Research Article
BibTex RIS Cite

Study of Electronic Transition of Complex Fe (III), Ni (II) and Zn (II)-1.10-Phenanthroline: Modelling and UV-Vis Spectra Analysis

Year 2020, Volume: 7 Issue: 1, 155 - 168, 15.02.2020
https://doi.org/10.18596/jotcsa.589848

Abstract

Geometric modeling and
geometric optimization of Fe
(III)-1.10-Phenantroline (Fe-Phen), Ni (II)-1.10-Phenantroline
(Ni-Phen) and Zn (II)-1.10-Phenantroline (Zn-Phen) compounds have been carried
out computing using the semi-empirical method of PM3. The spectral measurements
and the study of complex electronic compositions using the UV-Vis spectrophotometer
and simulation of ZINDO/s
(Zerner's
Neglect of Differential Overlap)
calculations.
The optimum result of the geometry of complex molecule found there is a change
of charge in each complex with stable energy. The UV-Vis spectra measurements
showed λmax in the Fe-Phen complex: 315.50 nm, Ni-Phen complex: 325.00 nm and
Zn-Phen complex: 315.00 nm. The electronic transition occurring at these three
complexes shows the transition characteristics of electrons at the level of the
molecular orbitals π to π*
and the degree of the molecular orbitals n to π⃰.
Electron transition energy in complex orbital molecules can be observed in the
energy changes of each molecular orbitals
.

