Determination of Gluconate Binding Properties on Magnetite Surface and Investigation of Carboxymethylation and Hydrazination Mechanisms of the Gluconated Magnetite Surface: A Computational Study
Year 2020,
Volume: 7 Issue: 1, 169 - 178, 15.02.2020
İşılay Öztürk
,
Şenay Şanlıer
Armağan Kınal
Abstract
In
the present study, the probable binding structure of a gluconate molecule with
magnetite, (Fe3O4) nanoparticles, as well as,
carboxymethylation and hydrazination mechanisms of the gluconate bound to the iron
oxide surface have been computationally investigated by the DFT-B3LYP method.
The B3LYP/LanL2DZ calculations together with experimental IR data available
revealed that the probable binding structure of gluconate is bidentate bridged
binding to the magnetite surface. The carboxymethylation and hydrazination
mechanisms of gluconate were calculated at B3LYP/6-31+G(d,p) level of theory. The
results indicate that the reaction between gluconate and chloroacetate in
aqueous medium has one step mechanism passing through a low activation barrier
(12.3 kcal/mol) with a reaction enthalpy of –42.8 kcal/mol. In addition, hydrazone
bond formation reaction of the gluconate bound to the iron oxide surface has a
highly-exothermic two-step-mechanism with barriers of 7.1 and 2.4 kcal/mol,
respectively, in water. The activation barrier of the overall reaction is
accepted as the barrier of the first step since the barrier of this step is
greater than that of the second one. Consequently, it can be predicted that both
carboxymethylation and hydrazination reactions should be spontaneous under moderate
conditions.
Supporting Institution
TUBİTAK
Thanks
The authors thank the Scientific and Technological Research Council of Turkey (TUBITAK) (Project ID: 113Z165) and Ege University Scientific Research Project Office (Project ID: 2014 BIL 006 and 2015 FEN 055) for their financial support. All calculations reported in this paper were performed at High Performance and Grid Computing Center (TRUBA resources), ULAKBIM. IO acknowledges the contrubitions of Guliz Ak and Habibe Yılmaz.
References
- 1. Manchun S, Dass CR, Sriamornsak P. Targeted therapy for cancer using pH-responsive nanocarrier systems. Life Sci. 2012;90(11–12):381–7.
- 2. Wei H, Zhuo RX, Zhang XZ. Design and development of polymeric micelles with cleavable links for intracellular drug delivery. Prog Polym Sci. 2013;38(3–4):503–35.
- 3. Etrych T, Kovář L, Strohalm J, Chytil P, Říhová B, Ulbrich K. Biodegradable star HPMA polymer-drug conjugates: Biodegradability, distribution and anti-tumor efficacy. J Control Release. 2011;154(3):241–8.
- 4. Chang Y, Meng X, Zhao Y, Li K, Zhao B, Zhu M, vd. Novel water-soluble and pH-responsive anticancer drug nanocarriers: Doxorubicin-PAMAM dendrimer conjugates attached to superparamagnetic iron oxide nanoparticles (IONPs). J Colloid Interface Sci. 2011;363(1):403–9.
- 5. Deng C, Jiang Y, Cheng R, Meng F, Zhong Z. Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: Promises, progress and prospects. Nano Today. 2012;7:467–80.
- 6. Jun YW, Huh YM, Choi JS, Lee JH, Song HT, Kim S, vd. Nanoscale Size Effect of Magnetic Nanocrystals and Their Utilization for Cancer Diagnosis via Magnetic Resonance Imaging. J Am Chem Soc. 2005;127(16):5732–3.
- 7. Uribe Madrid SI, Pal U, Kang YS, Kim J, Kwon H, Kim J. Fabrication of Fe3O4 @mSiO2 Core-Shell Composite Nanoparticles for Drug Delivery Applications. 2011;
- 8. Ray Chowdhuri A, Bhattacharya D, Sahu SK. Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agent. Dalt Trans. Royal Society of Chemistry; 2016;45(7):2963–73.
