Research Article
BibTex RIS Cite

Effect of Calcium Stearate on the Thermal Conductivity of Geopolymer Foam

Year 2020, Volume: 7 Issue: 2, 535 - 544, 23.06.2020
https://doi.org/10.18596/jotcsa.660727

Abstract

Geopolymers are considered an alternative to conventional cement recently. The use of fly ash and blast furnace slag in geopolymer, which are waste products considered as an environmentally friendly product due to the solution to the storage of wastes also. Geopolymer concrete production is also reported to be 44-64% less than the cement that causes the most CO2 emissions. CO2 emissions are reduced due to the minimum processed natural minerals and industrial waste products used in the geopolymer system. For this reason, this study comes to the fore in terms of the evaluation of wastes. Production of porous geopolymers is potential in use in many industrial applications such as filtering, thermal insulation, light structural material, and catalysis. By controlling the pore type, pore size distribution, pore connectivity, and shape of porosities, potential usages are differentiated. In this study, closed porosity geopolymer foams were produced by the geopolymerization technique with the help of hydrogen peroxide and calcium stearate (CaS) as a surfactant. The thermal conductivity, density, and strength values was correlated with the changing pore size distribution depending on the amount of surfactant and foaming agent. In this study, porous geopolymers with density values 450-500 kg/m3, 0.069 W/mK thermal conductivity, and 2.1 MPa strength value was reached. The reduction in pore sizes due to CaS increase was analyzed. However, we did not observe a decrease in thermal conductivity values due to the reduction of the pore size. Exciting results for CaS content on thermal conductivity were reported.

Supporting Institution

Afyon Kocatepe Üniversitesi

Project Number

19.Fen.Bil.01 BAP

Thanks

A part of this study was presented orally in 4th International Powder and Porous Materials Symposium 09-11 September, 2019, Marmaris, Turkey. This work was financially supported by Afyon Kocatepe University under the contract of 19.Fen.Bil.01 BAP Project and also it is supported by a TUBİTAK project 218M778.