References

  • 1. Cimen E, Gumus I, Arslan H. The Role of Intermolecular Interactions in the Assembly of Zinc(II) and Lead(II) Complexes Containing Carboxylate Ligand and Their Conversion to Metal Oxides. J. Mol. Struct. 2018; 1166, 397-406.
  • 2. Chang R, Overby J. General Chemistry: The Essential Concepts. The McGraw-Hill Companies, New York; 2011.
  • 3. El-Shafiy HF. Synthesis, Spectral, Photoluminescence, DFT Studies and Bioassay of New Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) Complexes of 1-ethyl-4-hydroxy-3-(nitroacetyl) quinolin-2(1H)-one. J. Mol. Struct. 2018; 1166, 348-61.
  • 4. Lin JQ, Xiong C, Xin JH, Li M, Guo WH, Liu F, Tong XL, Ge YC. Structural Variation and Luminescence Properties of d10 Metal Ions Complexes from 5-aminotetrazolate Ligand. J. Mol. Struct. 2018; 1166, 1-6.
  • 5. Tosonian, S., Ruiz, C. J., Rios, A., Frias, E., and Eichler, J. F., Synthesis, characterization, and stability of iron (III) complex ions possessing phenanthroline-based ligands J. Inorg. Chem., 2013, 3, 7-13.
  • 6. Anbu S, Killivalavan A, Alegria ECBA, Mathan G, Kandaswamy M, Effect of 1,10-Phenanthroline on DNA Binding, DNA Cleavage, Cytotoxic and Lactate Dehydrogenase Inhibition Properties of Robson Type Macrocyclic Dicopper(II) Complex. J. Coord. Chem. 2013; 66(22), 3989-4003.
  • 7. Syiemlieh I, Kumar A, Kurbah SD, Lal RA, Synthesis, Characterization and Structure Assessment of Mononuclear and Binuclear Low-Spin Manganese(II) Complexes Derived from Oxaloyldihydrazones, 1,10- Phenanthroline and 2,2′-Bipyridine. J. Mol. Struct. 2018; 1166, 252-61.
  • 8 .Aljahdali MS, El‐Sherif AA, Hilal RH, Karim ATA. Mixed Bivalent Transition Metal Complexes of 1,10‐Phenanthroline and 2‐aminomethylthiophenyl‐4 Bromosalicylaldehyde Schiff Base: Spectroscopic, Molecular Modeling and Biological Activities. Eur. J. Chem. 2014; 4(4), 370-8.
  • 9. Miessler GL, Fischer PJ, Tarr DA, Inorganic chemistry 5th edn. Pearson Education, USA; 2014.
  • 10. Prior TJ, Rujiwatra A, Chimupala Y. [Ni (1,10-phenanthroline)2 (H2O)2](NO3)2: A Simple Coordination Complex with a Remarkably Complicated Structure that Simplifies on Heatin. J. Crystals; 2011, 1, 178-94.
  • 11. Shah RS, Shah RR, Pawar RB, Gayakar PP. UV-Visible Spectroscopy-A Review. J. Pharm. Sci. 2015; 5(5), 491-505.
  • 12. Zheng SL, Chen XM, Recent Advances in Luminescent Monomeric, Multinuclear, and Polymeric Zn (II) and Cd (II) Coordination Complexes. Aus. J. Chem, 2004; 57, 703-21.
  • 13. Pavia DL, Lampman GM, Kriz GS, Vyvyan ZR. Introduction of Spectroscopy. Cengage Learning, USA; 2013.
  • 14. Toma HE, Kuwabara IH, de Faria DLA. ZINDO/s Calculations and Resonance Raman Spectra of the bis (2.6-diacteylmethyliminepyridine)iron(II) Complex. J. Braz. Chem. Soc. 1996; 7(6), 391-4.
  • 15. Gayathri R. An Experimental and Theoretical Investigation of The Electronic Structure and Photoelectrical Properties of 1, 4-diacetoxy-2-methylnaphthalene for DSSC Application. J. Mol. Struct. 2018; 1166, 63-74.
  • 16. Hadi AA. Quantum-Chemical Study for Some Coumarin Compounds by Using Semi-Empirical Methods. J. ChemTech Research, 2016; 9(10), 139-48.
  • 17. Gonta S, Utinans M, Kirilov G, Belyakov S, Ivanova I, Fleisher M, Savenkov V, Kirilova E. Fluorescent Substituted Amidines of Benzanthrone: Synthesis, Spectroscopyand Quantum Chemical Calculations. J. Spectrochim Acta Part A : Mol. Biomol. Spectrosc. 2013; 101, 325-34.
  • 18. Mirzaei M, Hassanpoor A, Alizadeh H, Gohari M, Blake AJ. An Eight-Coordinate Zinc Complex Containing the Highly Pre-Organized Ligand 1,10-Phenanthroline-2,9-Dicarboxylic Acid: Solvothermal Synthesis, Supramolecular Structure and CSD Studies. J. Mol. Struct. 2018; 1171, 626-30.
  • 19. Lewars E. Computational chemistry: introduction to the theory and applications of molecular and quantum mechanics. Kluwer Academic Publishers, USA; 2014.
  • 20. Marković Z, Manojlović N, Zlatanović S. Electronic Absorption Spectra of Substituted Anthraquinones and Their Simulation Using ZINDO/s Method. Int. J. Serb.Soc.Comput. Mechan. 2008; 2(2), 73-9.
  • 21. Uddin MN, Khandaker S, Moniruzman, Amin S, Sumi W, Rahman MA, Rahman SM. Synthesis, Characterization, Molecular Modeling, Antioxidant and Microbial Properties of Some Titanium(IV) Complexes of Schiff Bases. J. Mol. Struct. 2018; 1166, 79-90.
  • 22. Saraha AR, Rakhman KH, Sugrah N. Anti UV-Activity and Elektronic Transition Study of 1,3-diphentyl-2-propenone Using Semi-Empirical Method ZINDO/s. Asian Journal of Chemistry. 2018; 30(5), 1057-60.
  • 23. Jensen F. Introduction to computational chemistry. John Wiley & Sons Ltd, England; 2007.
  • 24. Brown TL, LeMay HE, Bursten BE, Murphy CJ, Woodward PM, Stoltzfus MW. Chemistry the Central Science. Pearson Education, USA; 2015.
  • 25. Kusyanto, A., and Sugiyarto, K. H., Synthesis and characterization of iron(III) complex with 1,10-phenanthroline ligand and trifluoromethanesulfonate anion, Jurnal Kimia Dasar, 2017; 6, 51-8.
  • 26. Housecroft CE, Sharpe AG. Inorganic chemistry. Pearson Education Limited, England; 2005.
  • 27. Gao, H. Z., Su, Z. M., Qin, C. S., Mo, R. G., and Kan, Y. H., Electronic structure and molecular orbital study of the first excited state of the high-efficiency blue OLED material bis(2-methyl-8- quinolinolato)aluminum(III) hydroxide complex from Ab initio and TD-B3LYP, Inte. J. Quantum chem., 2004, 97, 992-1001.
  • 28. Rakhman K, Khadijah, Abdjan M, Kumendong N, Puspitasari S. Modeling of Anthocyanin Derivatives as Anti-UV Agents. JOTCSA. 2019; 5: 1287–94.
  • 29. Nepras, M., Almonasy, N., Michl, M., Dvorák M., and Fidler, V., Electronic structure, spectra and photophysical properties of N-triazinylderivatives of 1-aminopyrene. Semi-empirical theoretical study, J. Dyes and pigments, 2012, 92, 1331-6.
  • 30. Suendo, V., and Viridi, S., Ab initio calculation of UV-Vis absorption spectra of a single chlorophyll a molecule: comparison study between RHF/CIS, TDDFT, and semi-empirical methods, ITB J. Sci., 2012, 44, 93-112.
Year 2020, Volume: 7 Issue: 1, 155 - 168, 15.02.2020
https://doi.org/10.18596/jotcsa.589848

