Research Article
BibTex RIS Cite
Year 2020, Volume: 7 Issue: 2, 405 - 410, 23.06.2020
https://doi.org/10.18596/jotcsa.689329

Abstract

References

  • 1. Martínez-Ballesta MC, Dominguez-Perles R, Moreno DA, Muries B, Alcaraz-López C, Bastías E, et al. Minerals in plant food: effect of agricultural practices and role in human health. A review. Agron Sustain Dev. 2010 Apr;30(2):295–309.
  • 2. Yin Y, Li Y, Li Q, Jia N, Liu A, Tan Z, et al. Evaluation of the Relationship Between Height and Zinc, Copper, Iron, Calcium, and Magnesium Levels in Healthy Young Children in Beijing, China. Biol Trace Elem Res. 2017 Apr;176(2):244–50.
  • 3. Salgueiro MJ, Zubillaga MB, Lysionek AE, Caro RA, Weill R, Boccio JR. The role of zinc in the growth and development of children. Nutrition. 2002 Jun;18(6):510–9.
  • 4. Đermanović M, Miletić I, Pavlović Z. A Comparative Analysis of the Contents Of Iron, Zinc, Copper, Manganese, and Calcium in the Collective Diet Of Preschool Children in the Northwestern Region of Bosnia. Biol Trace Elem Res. 2017 Jan;175(1):27–32.
  • 5. Cao J, Gao Z, Yan J, Li M, Su J, Xu J, et al. Evaluation of Trace Elements and Their Relationship with Growth and Development of Young Children. Biol Trace Elem Res. 2016 Jun;171(2):270–4.
  • 6. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition. 2004 May 1;79(5):727–47.
  • 7. Hanasaki Y, Ogawa S, Fukui S. The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radical Biology and Medicine. 1994 Jun;16(6):845–50.
  • 8. Robards K, Antolovich M. Analytical Chemistry of Fruit BioflavonoidsA Review. Analyst. 1997;122(2):11R-34R.
  • 9. Zhu F. Anthocyanins in cereals: Composition and health effects. Food Research International. 2018 Jul;109:232–49.
  • 10. M. Calderon-Montano J, Burgos-Moron E, Perez-Guerrero C, Lopez-Lazaro M. A Review on the Dietary Flavonoid Kaempferol. MRMC. 2011 Apr 1;11(4):298–344.
  • 11. Karataş DD, Karataş H, Laucou V, Sarikamiş G, Riahi L, Bacilieri R, et al. Genetic diversity of wild and cultivated grapevine accessions from southeast Turkey. Hereditas. 2014 Oct;151(4–5):73–80.
  • 12. Ergül A, Perez-Rivera G, Söylemezoğlu G, Kazan K, Arroyo-Garcia R. Genetic diversity in Anatolian wild grapes ( Vitis vinifera subsp. sylvestris ) estimated by SSR markers. Plant Genet Res. 2011 Aug;9(3):375–83.
  • 13. Dastoor R, Bakhshi D, Aliakbar A. Resveratrol and other phenolic compounds from wild grape Vitis vinifera. ssp sylvestris. JBES. 2017;11(4):121–30.
  • 14. Jiménez M, Juárez N, Jiménez-Fernández VM, Monribot-Villanueva JL, Guerrero-Analco JA. Phenolic compounds and antioxidant activity of wild grape (vitis tiliifolia). Italian Journal of Food Science [Internet]. 2017 Nov 21 [cited 2020 Apr 7];30(1). Available from: http://doi.org/10.14674/IJFS-975
  • 15. Margaryan K, Melyan G, Vardanyan D, Devejyan H, Aroutiounian R. Phenolic content and antioxidant activity of Armenian cultivated and wild grapes. Aurand J-M, editor. BIO Web Conf. 2017;9:02029.
  • 16. Revilla E, Bellido A, Yus J, Ortiz P, Carrasco D, Arroyo RA. Flavonols in skins of wild grapes ( Vitis vinifera L., subsp. sylvestris (Gmelin) Hegi). Aurand J-M, editor. BIO Web Conf. 2016;7:01018.
  • 17. Doğan A. Pertek (Tunceli) yöresinde etnobotanik araştırmalar [PhD Thesis]. [İstanbul]: Marmara University; 2014.
  • 18. Brand-Williams W, Cuvelier M, Berset C. Use of a Free Radical Method to Evaluate Antioxidant Activity. Lebensm-Wiss u-Technol. 1995;28:25–30.
  • 19. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine. 1999 May;26(9–10):1231–7.
  • 20. Singleton V, Rossi J. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture. 1965;16:144–58.
  • 21. Unsal Y, Yilmaz E, Soylak M, Tuzen M. Trace element contents of raisins, grape and soil samples from Incesu-Kayseri, Turkey. Fresenius Environmental Bulletin. 2013;22(5):1441–5.
  • 22. Yami SG, Chandravanshi BS, Wondimu T, Abuye C. Assessment of selected nutrients and toxic metals in fruits, soils and irrigation waters of Awara Melka and Nura Era farms, Ethiopia. SpringerPlus. 2016 Dec;5(1):747.
  • 23. Aydinalp C, Marinova S. Concentration of Cu and Zn in Some fruits and Vegetables grown in north western Turkey. Bulgarian Journal of Agricultural Science. 2012;18(5):749–51.
  • 24. Mitic M, Kostic D, Pavlovic A, Dimitrijevic D, Veljkovic J. Effects of solvent extraction system on concentration and antioxidant activity of strawberry phenolics. Agro Food Industry Hi-Tech. 2014;25(5):24–8.
  • 25. Boulekbache-Makhlouf L, Medouni L, Medouni-Adrar S, Arkoub L, Madani K. Effect of solvents extraction on phenolic content and antioxidant activity of the byproduct of eggplant. Industrial Crops and Products. 2013 Aug;49:668–74.
  • 26. Karaaslan MG, Karaaslan NM, Ates B. Investigation of Mineral Components and Antioxidant Properties of a Healthy Red Fruit: Cornelian Cherry (Cornus mas L.). Journal of the Turkish Chemical Society, Section A: Chemistry. 2018 Nov 17;1319–26.
  • 27. Karaaslan NM, Karaaslan MG, Ates B. Effects of Some Extraction Solvents on the Antioxidant Properties of Strawberry Fruit. International Journal of Pure and Applied Sciences [Internet]. 2018 Dec 27 [cited 2020 Apr 7]; Available from: http://dergipark.gov.tr/doi/10.29132/ijpas.354885
  • 28. Di Lorenzo C, Colombo F, Biella S, Orgiu F, Frigerio G, Regazzoni L, et al. Phenolic profile and antioxidant activity of different grape ( Vitis vinifera L.) varieties. Aurand J-M, editor. BIO Web Conf. 2019;12:04005.
  • 29. Çoklar H, Akbulut M. Effect of sun, oven and freeze-drying on anthocyanins, phenolic compounds and antioxidant activity of black grape (Ekşikara)(Vitis vinifera L.). South African Journal of Enology and Viticulture. 2017;38(2):264–272.
  • 30. Correia AC, Jordão AM. Antioxidant capacity, radical scavenger activity, lipid oxidation protection analysis and antimicrobial activity of red grape extracts from different varieties cultivated in Portugal. Natural Product Research. 2015 Mar 4;29(5):438–40.