References

  • 1. Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, Van Deventer JSJ. Geopolymer technology: The current state of the art. J Mater Sci. 2007;42(9):2917–33.
  • 2. Dhananjay KP, V V. Fly Ash as Sustainable Material for Green Concrete - A State of Art. Int J Res Eng Sci Technol. 2015;1(2):17–24.
  • 3. Petrillo A, Cioffi R, Ferone C, Colangelo F, Borrelli C. Eco-sustainable Geopolymer Concrete Blocks Production Process. Agric Agric Sci Procedia [Internet]. 2016;8:408–18. Available from: http://linkinghub.elsevier.com/retrieve/pii/S2210784316300377
  • 4. Duran Atiş C, Bilim C, Çelik Ö, Karahan O. Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Constr Build Mater. 2009;23(1):548–55.
  • 5. Çevik S. The Effect of Oil Consumption and Oil Prices on CO2 Emissions in the Industrial Sector. 2017;19(4):93–110.
  • 6. Dean, B., Dulac, J., Petrichenko, K., and Graham P. Towards a zero-emission, efficient, and resilient buildings and construction sector. In: Global Status Report [Internet]. 2016. p. 1–48. Available from: https://www.worldgbc.org/sites/default/files/UNEP 188_GABC_en (web).pdf
  • 7. Abdollahnejad Z, Pacheco-Torgal F, Félix T, Tahri W, Barroso Aguiar J. Mix design, properties and cost analysis of fly ash-based geopolymer foam. Constr Build Mater [Internet]. 2015;80(May 2010):18–30. Available from: http://dx.doi.org/10.1016/j.conbuildmat.2015.01.063
  • 8. Jiménez Rivero A, De Guzmán Báez A, Navarro JG. New composite gypsum plaster - Ground waste rubber coming from pipe foam insulation. Constr Build Mater. 2014;55(2014):146–52.
  • 9. Cha J, Seo J, Kim S. Building materials thermal conductivity measurement and correlation with heat flow meter, laser flash analysis and TCi. J Therm Anal Calorim. 2012;109(1):295–300.
  • 10. Gunasekara C, Law DW, Setunge S. Effect of Conposition of Fly Ash On Compressive Strength of Fly Ash Based Geopolymer Mortar. 23rd Australas Conf Mech Struct Mater. 2014;3(1):168–77.
  • 11. Pacheco-Torgal F. Eco-efficient construction and building materials research under the EU Framework Programme Horizon 2020. Constr Build Mater [Internet]. 2014;51:151–62. Available from: http://dx.doi.org/10.1016/j.conbuildmat.2013.10.058
  • 12. Novais RM, Buruberri LH, Ascensão G, Seabra MP, Labrincha JA. Porous biomass fly ash-based geopolymers with tailored thermal conductivity. J Clean Prod. 2016;119:99–107.
  • 13. Özcan M, Özel G, Demirkol Ö, Babayiğit S. Kömür sektör raporu (li̇nyi̇t) [Internet]. Ankara; 2017. Available from: http://www.tki.gov.tr/depo/file/2017 Kömür Sektör Raporu_21_02_19.pdf
  • 14. Enerji Çalışma Grubu TMMO. Enerji̇ ve kömür raporu [Internet]. Ankara; 2015. Available from: http://www.maden.org.tr/resimler/ekler/22ed738b2c7ba36_ek.pdf
  • 15. Türkyılmaz O, Bayrak Y, Aytaç O, Erkilet M. Türki̇ye Enerji̇de Nereye Gidiyor. TMMOB Makina Mühendisleri Odası Enerj Çalışma Grubu ve ODTÜ MD Enerj Kom [Internet]. 2017; Available from: http://www.inovasyon.org/pdf/O.Türkyılmaz.Türkiye’nin.Enerji.Görünümü_Tem.2016.pdf
  • 16. Kang S, Choi JY, Choi S. Mechanism of heat transfer through porous media of inorganic intumescent coating in cone calorimeter testing. Polymers (Basel). 2019;11(2).
  • 17. Kamseu E, Nait-Ali B, Bignozzi MC, Leonelli C, Rossignol S, Smith DS. Bulk composition and microstructure dependence of effective thermal conductivity of porous inorganic polymer cements. J Eur Ceram Soc. 2012;32(8):1593–603.
  • 18. Prud’homme E, Michaud P, Joussein E, Peyratout C, Smith A, Arrii-Clacens S, et al. Silica fume as porogent agent in geo-materials at low temperature. J Eur Ceram Soc. 2010;30(7):1641–8.
  • 19. Vaou V, Panias D. Thermal insulating foamy geopolymers from perlite. Miner Eng [Internet]. 2010;23(14):1146–51. Available from: http://dx.doi.org/10.1016/j.mineng.2010.07.015
  • 20. Xu F, Gu G, Zhang W, Wang H, Huang X, Zhu J. Pore structure analysis and properties evaluations of fly ash-based geopolymer foams by chemical foaming method. Ceram Int [Internet]. 2018;44(16):19989–97. Available from: https://doi.org/10.1016/j.ceramint.2018.07.267
  • 21. Medri V, Papa E, Dedecek J, Jirglova H, Benito P, Vaccari A, et al. Effect of metallic Si addition on polymerization degree of in situ foamed alkali-aluminosilicates. Ceram Int [Internet]. 2013;39(7):7657–68. Available from: http://dx.doi.org/10.1016/j.ceramint.2013.02.104
  • 22. Hajimohammadi A, Ngo T, Mendis P, Sanjayan J. Regulating the chemical foaming reaction to control the porosity of geopolymer foams. Mater Des [Internet]. 2017;120:255–65. Available from: http://dx.doi.org/10.1016/j.matdes.2017.02.026
  • 23. Gonzenbach UT, Studart AR, Tervoort E, Gauckler LJ. Stabilization of foams with inorganic colloidal particles. Langmuir. 2006;22(26):10983–8.