- 9. Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86(3):215–23.
- 10. Paper R, Manish G, Vimukta S. Targeted drug delivery system : A Review. Res J Chem Sci ResJChemSci. 2011;1(2):1–24.
- 11. Zhang L, Li Y, Yu JC. Chemical modification of inorganic nanostructures for targeted and controlled drug delivery in cancer treatment. J Mater Chem B. 2014;2(5):452–70.
- 12. Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J. Magnetic nanoparticles for drug delivery. June. 2007;2(3).
- 13. Sun C, Lee JSH, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev. 2008;60(11):1252–65.
- 14. McCarthy JR, Weissleder R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev. 2008;60(11):1241–51.
- 15. Uribe Madrid SI, Pal U, Kang YS, Kim J, Kwon H, Kim J. Fabrication of Fe3O4@mSiO2 Core-Shell Composite Nanoparticles for Drug Delivery Applications. Nanoscale Res Lett. Aralık 2015;10(1):217.
- 16. Akbarzadeh A, Samiei M, Davaran S. Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett. 2012;7(1):144.
- 17. Harris LA, Goff JD, Carmichael AY, Riffle JS, Harburn JJ, St. Pierre TG, vd. Magnetite nanoparticle dispersions stabilized with triblock copolymers. Chem Mater. 2003;15(6):1367–77.
- 18. Chen C, Jiang X, Kaneti YV, Yu A. Design and construction of polymerized-glucose coated Fe3O4magnetic nanoparticles for delivery of aspirin. Powder Technol. Elsevier B.V.; 2013;236:157–63.
- 19. Sun X, Zheng C, Zhang F, Yang Y, Wu G, Yu A, vd. Size-controlled synthesis of magnetite (Fe3O4) nanoparticles coated with glucose and gluconic acid from a single Fe(III) precursor by a sucrose bifunctional hydrothermal method. J Phys Chem C. 2009;113(36):16002–8.
- 20. Ak G, Yilmaz H, Güneş A, Hamarat Sanlier S. In vitro and in vivo evaluation of folate receptor-targeted a novel magnetic drug delivery system for ovarian cancer therapy. Artif Cells, Nanomedicine, Biotechnol. Informa UK Limited, trading as Taylor & Francis Group; Şubat 2018;0(0):1–12.
- 21. Haavik C, Stølen S, Fjellvåg H, Hanfland M, Häusermann D. Equation of state of magnetite and its high-pressure modification: Thermodynamics of the Fe-O system at high pressure. Am Mineral. 2000;85(3–4):514–23.
- 22. Salafranca J, Gazquez J, Pérez N, Labarta A, Pantelides ST, Pennycook SJ, vd. Surfactant organic molecules restore magnetism in metal-oxide nanoparticle surfaces. Nano Lett. 2012;12(5):2499–503.
- 23. Demir A, Topkaya R, Baykal A. Green synthesis of superparamagnetic Fe3O4 nanoparticles with maltose: Its magnetic investigation. Polyhedron. Elsevier Ltd; 2013;65:282–7.
- 24. Schwaminger SP, García PF, Merck GK, Bodensteiner FA, Heissler S, Günther S, vd. Nature of Interactions of Amino Acids with Bare Magnetite Nanoparticles. J Phys Chem C. 2015;119(40):23032–41.
- 25. Nosrati H, Salehiabar M, Davaran S, Ramazani A, Manjili HK, Danafar H. New advances strategies for surface functionalization of iron oxide magnetic nano particles (IONPs). Res Chem Intermed. Springer Netherlands; 2017;43(12):7423–42.
- 26. Schwaminger SP, Blank-Shim SA, Scheifele I, Fraga-García P, Berensmeier S. Peptide binding to metal oxide nanoparticles. Faraday Discuss. 2017;
- 27. Śmiłowicz M, Pogorzelec-Glaser K, Łapiński A, Motała R, Grobela M, Andrzejewski B. Spectroscopic and quantum chemical studies of interaction between the alginic acid and Fe<inf>3</inf>O<inf>4</inf> nanoparticles. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2017;182:1–7.