Assessment of Elemental Content, Antioxidant Activity and Total Phenolic Content of Vitis sylvestris Gmelin

Year 2020, Volume: 7 Issue: 2, 405 - 410, 23.06.2020
https://doi.org/10.18596/jotcsa.689329

Abstract

In this study, we determined the Cu, Fe, Mn, and Zn contents of Vitis sylvestris Gmelin using flame atomic absorption spectrometry (FAAS), and examined the antioxidant properties of Vitis sylvestris Gmelin using radical scavenging capacities and total phenolic content tests. We found the average elemental contents; Cu, Fe, Mn, and Zn as 1.506 ± 0.042 mg/kg, 0.796 ± 0.020 mg/kg, 2.333 ± 0.033 mg/kg, and 3.191 ± 0.262 mg/kg, respectively. When we examined the antioxidant activity tests applied to different extracts, we determined the highest extraction yield with the methanol extract. DPPH radical scavenging activity, ABTS radical scavenging activity, and total phenolic content values in methanol extract were determined to be respectively 3.957 ± 0.146 mg TEAC/g fw, 9.062 ± 0.273 mg TEAC/g fw, and 2.365 ± 0.028 mg GAE/g fw. When we evaluated the antioxidant activity and total phenolic content results for all extracts statistically, we determined that there was generally a statistically significant difference between each extract (p < 0.01). Vitis sylvestris Gmelin has high antioxidant content when considering the data obtained. Also, we determined that it is an effective candidate in the protection against reactive oxygen species.