  • 24. Cui Y, Wang D, Zhao J, Li D, Ng S, Rui Y. Effect of calcium stearate based foam stabilizer on pore characteristics and thermal conductivity of geopolymer foam material. J Build Eng [Internet]. 2018;20(June):21–9. Available from: https://doi.org/10.1016/j.jobe.2018.06.002
  • 25. Shao N ning, Zhang Y bo, Liu Z, Wang D min, Zhang Z tai. Fabrication of hollow microspheres filled fly ash based foam geopolymers with ultra-low thermal conductivity and relative high strength. Constr Build Mater [Internet]. 2018;185:567–73. Available from: https://doi.org/10.1016/j.conbuildmat.2018.07.077
  • 26. Medpelli D, Seo JM, Seo DK. Geopolymer with hierarchically meso-/macroporous structures from reactive emulsion templating. J Am Ceram Soc. 2014;97(1):70–3.
  • 27. Bai C, Colombo P. High-porosity geopolymer membrane supports by peroxide route with the addition of egg white as surfactant. Ceram Int [Internet]. 2017;43(2):2267–73. Available from: http://dx.doi.org/10.1016/j.ceramint.2016.10.205
  • 28. Nushtaeva A V. Stabilization of emulsions and emulsion films by silica with hexylamine. Mendeleev Commun. 2012;22(4):225–6.
  • 29. Zhao W, Subhasree B, Park JG, Kim SY, Han IS, Kim IJ. Particle-stabilized wet foams to porous ceramics by direct foaming. J Ceram Process Res. 2014;15(6):503–7.
  • 30. Cilla MS, Morelli MR, Colombo P. Open cell geopolymer foams by a novel saponification/peroxide/gelcasting combined route. J Eur Ceram Soc [Internet]. 2014;34(12):3133–7. Available from: http://dx.doi.org/10.1016/j.jeurceramsoc.2014.04.001
  • 31. Krister Holmberg, Bo Jönsson, Bengt Kronberg, Björn Lindman. Wiley: Surfactants and Polymers in Aqueous Solution [Internet]. 2002. 0–471 p. Available from: http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471498831.html
  • 32. Ash F. E ff ect of Calcium Stearate in the Mechanical and Physical Properties of Concrete with PCC and Fly Ash as Binders. 2020;
  • 33. Torres ML, García-Ruiz PA. Lightweight pozzolanic materials used in mortars: Evaluation of their influence on density, mechanical strength and water absorption. Cem Concr Compos [Internet]. 2009;31(2):114–9. Available from: http://dx.doi.org/10.1016/j.cemconcomp.2008.11.003
  • 34. Jamei M, Guiras H, Chtourou Y, Kallel A, Romero E, Georgopoulos I. Water retention properties of perlite as a material with crushable soft particles. Eng Geol [Internet]. 2011;122(3–4):261–71. Available from: http://dx.doi.org/10.1016/j.enggeo.2011.06.005
  • 35. Qiao JH, Bolot R, Liao HL, Coddet C. Knudsen effect on the estimation of the effective thermal conductivity of thermal barrier coatings. J Therm Spray Technol. 2013;22(2–3):175–82.
  • 36. Sundén B, Yuan J. Evaluation of models of the effective thermal conductivity of porous materials relevant to fuel cell electrodes. Int J Comput Methods Exp Meas. 2013;1(4):440–54.
  • 37. Feng J, Zhang R, Gong L, Li Y, Cao W, Cheng X. Development of porous fly ash-based geopolymer with low thermal conductivity. Mater Des. 2015;65(November 2017):529–33.
  • 38. Zhang Z, Provis JL, Reid A, Wang H. Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete. Cem Concr Compos [Internet]. 2015 Sep 1 [cited 2018 Aug 28];62:97–105. Available from: https://www.sciencedirect.com/science/article/pii/S0958946515000979
  • 39. Łach M, Korniejenko K, Mikuła J. Thermal Insulation and Thermally Resistant Materials Made of Geopolymer Foams. Procedia Eng. 2016;151:410–6.
  • 40. Novais RM, Ascensão G, Buruberri LH, Senff L, Labrincha JA. Influence of blowing agent on the fresh- and hardened-state properties of lightweight geopolymers. Mater Des [Internet]. 2016;108:551–9. Available from: http://dx.doi.org/10.1016/j.matdes.2016.07.039
  • 41. De Rossi A, Carvalheiras J, Novais RM, Ribeiro MJ, Labrincha JA, Hotza D, et al. Waste-based geopolymeric mortars with very high moisture buffering capacity. Constr Build Mater [Internet]. 2018;191:39–46. Available from: https://doi.org/10.1016/j.conbuildmat.2018.09.201
  • 42. Novais RM, Ascensão G, Ferreira N, Seabra MP, Labrincha JA. Influence of water and aluminium powder content on the properties of waste-containing geopolymer foams. Ceram Int [Internet]. 2018;44(6):6242–9. Available from: https://doi.org/10.1016/j.ceramint.2018.01.009
  • 43. Wu J, Zhang Z, Zhang Y, Li D. Preparation and characterization of ultra-lightweight foamed geopolymer (UFG) based on fly ash-metakaolin blends. Constr Build Mater [Internet]. 2018;168:771–9. Available from: https://doi.org/10.1016/j.conbuildmat.2018.02.097
  • 44. Baetens R, Jelle BP, Thue JV, Tenpierik MJ, Grynning S, Uvsløkk S, et al. Vacuum insulation panels for building applications: A review and beyond. Vol. 42, Energy and Buildings. 2010. p. 147–72.
  • 45. Izaguirre A, Lanas J, Álvarez JI. Effect of water-repellent admixtures on the behaviour of aerial lime-based mortars Effect of water-repellent admixtures on the behaviour of aerial lime-based mortars.
Year 2020, Volume: 7 Issue: 2, 535 - 544, 23.06.2020
https://doi.org/10.18596/jotcsa.660727

