Investigation of a spiro to ansa rearrangement with di-functional alcohols in cyclotriphosphazene derivatives. Polyhedron. 2012;43:176–84.
- 5. Türe S. Phosphorus-nitrogen compounds: Reinvestigation of the reactions of hexachlorocyclotriphosphazene with 1,4-butane- and 1,6-hexane-diols—NMR studies of the products. Phosphorus, Sulfur, and Silicon and the Related Elements. 2016;191(8): 1174-82.
- 6. Muralidharan K, Elias A. Preparation of the First Examples of Ansa−Spiro Substituted Fluorophosphazenes and Their Structural Studies: Analysis of C−H···F−P Weak Interactions in Substituted Fluorophosphazenes. Inorg. Chem. 2003;42:7535–43.
- 7. Koran K, Tekin Ç, Biryan F, Tekin S, Sandal S, Görgülü AO. Synthesis, structural and thermal characterizations, dielectric properties and in vitro cytotoxic activities of new 2,2,4,4-tetra(4′-oxy-substituted-chalcone)-6,6-diphenylcyclotriphosphazene derivatives. Medicinal Chemistry Research. 2017;26(5):962-74.
- 8. Tümer Y, Şehirli E, Yüksektepe Ataol Ç. Syntheses and Structural Characterizations of First Paraben Substituted Ferrocenyl Phosphazene Compounds. JOTCSA. 2017;4(1):299-312.
- 9. Tümer Y, Koç LY, Asmafiliz N, Kılıç Z, Hökelek T, Soltanzade H, Açık L, Yola ML, Solak AO. Phosphorus–nitrogen compounds: Part 30. Syntheses and structural investigations, antimicrobial and cytotoxic activities and DNA interactions of vanillinato-substituted NN or NO spirocyclic monoferrocenyl cyclotriphosphazenes. J. Biol. Inorg. Chem. 2015;20:165-78.
- 10. Kundu A, Hariharan PS, Prabakaran K, Anthony SP. Synthesis of new colori/ A fluorimetric chemosensor for selective sensing of biologically important Fe3+, Cu2+ and Zn2+ metal ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015;151:426–31.
- 11. Yenilmez Çiftçi G, Şenkuytu E, Bulut M, Durmuş M. Novel Coumarin Substituted Water Soluble Cyclophosphazenes as “Turn-Off” Type Fluorescence Chemosensors for Detection of Fe3+ ions in Aqueous Media. Journal of Fluorescence. 2015;25:1819–30.
- 12. Şenkuytu E. Novel Aminopyrene Substituted Monospiro/Dispiro Cyclotriphosphazenes: Synthesis, Characterization and Chemosensor Properties. Celal Bayar University Journal of Science. 2018;14(2):209–16.
- 13. Sudhakar S, Sellinger A. Nanocomposite Dendrimers Based on Cyclic Phosphazene Cores: Amorphous Materials for Electroluminescent Devices. Macromolecular Rapid Communications. 2006;27(4):247-54.
- 14. Bolink HJ, Santamaria GS, Sudhakar S, Zhenb C, Sellinger A. Solution processable phosphorescent dendrimers based on cyclic phosphazenes for use in organic light emitting diodes (OLEDs). Chemical Communications. 2008;5:618-20.
- 15. Schrögel P, Hoping M, Kowalsky W, Hunze A, Wagenblast G, Lennartz C, Stohrieg P. Phosphazene-Based Host Materials for the Use in Blue Phosphorescent Organic Light-Emitting Diodes. Chemistry of Materials. 2011;23(22):4947-53.
- 16. Soh SM, Santamaria SAG, Perez-Morales M, Bolink HJ, Sellinger A. Solution processable high band gap hosts based on carbazole functionalized cyclic phosphazene cores for application in organic light‐emitting diodes. Journal of Polymer Science Part B. 2011;49(7):531-9.
- 17. Wang L, Yang YX, Shi X, Mignani S, Caminade AM, Majoral JP. Cyclotriphosphazene core-based dendrimers for biomedical applications: an update on recent advances. Journal of Materials Chemistry B. 2018;6:884-95.
- 18. Caminade AM, Hameauab A and Majoralab JP. The specific functionalization of cyclotriphosphazene for the synthesis of smart dendrimers. Dalton Transactions. 2016;5:1810-22.