References

  • 1. Martínez-Ballesta MC, Dominguez-Perles R, Moreno DA, Muries B, Alcaraz-López C, Bastías E, et al. Minerals in plant food: effect of agricultural practices and role in human health. A review. Agron Sustain Dev. 2010 Apr;30(2):295–309.
  • 2. Yin Y, Li Y, Li Q, Jia N, Liu A, Tan Z, et al. Evaluation of the Relationship Between Height and Zinc, Copper, Iron, Calcium, and Magnesium Levels in Healthy Young Children in Beijing, China. Biol Trace Elem Res. 2017 Apr;176(2):244–50.
  • 3. Salgueiro MJ, Zubillaga MB, Lysionek AE, Caro RA, Weill R, Boccio JR. The role of zinc in the growth and development of children. Nutrition. 2002 Jun;18(6):510–9.
  • 4. Đermanović M, Miletić I, Pavlović Z. A Comparative Analysis of the Contents Of Iron, Zinc, Copper, Manganese, and Calcium in the Collective Diet Of Preschool Children in the Northwestern Region of Bosnia. Biol Trace Elem Res. 2017 Jan;175(1):27–32.
  • 5. Cao J, Gao Z, Yan J, Li M, Su J, Xu J, et al. Evaluation of Trace Elements and Their Relationship with Growth and Development of Young Children. Biol Trace Elem Res. 2016 Jun;171(2):270–4.
  • 6. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition. 2004 May 1;79(5):727–47.
  • 7. Hanasaki Y, Ogawa S, Fukui S. The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radical Biology and Medicine. 1994 Jun;16(6):845–50.
  • 8. Robards K, Antolovich M. Analytical Chemistry of Fruit BioflavonoidsA Review. Analyst. 1997;122(2):11R-34R.
  • 9. Zhu F. Anthocyanins in cereals: Composition and health effects. Food Research International. 2018 Jul;109:232–49.
  • 10. M. Calderon-Montano J, Burgos-Moron E, Perez-Guerrero C, Lopez-Lazaro M. A Review on the Dietary Flavonoid Kaempferol. MRMC. 2011 Apr 1;11(4):298–344.
  • 11. Karataş DD, Karataş H, Laucou V, Sarikamiş G, Riahi L, Bacilieri R, et al. Genetic diversity of wild and cultivated grapevine accessions from southeast Turkey. Hereditas. 2014 Oct;151(4–5):73–80.
  • 12. Ergül A, Perez-Rivera G, Söylemezoğlu G, Kazan K, Arroyo-Garcia R. Genetic diversity in Anatolian wild grapes ( Vitis vinifera subsp. sylvestris ) estimated by SSR markers. Plant Genet Res. 2011 Aug;9(3):375–83.
  • 13. Dastoor R, Bakhshi D, Aliakbar A. Resveratrol and other phenolic compounds from wild grape Vitis vinifera. ssp sylvestris. JBES. 2017;11(4):121–30.
  • 14. Jiménez M, Juárez N, Jiménez-Fernández VM, Monribot-Villanueva JL, Guerrero-Analco JA. Phenolic compounds and antioxidant activity of wild grape (vitis tiliifolia). Italian Journal of Food Science [Internet]. 2017 Nov 21 [cited 2020 Apr 7];30(1). Available from: http://doi.org/10.14674/IJFS-975
  • 15. Margaryan K, Melyan G, Vardanyan D, Devejyan H, Aroutiounian R. Phenolic content and antioxidant activity of Armenian cultivated and wild grapes. Aurand J-M, editor. BIO Web Conf. 2017;9:02029.
  • 16. Revilla E, Bellido A, Yus J, Ortiz P, Carrasco D, Arroyo RA. Flavonols in skins of wild grapes ( Vitis vinifera L., subsp. sylvestris (Gmelin) Hegi). Aurand J-M, editor. BIO Web Conf. 2016;7:01018.
  • 17. Doğan A. Pertek (Tunceli) yöresinde etnobotanik araştırmalar [PhD Thesis]. [İstanbul]: Marmara University; 2014.