- 28. Sanchez LM, Martin DA, Alvarez VA, Gonzalez JS. Polyacrylic acid-coated iron oxide magnetic nanoparticles: The polymer molecular weight influence. Colloids Surfaces A Physicochem Eng Asp. Elsevier; 2018;543(December 2017):28–37.
- 29. Custer TG, Kato S, Bierbaum VM, Howard CJ, Morrison GC. Gas-Phase Kinetics and Mechanism of the Reactions of Protonated Hydrazine with Carbonyl Compounds . Gas-Phase Hydrazone Formation : Kinetics and Mechanism. 2004;1(2):2744–54.
- 30. Taber DF, Stachel SJ. On the mechanism of the Wolff-Kishner reduction. Tetrahedron Lett. Pergamon; Şubat 1992;33(7):903–6.
Year 2020,
Volume: 7 Issue: 1, 169 - 178, 15.02.2020
İşılay Öztürk
,
Şenay Şanlıer
Armağan Kınal
References
- 1. Manchun S, Dass CR, Sriamornsak P. Targeted therapy for cancer using pH-responsive nanocarrier systems. Life Sci. 2012;90(11–12):381–7.
- 2. Wei H, Zhuo RX, Zhang XZ. Design and development of polymeric micelles with cleavable links for intracellular drug delivery. Prog Polym Sci. 2013;38(3–4):503–35.
- 3. Etrych T, Kovář L, Strohalm J, Chytil P, Říhová B, Ulbrich K. Biodegradable star HPMA polymer-drug conjugates: Biodegradability, distribution and anti-tumor efficacy. J Control Release. 2011;154(3):241–8.
- 4. Chang Y, Meng X, Zhao Y, Li K, Zhao B, Zhu M, vd. Novel water-soluble and pH-responsive anticancer drug nanocarriers: Doxorubicin-PAMAM dendrimer conjugates attached to superparamagnetic iron oxide nanoparticles (IONPs). J Colloid Interface Sci. 2011;363(1):403–9.
- 5. Deng C, Jiang Y, Cheng R, Meng F, Zhong Z. Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: Promises, progress and prospects. Nano Today. 2012;7:467–80.
- 6. Jun YW, Huh YM, Choi JS, Lee JH, Song HT, Kim S, vd. Nanoscale Size Effect of Magnetic Nanocrystals and Their Utilization for Cancer Diagnosis via Magnetic Resonance Imaging. J Am Chem Soc. 2005;127(16):5732–3.
- 7. Uribe Madrid SI, Pal U, Kang YS, Kim J, Kwon H, Kim J. Fabrication of Fe3O4 @mSiO2 Core-Shell Composite Nanoparticles for Drug Delivery Applications. 2011;
- 8. Ray Chowdhuri A, Bhattacharya D, Sahu SK. Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agent. Dalt Trans. Royal Society of Chemistry; 2016;45(7):2963–73.
- 9. Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86(3):215–23.
- 10. Paper R, Manish G, Vimukta S. Targeted drug delivery system : A Review. Res J Chem Sci ResJChemSci. 2011;1(2):1–24.
- 11. Zhang L, Li Y, Yu JC. Chemical modification of inorganic nanostructures for targeted and controlled drug delivery in cancer treatment. J Mater Chem B. 2014;2(5):452–70.
- 12. Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J. Magnetic nanoparticles for drug delivery. June. 2007;2(3).
- 13. Sun C, Lee JSH, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev. 2008;60(11):1252–65.
- 14. McCarthy JR, Weissleder R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev. 2008;60(11):1241–51.
- 15. Uribe Madrid SI, Pal U, Kang YS, Kim J, Kwon H, Kim J. Fabrication of Fe3O4@mSiO2 Core-Shell Composite Nanoparticles for Drug Delivery Applications. Nanoscale Res Lett. Aralık 2015;10(1):217.