- 19. Tümer Y, Asmafiliz N, Zeyrek CT, Kılıç Z, Açık L, Çelik SP, Türk M, Çağdaş Tunalı B, Ünver H, Hökelek T. Syntheses, spectroscopic and crystallographic characterizations of cis- and trans-dispirocyclic ferrocenylphosphazenes: molecular dockings, cytotoxic and antimicrobial activities. New J. Chem. 2018;42(3):1740-56.
- 20. Tümer Y, Asmafiliz N, Kılıç Z, Aydın B, Açık L, Hökelek T. Phosphorus-nitrogen compounds: Part 43. Syntheses, spectroscopic characterizations and antimicrobial activities of cis- and trans-N/O dispirocyclotriphosphazenes containing ferrocenyl pendant arms. J. Mol. Struct. 2018;1173:885-93.
- 21. Elmas G, Okumuş A, Cemaloğlu R, Kılıç Z, Çelik SP, Açık L, Tunalı BÇ, Türk M, Çerçi NA, Güzel R, Hökelek T. Phosphorus-nitrogen compounds. part 38. Syntheses, characterizations,cytotoxic, antituberculosis and antimicrobial activities and DNA interactions of spirocyclotetraphosphazenes with bis-ferrocenyl pendant arms. Journal of Organometallic Chemistry. 2017;853:93-106.
- 22. Asmafiliz N, Civan M, Uzunalioğlu N, Özben A, Kılıç Z, Kayalak H, Açık L, Hökelek T. Phosphorus-nitrogen compounds. Part 41. Ferrocenyl pendant-armed spirocyclopiperidinocyclotriphosphazatrienes; Langmuir-Blodgett thin films and biological activity studies. J. Chem. Sci. 2018;130:152.
- 23. Asmafiliz N, Kılıç Z, Civan M, Avcı O, Gönder LY, Açık L, Aydın B, Türk M and Hökelek T. Phosphorus–nitrogen compounds. Part 36. Syntheses, Langmuir–Blodgett thin films and biological activities of spiro-bino-spiro trimeric phosphazenes. New J. Chem. 2016;40:9609-26.
- 24. Asmafiliz N, Kılıç Z, Öztürk A, Hökelek T, Koç LY, Açık L, Kısa Ö, Albay A, Üstündağ Z, Solak AO. Phosphorus-Nitrogen Compounds : Part 18. Syntheses, Stereogenic Properties, Structural and Electrochemical Investigations, Biological Activities and DNA Interactions of New Mono- and Bis-Ferrocenyl Spirocyclic Phosphazene Derivatives. Inorg. Chem. 2009;48:10102-16.
- 25. Çayırbaşı M. Etil p-hidroksibenzoat sübstitüe ferrosenilfosfazen türevlerinin sentezi ve yapılarının aydınlatılması, [Yüksek Lisans Tezi]. [Karabük]: Karabük Üniversitesi; 2013.
- 26. Sheldrick GM, Acta Cryst. 2008; A64: 112.
- 27. Sheldrick GM, Acta Cryst. 2015; C71: 3.
- 28. APEX2, Bruker AXS Inc. Madison Wisconsin USA. 2013.
- 29. Mercury, version 3.3; CCDC, available online via cdc.cam.ac.uk/products/mercury.
- 30. Farrugia LJ, J. Apply. Cryst. 1999; 32: 837.
The Synthesis of New Phosphazene-Bearing Ethyl p-Hydroxybenzoate and Ferrocenyl Pendant Groups and their Spectroscopic and Crystallographic Characterizations
Year 2020,
Volume: 7 Issue: 1, 215 - 224, 15.02.2020
Yasemin Tümer
,
Mahmut Çayırbaşı
Onur Şahin
Tuncer Hökelek
Abstract
Herein, we
report a study of novel hexachlorocyclotriphosphazene (N3P3Cl6)
derivatives bearing ethyl p-hydroxy benzoate
and pendant ferrocenyl groups. Characterizations of the products [mono- 2, di- (geminal 3a; non-geminal transa-3b, transb-3c and cis-3d), tri- 4 and tetra-
5
substitue phosphazene derivatives] were performed using elemental analysis and spectral methods. The structure
of the two compounds (2 and 5) are
elucidated by X-ray diffraction techniques.