Abstract

Project Number

19.Fen.Bil.01 BAP

References

  • 1. Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, Van Deventer JSJ. Geopolymer technology: The current state of the art. J Mater Sci. 2007;42(9):2917–33.
  • 2. Dhananjay KP, V V. Fly Ash as Sustainable Material for Green Concrete - A State of Art. Int J Res Eng Sci Technol. 2015;1(2):17–24.
  • 3. Petrillo A, Cioffi R, Ferone C, Colangelo F, Borrelli C. Eco-sustainable Geopolymer Concrete Blocks Production Process. Agric Agric Sci Procedia [Internet]. 2016;8:408–18. Available from: http://linkinghub.elsevier.com/retrieve/pii/S2210784316300377
  • 4. Duran Atiş C, Bilim C, Çelik Ö, Karahan O. Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Constr Build Mater. 2009;23(1):548–55.
  • 5. Çevik S. The Effect of Oil Consumption and Oil Prices on CO2 Emissions in the Industrial Sector. 2017;19(4):93–110.
  • 6. Dean, B., Dulac, J., Petrichenko, K., and Graham P. Towards a zero-emission, efficient, and resilient buildings and construction sector. In: Global Status Report [Internet]. 2016. p. 1–48. Available from: https://www.worldgbc.org/sites/default/files/UNEP 188_GABC_en (web).pdf
  • 7. Abdollahnejad Z, Pacheco-Torgal F, Félix T, Tahri W, Barroso Aguiar J. Mix design, properties and cost analysis of fly ash-based geopolymer foam. Constr Build Mater [Internet]. 2015;80(May 2010):18–30. Available from: http://dx.doi.org/10.1016/j.conbuildmat.2015.01.063
  • 8. Jiménez Rivero A, De Guzmán Báez A, Navarro JG. New composite gypsum plaster - Ground waste rubber coming from pipe foam insulation. Constr Build Mater. 2014;55(2014):146–52.
  • 9. Cha J, Seo J, Kim S. Building materials thermal conductivity measurement and correlation with heat flow meter, laser flash analysis and TCi. J Therm Anal Calorim. 2012;109(1):295–300.
  • 10. Gunasekara C, Law DW, Setunge S. Effect of Conposition of Fly Ash On Compressive Strength of Fly Ash Based Geopolymer Mortar. 23rd Australas Conf Mech Struct Mater. 2014;3(1):168–77.
  • 11. Pacheco-Torgal F. Eco-efficient construction and building materials research under the EU Framework Programme Horizon 2020. Constr Build Mater [Internet]. 2014;51:151–62. Available from: http://dx.doi.org/10.1016/j.conbuildmat.2013.10.058
  • 12. Novais RM, Buruberri LH, Ascensão G, Seabra MP, Labrincha JA. Porous biomass fly ash-based geopolymers with tailored thermal conductivity. J Clean Prod. 2016;119:99–107.
  • 13. Özcan M, Özel G, Demirkol Ö, Babayiğit S. Kömür sektör raporu (li̇nyi̇t) [Internet]. Ankara; 2017. Available from: http://www.tki.gov.tr/depo/file/2017 Kömür Sektör Raporu_21_02_19.pdf
  • 14. Enerji Çalışma Grubu TMMO. Enerji̇ ve kömür raporu [Internet]. Ankara; 2015. Available from: http://www.maden.org.tr/resimler/ekler/22ed738b2c7ba36_ek.pdf
  • 15. Türkyılmaz O, Bayrak Y, Aytaç O, Erkilet M. Türki̇ye Enerji̇de Nereye Gidiyor. TMMOB Makina Mühendisleri Odası Enerj Çalışma Grubu ve ODTÜ MD Enerj Kom [Internet]. 2017; Available from: http://www.inovasyon.org/pdf/O.Türkyılmaz.Türkiye’nin.Enerji.Görünümü_Tem.2016.pdf
  • 16. Kang S, Choi JY, Choi S. Mechanism of heat transfer through porous media of inorganic intumescent coating in cone calorimeter testing. Polymers (Basel). 2019;11(2).
  • 17. Kamseu E, Nait-Ali B, Bignozzi MC, Leonelli C, Rossignol S, Smith DS. Bulk composition and microstructure dependence of effective thermal conductivity of porous inorganic polymer cements. J Eur Ceram Soc. 2012;32(8):1593–603.