  • 18. Brand-Williams W, Cuvelier M, Berset C. Use of a Free Radical Method to Evaluate Antioxidant Activity. Lebensm-Wiss u-Technol. 1995;28:25–30.
  • 19. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine. 1999 May;26(9–10):1231–7.
  • 20. Singleton V, Rossi J. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture. 1965;16:144–58.
  • 21. Unsal Y, Yilmaz E, Soylak M, Tuzen M. Trace element contents of raisins, grape and soil samples from Incesu-Kayseri, Turkey. Fresenius Environmental Bulletin. 2013;22(5):1441–5.
  • 22. Yami SG, Chandravanshi BS, Wondimu T, Abuye C. Assessment of selected nutrients and toxic metals in fruits, soils and irrigation waters of Awara Melka and Nura Era farms, Ethiopia. SpringerPlus. 2016 Dec;5(1):747.
  • 23. Aydinalp C, Marinova S. Concentration of Cu and Zn in Some fruits and Vegetables grown in north western Turkey. Bulgarian Journal of Agricultural Science. 2012;18(5):749–51.
  • 24. Mitic M, Kostic D, Pavlovic A, Dimitrijevic D, Veljkovic J. Effects of solvent extraction system on concentration and antioxidant activity of strawberry phenolics. Agro Food Industry Hi-Tech. 2014;25(5):24–8.
  • 25. Boulekbache-Makhlouf L, Medouni L, Medouni-Adrar S, Arkoub L, Madani K. Effect of solvents extraction on phenolic content and antioxidant activity of the byproduct of eggplant. Industrial Crops and Products. 2013 Aug;49:668–74.
  • 26. Karaaslan MG, Karaaslan NM, Ates B. Investigation of Mineral Components and Antioxidant Properties of a Healthy Red Fruit: Cornelian Cherry (Cornus mas L.). Journal of the Turkish Chemical Society, Section A: Chemistry. 2018 Nov 17;1319–26.
  • 27. Karaaslan NM, Karaaslan MG, Ates B. Effects of Some Extraction Solvents on the Antioxidant Properties of Strawberry Fruit. International Journal of Pure and Applied Sciences [Internet]. 2018 Dec 27 [cited 2020 Apr 7]; Available from: http://dergipark.gov.tr/doi/10.29132/ijpas.354885
  • 28. Di Lorenzo C, Colombo F, Biella S, Orgiu F, Frigerio G, Regazzoni L, et al. Phenolic profile and antioxidant activity of different grape ( Vitis vinifera L.) varieties. Aurand J-M, editor. BIO Web Conf. 2019;12:04005.
  • 29. Çoklar H, Akbulut M. Effect of sun, oven and freeze-drying on anthocyanins, phenolic compounds and antioxidant activity of black grape (Ekşikara)(Vitis vinifera L.). South African Journal of Enology and Viticulture. 2017;38(2):264–272.
  • 30. Correia AC, Jordão AM. Antioxidant capacity, radical scavenger activity, lipid oxidation protection analysis and antimicrobial activity of red grape extracts from different varieties cultivated in Portugal. Natural Product Research. 2015 Mar 4;29(5):438–40.
There are 30 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry
Journal Section Articles
Authors

Nagihan Karaaslan Ayhan 0000-0001-9083-9149

Publication Date June 23, 2020
Submission Date February 15, 2020
Acceptance Date April 8, 2020
Published in Issue Year 2020 Volume: 7 Issue: 2

Cite

Vancouver Karaaslan Ayhan N. Assessment of Elemental Content, Antioxidant Activity and Total Phenolic Content of Vitis sylvestris Gmelin. JOTCSA. 2020;7(2):405-10.