References
- 1. Chandrasekhar V, Narayanan RS, Mamidala R, Venkatasubbaiah K. Phosphazenes. In Organophosphorus Chemistry Volume 47, Eds. Allen, DW, Loakes, D and Tebby, JC. Royal Society of Chemistry, Cambridge, UK; 2018, 363-424.
- 2. Stewart FF. Phosphazenes. In Organophosphorus Chemistry Volume 44, Eds. : Allen DW, Loakes D, Tebby JC. Royal Society of Chemistry, Cambridge, UK; 2015, 397-430.
- 3. Chandrasekhar V, Krishnan V. Advances in the chemistry of chloro-cyclophosphazenes. Advances in Inorganic Chemistry. 2002;53:159-211.
- 4. Beşli S, Coles SJ, Coles LS, Davies DB, Kılıç A. Investigation of a spiro to ansa rearrangement with di-functional alcohols in cyclotriphosphazene derivatives. Polyhedron. 2012;43:176–84.
- 5. Türe S. Phosphorus-nitrogen compounds: Reinvestigation of the reactions of hexachlorocyclotriphosphazene with 1,4-butane- and 1,6-hexane-diols—NMR studies of the products. Phosphorus, Sulfur, and Silicon and the Related Elements. 2016;191(8): 1174-82.
- 6. Muralidharan K, Elias A. Preparation of the First Examples of Ansa−Spiro Substituted Fluorophosphazenes and Their Structural Studies: Analysis of C−H···F−P Weak Interactions in Substituted Fluorophosphazenes. Inorg. Chem. 2003;42:7535–43.
- 7. Koran K, Tekin Ç, Biryan F, Tekin S, Sandal S, Görgülü AO. Synthesis, structural and thermal characterizations, dielectric properties and in vitro cytotoxic activities of new 2,2,4,4-tetra(4′-oxy-substituted-chalcone)-6,6-diphenylcyclotriphosphazene derivatives. Medicinal Chemistry Research. 2017;26(5):962-74.
- 8. Tümer Y, Şehirli E, Yüksektepe Ataol Ç. Syntheses and Structural Characterizations of First Paraben Substituted Ferrocenyl Phosphazene Compounds. JOTCSA. 2017;4(1):299-312.
- 9. Tümer Y, Koç LY, Asmafiliz N, Kılıç Z, Hökelek T, Soltanzade H, Açık L, Yola ML, Solak AO. Phosphorus–nitrogen compounds: Part 30. Syntheses and structural investigations, antimicrobial and cytotoxic activities and DNA interactions of vanillinato-substituted NN or NO spirocyclic monoferrocenyl cyclotriphosphazenes. J. Biol. Inorg. Chem. 2015;20:165-78.
- 10. Kundu A, Hariharan PS, Prabakaran K, Anthony SP. Synthesis of new colori/ A fluorimetric chemosensor for selective sensing of biologically important Fe3+, Cu2+ and Zn2+ metal ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015;151:426–31.
- 11. Yenilmez Çiftçi G, Şenkuytu E, Bulut M, Durmuş M. Novel Coumarin Substituted Water Soluble Cyclophosphazenes as “Turn-Off” Type Fluorescence Chemosensors for Detection of Fe3+ ions in Aqueous Media. Journal of Fluorescence. 2015;25:1819–30.
- 12. Şenkuytu E. Novel Aminopyrene Substituted Monospiro/Dispiro Cyclotriphosphazenes: Synthesis, Characterization and Chemosensor Properties. Celal Bayar University Journal of Science. 2018;14(2):209–16.
- 13. Sudhakar S, Sellinger A. Nanocomposite Dendrimers Based on Cyclic Phosphazene Cores: Amorphous Materials for Electroluminescent Devices. Macromolecular Rapid Communications. 2006;27(4):247-54.
- 14. Bolink HJ, Santamaria GS, Sudhakar S, Zhenb C, Sellinger A. Solution processable phosphorescent dendrimers based on cyclic phosphazenes for use in organic light emitting diodes (OLEDs). Chemical Communications. 2008;5:618-20.