  • 18. Prud’homme E, Michaud P, Joussein E, Peyratout C, Smith A, Arrii-Clacens S, et al. Silica fume as porogent agent in geo-materials at low temperature. J Eur Ceram Soc. 2010;30(7):1641–8.
  • 19. Vaou V, Panias D. Thermal insulating foamy geopolymers from perlite. Miner Eng [Internet]. 2010;23(14):1146–51. Available from: http://dx.doi.org/10.1016/j.mineng.2010.07.015
  • 20. Xu F, Gu G, Zhang W, Wang H, Huang X, Zhu J. Pore structure analysis and properties evaluations of fly ash-based geopolymer foams by chemical foaming method. Ceram Int [Internet]. 2018;44(16):19989–97. Available from: https://doi.org/10.1016/j.ceramint.2018.07.267
  • 21. Medri V, Papa E, Dedecek J, Jirglova H, Benito P, Vaccari A, et al. Effect of metallic Si addition on polymerization degree of in situ foamed alkali-aluminosilicates. Ceram Int [Internet]. 2013;39(7):7657–68. Available from: http://dx.doi.org/10.1016/j.ceramint.2013.02.104
  • 22. Hajimohammadi A, Ngo T, Mendis P, Sanjayan J. Regulating the chemical foaming reaction to control the porosity of geopolymer foams. Mater Des [Internet]. 2017;120:255–65. Available from: http://dx.doi.org/10.1016/j.matdes.2017.02.026
  • 23. Gonzenbach UT, Studart AR, Tervoort E, Gauckler LJ. Stabilization of foams with inorganic colloidal particles. Langmuir. 2006;22(26):10983–8.
  • 24. Cui Y, Wang D, Zhao J, Li D, Ng S, Rui Y. Effect of calcium stearate based foam stabilizer on pore characteristics and thermal conductivity of geopolymer foam material. J Build Eng [Internet]. 2018;20(June):21–9. Available from: https://doi.org/10.1016/j.jobe.2018.06.002
  • 25. Shao N ning, Zhang Y bo, Liu Z, Wang D min, Zhang Z tai. Fabrication of hollow microspheres filled fly ash based foam geopolymers with ultra-low thermal conductivity and relative high strength. Constr Build Mater [Internet]. 2018;185:567–73. Available from: https://doi.org/10.1016/j.conbuildmat.2018.07.077
  • 26. Medpelli D, Seo JM, Seo DK. Geopolymer with hierarchically meso-/macroporous structures from reactive emulsion templating. J Am Ceram Soc. 2014;97(1):70–3.
  • 27. Bai C, Colombo P. High-porosity geopolymer membrane supports by peroxide route with the addition of egg white as surfactant. Ceram Int [Internet]. 2017;43(2):2267–73. Available from: http://dx.doi.org/10.1016/j.ceramint.2016.10.205
  • 28. Nushtaeva A V. Stabilization of emulsions and emulsion films by silica with hexylamine. Mendeleev Commun. 2012;22(4):225–6.
  • 29. Zhao W, Subhasree B, Park JG, Kim SY, Han IS, Kim IJ. Particle-stabilized wet foams to porous ceramics by direct foaming. J Ceram Process Res. 2014;15(6):503–7.
  • 30. Cilla MS, Morelli MR, Colombo P. Open cell geopolymer foams by a novel saponification/peroxide/gelcasting combined route. J Eur Ceram Soc [Internet]. 2014;34(12):3133–7. Available from: http://dx.doi.org/10.1016/j.jeurceramsoc.2014.04.001
  • 31. Krister Holmberg, Bo Jönsson, Bengt Kronberg, Björn Lindman. Wiley: Surfactants and Polymers in Aqueous Solution [Internet]. 2002. 0–471 p. Available from: http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471498831.html
  • 32. Ash F. E ff ect of Calcium Stearate in the Mechanical and Physical Properties of Concrete with PCC and Fly Ash as Binders. 2020;
