Research Article
BibTex RIS Cite
Year 2020, Volume: 7 Issue: 2, 351 - 360, 23.06.2020
https://doi.org/10.18596/jotcsa.568062

Abstract

References

  • 1. Hohenberg P, Kohn W. Phys. Rev. 1964; 136: B864.
  • 2. Kohn W, Sham L J. Phys. Rev. 1965; 140: A1133.
  • 3. Harvey J N. Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 2006; 102: 203.
  • 4. Fey N, Ridgway B M, Jover J, McMullin C L, Harvey J N, Dalton Trans. 2011; 40: 11184.
  • 5. Chermette H. Coord. Chem. ReV. 1998; 178: 699.
  • 6. Dykstra C E, Frending G, Kim K S, Scuseria G E, Editors. Theory and Applications of Computational Chemistry: The First Forty Years. Amsterdam: Elsevier; 2005, 1336 p. ISBN: 9780444517197.
  • 7. Davidson E R. Chem. ReV. 2000; 100: 351.
  • 8. Zhao Y, Truhlar D G. J. Chem. Phys. 2006: 124.
  • 9. Schultz N E, Zhao Y, Truhlar D G. J. Phys. Chem. A. 2005; 109: 11127.
  • 10. Furche F, Perdew J P J. Chem. Phys. 2006; 124: 044103.
  • 11. Kameno Y, Ikeda A, Nakao Y, Sato H, Sakaki S. J. Phys. Chem. A. 2005; 109: 8055.
  • 12. Osipov A L, Gerdov S M, Kuzmina L G, Howard J A K, Nikonov G I. Organometallics. 2005; 24: 577-602.
  • 13. Schmidt M W, Baldridge K K, Boatz J A, Elbert S T, Gordon M S, Jensen J J, Koseki S, Matsunaga N, Nguyen K A, Su S, Windus T L, Dupuis M, Montgomery J A. J. Comput. Chem. 1993; 14: 1347-1363.
  • 14. Yanai T, Tew D P, Handy N C. Chemical Physics Letters. 2004; Vol 393, Issues 1-3: pages 51-57.
  • 15. Stevens W J, Krauss M, Bash H, Jasien P G. Can. J. Chem. 1992; 70: 612.
  • 16. Binkley J S, Pople J A, Hehre W J. Self-Consistent Molecular Orbital Methods. 21. Small Split-Valence Basis Sets for First-Row Elements. J. Amer. Chem. Soc. 1980; 102: 939.
  • 17. Hehre W J, Stewart R F, Pople J A. J. Chem. Phys. 1969; 51: 2657.
  • 18. Collins J B, Schleyer P V R, Binkley J S, Pople J A. Self-Consistent Molecular Orbital Methods. 17. Geometries and binding energies of second-row molecules. A comparison of three basis sets. J. Chem. Phys. 1976; 64: 5142.
  • 19. Gordon M S, Binkley J S, Pople J A, Pietro W J, Hehre W J. Self-Consistent Molecular-Orbital Methods. 22: Small Split-Valence Basis Sets for Second-Row Elements. J. Amer. Chem. Soc. 1982; 104: 2797.

A Comparative DFT Study for Ruthenium

Year 2020, Volume: 7 Issue: 2, 351 - 360, 23.06.2020
https://doi.org/10.18596/jotcsa.568062

Abstract

Here, a comparative DFT study of a transition metal
complex, (pentamethylcyclopentadienyl) (diisopropylmethylphosphine) (chloro)
(trichlorosilyl) rutheniumhydride, is reported. The molecule contains a Ruthenium
(Ru) atom, which is hard to be handled computationally, just like other
transition metals. Every calculation had started from the same point in state
space (exact same atomic configurations of the molecule), and used the same
computational resources (same software and hardware with same parameters), but
five different basis sets; those are, Sapporo Non Relativistic SPK DZP, SBKJ,
3-21G, STO3G and STO6G. Molecule have been optimised for five times with these
basis sets. Results have been compared to X-RAY data of the molecule to reveal
the performances of these five approximation methods about handling a molecule
that contains a transition metal like Ruthenium. It has been found that,
unexpectedly, a computationally cheaper method has won the competition and has
shown best performance among the others. 

References

  • 1. Hohenberg P, Kohn W. Phys. Rev. 1964; 136: B864.
  • 2. Kohn W, Sham L J. Phys. Rev. 1965; 140: A1133.
  • 3. Harvey J N. Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 2006; 102: 203.
  • 4. Fey N, Ridgway B M, Jover J, McMullin C L, Harvey J N, Dalton Trans. 2011; 40: 11184.
  • 5. Chermette H. Coord. Chem. ReV. 1998; 178: 699.
  • 6. Dykstra C E, Frending G, Kim K S, Scuseria G E, Editors. Theory and Applications of Computational Chemistry: The First Forty Years. Amsterdam: Elsevier; 2005, 1336 p. ISBN: 9780444517197.
  • 7. Davidson E R. Chem. ReV. 2000; 100: 351.
  • 8. Zhao Y, Truhlar D G. J. Chem. Phys. 2006: 124.
  • 9. Schultz N E, Zhao Y, Truhlar D G. J. Phys. Chem. A. 2005; 109: 11127.
  • 10. Furche F, Perdew J P J. Chem. Phys. 2006; 124: 044103.
  • 11. Kameno Y, Ikeda A, Nakao Y, Sato H, Sakaki S. J. Phys. Chem. A. 2005; 109: 8055.
  • 12. Osipov A L, Gerdov S M, Kuzmina L G, Howard J A K, Nikonov G I. Organometallics. 2005; 24: 577-602.
  • 13. Schmidt M W, Baldridge K K, Boatz J A, Elbert S T, Gordon M S, Jensen J J, Koseki S, Matsunaga N, Nguyen K A, Su S, Windus T L, Dupuis M, Montgomery J A. J. Comput. Chem. 1993; 14: 1347-1363.
  • 14. Yanai T, Tew D P, Handy N C. Chemical Physics Letters. 2004; Vol 393, Issues 1-3: pages 51-57.
  • 15. Stevens W J, Krauss M, Bash H, Jasien P G. Can. J. Chem. 1992; 70: 612.
  • 16. Binkley J S, Pople J A, Hehre W J. Self-Consistent Molecular Orbital Methods. 21. Small Split-Valence Basis Sets for First-Row Elements. J. Amer. Chem. Soc. 1980; 102: 939.
  • 17. Hehre W J, Stewart R F, Pople J A. J. Chem. Phys. 1969; 51: 2657.
  • 18. Collins J B, Schleyer P V R, Binkley J S, Pople J A. Self-Consistent Molecular Orbital Methods. 17. Geometries and binding energies of second-row molecules. A comparison of three basis sets. J. Chem. Phys. 1976; 64: 5142.
  • 19. Gordon M S, Binkley J S, Pople J A, Pietro W J, Hehre W J. Self-Consistent Molecular-Orbital Methods. 22: Small Split-Valence Basis Sets for Second-Row Elements. J. Amer. Chem. Soc. 1982; 104: 2797.
There are 19 citations in total.

Details

Primary Language English
Subjects Inorganic Chemistry
Journal Section Articles
Authors

Nil Ertekin Binbay 0000-0002-2488-0378

Publication Date June 23, 2020
Submission Date May 21, 2019
Acceptance Date March 14, 2020
Published in Issue Year 2020 Volume: 7 Issue: 2

Cite

Vancouver Binbay NE. A Comparative DFT Study for Ruthenium. JOTCSA. 2020;7(2):351-60.