Abstract

References

  • 1. Cimen E, Gumus I, Arslan H. The Role of Intermolecular Interactions in the Assembly of Zinc(II) and Lead(II) Complexes Containing Carboxylate Ligand and Their Conversion to Metal Oxides. J. Mol. Struct. 2018; 1166, 397-406.
  • 2. Chang R, Overby J. General Chemistry: The Essential Concepts. The McGraw-Hill Companies, New York; 2011.
  • 3. El-Shafiy HF. Synthesis, Spectral, Photoluminescence, DFT Studies and Bioassay of New Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) Complexes of 1-ethyl-4-hydroxy-3-(nitroacetyl) quinolin-2(1H)-one. J. Mol. Struct. 2018; 1166, 348-61.
  • 4. Lin JQ, Xiong C, Xin JH, Li M, Guo WH, Liu F, Tong XL, Ge YC. Structural Variation and Luminescence Properties of d10 Metal Ions Complexes from 5-aminotetrazolate Ligand. J. Mol. Struct. 2018; 1166, 1-6.
  • 5. Tosonian, S., Ruiz, C. J., Rios, A., Frias, E., and Eichler, J. F., Synthesis, characterization, and stability of iron (III) complex ions possessing phenanthroline-based ligands J. Inorg. Chem., 2013, 3, 7-13.
  • 6. Anbu S, Killivalavan A, Alegria ECBA, Mathan G, Kandaswamy M, Effect of 1,10-Phenanthroline on DNA Binding, DNA Cleavage, Cytotoxic and Lactate Dehydrogenase Inhibition Properties of Robson Type Macrocyclic Dicopper(II) Complex. J. Coord. Chem. 2013; 66(22), 3989-4003.
  • 7. Syiemlieh I, Kumar A, Kurbah SD, Lal RA, Synthesis, Characterization and Structure Assessment of Mononuclear and Binuclear Low-Spin Manganese(II) Complexes Derived from Oxaloyldihydrazones, 1,10- Phenanthroline and 2,2′-Bipyridine. J. Mol. Struct. 2018; 1166, 252-61.
  • 8 .Aljahdali MS, El‐Sherif AA, Hilal RH, Karim ATA. Mixed Bivalent Transition Metal Complexes of 1,10‐Phenanthroline and 2‐aminomethylthiophenyl‐4 Bromosalicylaldehyde Schiff Base: Spectroscopic, Molecular Modeling and Biological Activities. Eur. J. Chem. 2014; 4(4), 370-8.
  • 9. Miessler GL, Fischer PJ, Tarr DA, Inorganic chemistry 5th edn. Pearson Education, USA; 2014.
  • 10. Prior TJ, Rujiwatra A, Chimupala Y. [Ni (1,10-phenanthroline)2 (H2O)2](NO3)2: A Simple Coordination Complex with a Remarkably Complicated Structure that Simplifies on Heatin. J. Crystals; 2011, 1, 178-94.
  • 11. Shah RS, Shah RR, Pawar RB, Gayakar PP. UV-Visible Spectroscopy-A Review. J. Pharm. Sci. 2015; 5(5), 491-505.
  • 12. Zheng SL, Chen XM, Recent Advances in Luminescent Monomeric, Multinuclear, and Polymeric Zn (II) and Cd (II) Coordination Complexes. Aus. J. Chem, 2004; 57, 703-21.
  • 13. Pavia DL, Lampman GM, Kriz GS, Vyvyan ZR. Introduction of Spectroscopy. Cengage Learning, USA; 2013.
  • 14. Toma HE, Kuwabara IH, de Faria DLA. ZINDO/s Calculations and Resonance Raman Spectra of the bis (2.6-diacteylmethyliminepyridine)iron(II) Complex. J. Braz. Chem. Soc. 1996; 7(6), 391-4.
  • 15. Gayathri R. An Experimental and Theoretical Investigation of The Electronic Structure and Photoelectrical Properties of 1, 4-diacetoxy-2-methylnaphthalene for DSSC Application. J. Mol. Struct. 2018; 1166, 63-74.
  • 16. Hadi AA. Quantum-Chemical Study for Some Coumarin Compounds by Using Semi-Empirical Methods. J. ChemTech Research, 2016; 9(10), 139-48.
  • 17. Gonta S, Utinans M, Kirilov G, Belyakov S, Ivanova I, Fleisher M, Savenkov V, Kirilova E. Fluorescent Substituted Amidines of Benzanthrone: Synthesis, Spectroscopyand Quantum Chemical Calculations. J. Spectrochim Acta Part A : Mol. Biomol. Spectrosc. 2013; 101, 325-34.