  • 33. Torres ML, García-Ruiz PA. Lightweight pozzolanic materials used in mortars: Evaluation of their influence on density, mechanical strength and water absorption. Cem Concr Compos [Internet]. 2009;31(2):114–9. Available from: http://dx.doi.org/10.1016/j.cemconcomp.2008.11.003
  • 34. Jamei M, Guiras H, Chtourou Y, Kallel A, Romero E, Georgopoulos I. Water retention properties of perlite as a material with crushable soft particles. Eng Geol [Internet]. 2011;122(3–4):261–71. Available from: http://dx.doi.org/10.1016/j.enggeo.2011.06.005
  • 35. Qiao JH, Bolot R, Liao HL, Coddet C. Knudsen effect on the estimation of the effective thermal conductivity of thermal barrier coatings. J Therm Spray Technol. 2013;22(2–3):175–82.
  • 36. Sundén B, Yuan J. Evaluation of models of the effective thermal conductivity of porous materials relevant to fuel cell electrodes. Int J Comput Methods Exp Meas. 2013;1(4):440–54.
  • 37. Feng J, Zhang R, Gong L, Li Y, Cao W, Cheng X. Development of porous fly ash-based geopolymer with low thermal conductivity. Mater Des. 2015;65(November 2017):529–33.
  • 38. Zhang Z, Provis JL, Reid A, Wang H. Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete. Cem Concr Compos [Internet]. 2015 Sep 1 [cited 2018 Aug 28];62:97–105. Available from: https://www.sciencedirect.com/science/article/pii/S0958946515000979
  • 39. Łach M, Korniejenko K, Mikuła J. Thermal Insulation and Thermally Resistant Materials Made of Geopolymer Foams. Procedia Eng. 2016;151:410–6.
  • 40. Novais RM, Ascensão G, Buruberri LH, Senff L, Labrincha JA. Influence of blowing agent on the fresh- and hardened-state properties of lightweight geopolymers. Mater Des [Internet]. 2016;108:551–9. Available from: http://dx.doi.org/10.1016/j.matdes.2016.07.039
  • 41. De Rossi A, Carvalheiras J, Novais RM, Ribeiro MJ, Labrincha JA, Hotza D, et al. Waste-based geopolymeric mortars with very high moisture buffering capacity. Constr Build Mater [Internet]. 2018;191:39–46. Available from: https://doi.org/10.1016/j.conbuildmat.2018.09.201
  • 42. Novais RM, Ascensão G, Ferreira N, Seabra MP, Labrincha JA. Influence of water and aluminium powder content on the properties of waste-containing geopolymer foams. Ceram Int [Internet]. 2018;44(6):6242–9. Available from: https://doi.org/10.1016/j.ceramint.2018.01.009
  • 43. Wu J, Zhang Z, Zhang Y, Li D. Preparation and characterization of ultra-lightweight foamed geopolymer (UFG) based on fly ash-metakaolin blends. Constr Build Mater [Internet]. 2018;168:771–9. Available from: https://doi.org/10.1016/j.conbuildmat.2018.02.097
  • 44. Baetens R, Jelle BP, Thue JV, Tenpierik MJ, Grynning S, Uvsløkk S, et al. Vacuum insulation panels for building applications: A review and beyond. Vol. 42, Energy and Buildings. 2010. p. 147–72.
  • 45. Izaguirre A, Lanas J, Álvarez JI. Effect of water-repellent admixtures on the behaviour of aerial lime-based mortars Effect of water-repellent admixtures on the behaviour of aerial lime-based mortars.
There are 45 citations in total.

Details

Primary Language English
Subjects Polymer Science and Technologies
Journal Section Articles
Authors

Cansu Kurtulus 0000-0002-0758-5844

Mustafa Serhat Başpınar 0000-0003-2086-1935

Project Number 19.Fen.Bil.01 BAP
Publication Date June 23, 2020
Submission Date December 17, 2019
Acceptance Date May 18, 2020
Published in Issue Year 2020 Volume: 7 Issue: 2

Cite

Vancouver Kurtulus C, Başpınar MS. Effect of Calcium Stearate on the Thermal Conductivity of Geopolymer Foam. JOTCSA. 2020;7(2):535-44.