- 16. Akbarzadeh A, Samiei M, Davaran S. Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett. 2012;7(1):144.
- 17. Harris LA, Goff JD, Carmichael AY, Riffle JS, Harburn JJ, St. Pierre TG, vd. Magnetite nanoparticle dispersions stabilized with triblock copolymers. Chem Mater. 2003;15(6):1367–77.
- 18. Chen C, Jiang X, Kaneti YV, Yu A. Design and construction of polymerized-glucose coated Fe3O4magnetic nanoparticles for delivery of aspirin. Powder Technol. Elsevier B.V.; 2013;236:157–63.
- 19. Sun X, Zheng C, Zhang F, Yang Y, Wu G, Yu A, vd. Size-controlled synthesis of magnetite (Fe3O4) nanoparticles coated with glucose and gluconic acid from a single Fe(III) precursor by a sucrose bifunctional hydrothermal method. J Phys Chem C. 2009;113(36):16002–8.
- 20. Ak G, Yilmaz H, Güneş A, Hamarat Sanlier S. In vitro and in vivo evaluation of folate receptor-targeted a novel magnetic drug delivery system for ovarian cancer therapy. Artif Cells, Nanomedicine, Biotechnol. Informa UK Limited, trading as Taylor & Francis Group; Şubat 2018;0(0):1–12.
- 21. Haavik C, Stølen S, Fjellvåg H, Hanfland M, Häusermann D. Equation of state of magnetite and its high-pressure modification: Thermodynamics of the Fe-O system at high pressure. Am Mineral. 2000;85(3–4):514–23.
- 22. Salafranca J, Gazquez J, Pérez N, Labarta A, Pantelides ST, Pennycook SJ, vd. Surfactant organic molecules restore magnetism in metal-oxide nanoparticle surfaces. Nano Lett. 2012;12(5):2499–503.
- 23. Demir A, Topkaya R, Baykal A. Green synthesis of superparamagnetic Fe3O4 nanoparticles with maltose: Its magnetic investigation. Polyhedron. Elsevier Ltd; 2013;65:282–7.
- 24. Schwaminger SP, García PF, Merck GK, Bodensteiner FA, Heissler S, Günther S, vd. Nature of Interactions of Amino Acids with Bare Magnetite Nanoparticles. J Phys Chem C. 2015;119(40):23032–41.
- 25. Nosrati H, Salehiabar M, Davaran S, Ramazani A, Manjili HK, Danafar H. New advances strategies for surface functionalization of iron oxide magnetic nano particles (IONPs). Res Chem Intermed. Springer Netherlands; 2017;43(12):7423–42.
- 26. Schwaminger SP, Blank-Shim SA, Scheifele I, Fraga-García P, Berensmeier S. Peptide binding to metal oxide nanoparticles. Faraday Discuss. 2017;
- 27. Śmiłowicz M, Pogorzelec-Glaser K, Łapiński A, Motała R, Grobela M, Andrzejewski B. Spectroscopic and quantum chemical studies of interaction between the alginic acid and Fe<inf>3</inf>O<inf>4</inf> nanoparticles. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2017;182:1–7.
- 28. Sanchez LM, Martin DA, Alvarez VA, Gonzalez JS. Polyacrylic acid-coated iron oxide magnetic nanoparticles: The polymer molecular weight influence. Colloids Surfaces A Physicochem Eng Asp. Elsevier; 2018;543(December 2017):28–37.
- 29. Custer TG, Kato S, Bierbaum VM, Howard CJ, Morrison GC. Gas-Phase Kinetics and Mechanism of the Reactions of Protonated Hydrazine with Carbonyl Compounds . Gas-Phase Hydrazone Formation : Kinetics and Mechanism. 2004;1(2):2744–54.
- 30. Taber DF, Stachel SJ. On the mechanism of the Wolff-Kishner reduction. Tetrahedron Lett. Pergamon; Şubat 1992;33(7):903–6.