  • 18. Mirzaei M, Hassanpoor A, Alizadeh H, Gohari M, Blake AJ. An Eight-Coordinate Zinc Complex Containing the Highly Pre-Organized Ligand 1,10-Phenanthroline-2,9-Dicarboxylic Acid: Solvothermal Synthesis, Supramolecular Structure and CSD Studies. J. Mol. Struct. 2018; 1171, 626-30.
  • 19. Lewars E. Computational chemistry: introduction to the theory and applications of molecular and quantum mechanics. Kluwer Academic Publishers, USA; 2014.
  • 20. Marković Z, Manojlović N, Zlatanović S. Electronic Absorption Spectra of Substituted Anthraquinones and Their Simulation Using ZINDO/s Method. Int. J. Serb.Soc.Comput. Mechan. 2008; 2(2), 73-9.
  • 21. Uddin MN, Khandaker S, Moniruzman, Amin S, Sumi W, Rahman MA, Rahman SM. Synthesis, Characterization, Molecular Modeling, Antioxidant and Microbial Properties of Some Titanium(IV) Complexes of Schiff Bases. J. Mol. Struct. 2018; 1166, 79-90.
  • 22. Saraha AR, Rakhman KH, Sugrah N. Anti UV-Activity and Elektronic Transition Study of 1,3-diphentyl-2-propenone Using Semi-Empirical Method ZINDO/s. Asian Journal of Chemistry. 2018; 30(5), 1057-60.
  • 23. Jensen F. Introduction to computational chemistry. John Wiley & Sons Ltd, England; 2007.
  • 24. Brown TL, LeMay HE, Bursten BE, Murphy CJ, Woodward PM, Stoltzfus MW. Chemistry the Central Science. Pearson Education, USA; 2015.
  • 25. Kusyanto, A., and Sugiyarto, K. H., Synthesis and characterization of iron(III) complex with 1,10-phenanthroline ligand and trifluoromethanesulfonate anion, Jurnal Kimia Dasar, 2017; 6, 51-8.
  • 26. Housecroft CE, Sharpe AG. Inorganic chemistry. Pearson Education Limited, England; 2005.
  • 27. Gao, H. Z., Su, Z. M., Qin, C. S., Mo, R. G., and Kan, Y. H., Electronic structure and molecular orbital study of the first excited state of the high-efficiency blue OLED material bis(2-methyl-8- quinolinolato)aluminum(III) hydroxide complex from Ab initio and TD-B3LYP, Inte. J. Quantum chem., 2004, 97, 992-1001.
  • 28. Rakhman K, Khadijah, Abdjan M, Kumendong N, Puspitasari S. Modeling of Anthocyanin Derivatives as Anti-UV Agents. JOTCSA. 2019; 5: 1287–94.
  • 29. Nepras, M., Almonasy, N., Michl, M., Dvorák M., and Fidler, V., Electronic structure, spectra and photophysical properties of N-triazinylderivatives of 1-aminopyrene. Semi-empirical theoretical study, J. Dyes and pigments, 2012, 92, 1331-6.
  • 30. Suendo, V., and Viridi, S., Ab initio calculation of UV-Vis absorption spectra of a single chlorophyll a molecule: comparison study between RHF/CIS, TDDFT, and semi-empirical methods, ITB J. Sci., 2012, 44, 93-112.
There are 30 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry
Journal Section Articles
Authors

Khusna Arif Rakhman 0000-0003-4231-7762

Zulkifl Zam Zam This is me 0000-0002-0046-0520

Sudir Umar This is me 0000-0002-1670-1763

Muhammad İkhlas Abdjan This is me 0000-0003-0783-5791

Publication Date February 15, 2020
Submission Date July 10, 2019
Acceptance Date November 26, 2019
Published in Issue Year 2020 Volume: 7 Issue: 1

Cite

Vancouver Arif Rakhman K, Zam Zam Z, Umar S, Abdjan Mİ. Study of Electronic Transition of Complex Fe (III), Ni (II) and Zn (II)-1.10-Phenanthroline: Modelling and UV-Vis Spectra Analysis. JOTCSA. 2020;7(1):155-68.