- 15. Schrögel P, Hoping M, Kowalsky W, Hunze A, Wagenblast G, Lennartz C, Stohrieg P. Phosphazene-Based Host Materials for the Use in Blue Phosphorescent Organic Light-Emitting Diodes. Chemistry of Materials. 2011;23(22):4947-53.
- 16. Soh SM, Santamaria SAG, Perez-Morales M, Bolink HJ, Sellinger A. Solution processable high band gap hosts based on carbazole functionalized cyclic phosphazene cores for application in organic light‐emitting diodes. Journal of Polymer Science Part B. 2011;49(7):531-9.
- 17. Wang L, Yang YX, Shi X, Mignani S, Caminade AM, Majoral JP. Cyclotriphosphazene core-based dendrimers for biomedical applications: an update on recent advances. Journal of Materials Chemistry B. 2018;6:884-95.
- 18. Caminade AM, Hameauab A and Majoralab JP. The specific functionalization of cyclotriphosphazene for the synthesis of smart dendrimers. Dalton Transactions. 2016;5:1810-22.
- 19. Tümer Y, Asmafiliz N, Zeyrek CT, Kılıç Z, Açık L, Çelik SP, Türk M, Çağdaş Tunalı B, Ünver H, Hökelek T. Syntheses, spectroscopic and crystallographic characterizations of cis- and trans-dispirocyclic ferrocenylphosphazenes: molecular dockings, cytotoxic and antimicrobial activities. New J. Chem. 2018;42(3):1740-56.
- 20. Tümer Y, Asmafiliz N, Kılıç Z, Aydın B, Açık L, Hökelek T. Phosphorus-nitrogen compounds: Part 43. Syntheses, spectroscopic characterizations and antimicrobial activities of cis- and trans-N/O dispirocyclotriphosphazenes containing ferrocenyl pendant arms. J. Mol. Struct. 2018;1173:885-93.
- 21. Elmas G, Okumuş A, Cemaloğlu R, Kılıç Z, Çelik SP, Açık L, Tunalı BÇ, Türk M, Çerçi NA, Güzel R, Hökelek T. Phosphorus-nitrogen compounds. part 38. Syntheses, characterizations,cytotoxic, antituberculosis and antimicrobial activities and DNA interactions of spirocyclotetraphosphazenes with bis-ferrocenyl pendant arms. Journal of Organometallic Chemistry. 2017;853:93-106.
- 22. Asmafiliz N, Civan M, Uzunalioğlu N, Özben A, Kılıç Z, Kayalak H, Açık L, Hökelek T. Phosphorus-nitrogen compounds. Part 41. Ferrocenyl pendant-armed spirocyclopiperidinocyclotriphosphazatrienes; Langmuir-Blodgett thin films and biological activity studies. J. Chem. Sci. 2018;130:152.
- 23. Asmafiliz N, Kılıç Z, Civan M, Avcı O, Gönder LY, Açık L, Aydın B, Türk M and Hökelek T. Phosphorus–nitrogen compounds. Part 36. Syntheses, Langmuir–Blodgett thin films and biological activities of spiro-bino-spiro trimeric phosphazenes. New J. Chem. 2016;40:9609-26.
- 24. Asmafiliz N, Kılıç Z, Öztürk A, Hökelek T, Koç LY, Açık L, Kısa Ö, Albay A, Üstündağ Z, Solak AO. Phosphorus-Nitrogen Compounds : Part 18. Syntheses, Stereogenic Properties, Structural and Electrochemical Investigations, Biological Activities and DNA Interactions of New Mono- and Bis-Ferrocenyl Spirocyclic Phosphazene Derivatives. Inorg. Chem. 2009;48:10102-16.
- 25. Çayırbaşı M. Etil p-hidroksibenzoat sübstitüe ferrosenilfosfazen türevlerinin sentezi ve yapılarının aydınlatılması, [Yüksek Lisans Tezi]. [Karabük]: Karabük Üniversitesi; 2013.
- 26. Sheldrick GM, Acta Cryst. 2008; A64: 112.
- 27. Sheldrick GM, Acta Cryst. 2015; C71: 3.
- 28. APEX2, Bruker AXS Inc. Madison Wisconsin USA. 2013.
- 29. Mercury, version 3.3; CCDC, available online via cdc.cam.ac.uk/products/mercury.
- 30. Farrugia LJ, J. Apply. Cryst. 1999; 32: 837.