Research Article
BibTex RIS Cite

Antioxidant Enzyme Activities in Ascorbic Acid and Selenium Applied Hepatocellular Carcinoma Cells

Year 2020, Volume: 7 Issue: 2, 581 - 588, 23.06.2020
https://doi.org/10.18596/jotcsa.724117

Abstract

Ascorbic Acid and selenium has a potential use in the prevention of cancer. The role of antioxidant enzymes against cancer is to prevent oxidative damage. The aim of the study was to investigate the effect of Ascorbic Acid and selenium on antioxidant enzyme activities in HepG2 cell line. In this study, the effects of Org Se (234 µM), SeO2 (100 µM), Ascorbic Acid (31,3 mM) and Ascorbic Acid (0,313 mM) on antioxidant enzyme activities in HepG2 cell line were studied. GPx, CAT and SOD activities were measured spectrophotometrically. There was a significant increase in the activity of GPx in HepG2 cells treated with Org Se (234 µM), SeO2 (100 µM), Ascorbic Acid (31,3 mM) and Ascorbic Acid (0,313 mM), however the activity of CAT was found significantly decreased in Org Se (234 µM), SeO2 (100 µM), Ascorbic Acid (31,3 mM) treated HepG2 cells. The SOD levels of HepG2 cells treated with Ascorbic Acid (31,3 mM) and AA (0,313 mM) were found higher than the control cells. The results of the present study indicated that the antioxidant enzyme activities changed depending on Org Se, SeO2 application and CAT activities changed depending on Ascorbic Acid doses.

Thanks

This study was presented in the 1st International Conference on Natural Products for Cancer Prevention and Therapy, 31 August–2 September 2015, Istanbul, Turkey.

References

  • 1. Traber MG, Atkinson J. Vitamin E, antioxidant and nothing more. Free Radic Biol Med. 2007;43(1):4–15. Doi: 10.1016/j.freeradbiomed.2007.03.024.
  • 2. Zou Z, Chang H, Li H, Wang S. Induction of reactive oxygen species: an emerging approach for cancer therapy. Apoptosis. 2017;22(11):1321–35. doi: 10.1007/s10495-017-1424-9.
  • 3. Hatem E, Azzi S, El Banna N, He T, Heneman-Masurel A, Vernis L, et al. Auranofin/Vitamin C: A novel drug combination targeting triple-negative breast cancer. J Natl Cancer Inst. 2019;111(6):597-608. doi: 10.1093/ije/djy149.
  • 4. Shaaban S, Ashmawy AM, Negm A, Wessjohann LA. Synthesis and biochemical studies of novel organic selenides with increased selectivity for hepatocellular carcinoma and breast adenocarcinoma. Eur J Med Chem. 2019;179:515-526. doi:10.1016/j.ejmech.2019.06.075.
  • 5. Du J, Martin SM, Levine M, Wagner BA, Buettner GR, Wang SH, et al. Mechanisms of ascorbate-induced cytotoxicity in pancreatic cancer. Clin Cancer Res. 2010;16(2):509–20. doi: 10.1158/1078-0432.CCR-09-1713.
  • 6. Paolini M, Pozzetti L, Pedulli GF, Marchesi E, Cantelli-Forti G. The nature of prooxidant activity of vitamin C. Life Sci. 1999;64(23):273-278. Doi: 10.1016/s0024-3205(99)00167-8.
  • 7. Fernandes AP, Gandin V. Selenium compounds as therapeutic agents in cancer. Biochim Biophys Acta - Gen Subj. 2015;1850(8):1642–60. doi: 10.1016/j.bbagen.2014.10.008.
  • 8. Misra S, Boylan M, Selvam A, Spallholz JE, Björnstedt M. Redox-active selenium compounds—from toxicity and cell death to cancer treatment. Nutrients. 2015;7(5):3536–56. doi: 10.3390/nu7053536.
  • 9. Head KA. Ascorbic acid in the prevention and treatment of cancer. Altern Med Rev. 1998;3(3):174–86. PMID: 9630735.
  • 10. Combs GF. Status of selenium in prostate cancer prevention. Br J Cancer. 2004;91(2):195–9. Doi: 10.1038/sj.bjc.6601974.
  • 11. Knekt P, Marniemi J, Teppo L, Heliövaara M, Aromaa A. Is low selenium status a risk factor for lung cancer? Am J Epidemiol. 1998;148(10):975–82. Doi: 10.1093/oxfordjournals.aje.a009574.
  • 12. Mandrioli J, Michalke B, Solovyev N, Grill P, Violi F, Lunetta C, et al. Elevated levels of selenium species in cerebrospinal fluid of amyotrophic lateral sclerosis patients with disease-associated gene mutations. Neurodegener Dis. 2017;17(4–5):171–80. doi: 10.1159/000460253. 
  • 13. Vinceti M, Chiari A, Eichmüller M, Rothman KJ, Filippini T, Malagoli C, et al. A selenium species in cerebrospinal fluid predicts conversion to Alzheimer’s dementia in persons with mild cognitive impairment. Alzheimer’s Res Ther. 2017;9(1):100. doi: 10.1186/s13195-017-0323-1.
  • 14. Gammelgaard B, Jackson MI, Gabel-Jensen C. Surveying selenium speciation from soil to cell-forms and transformations. Analytical and Bioanalytical Chemistry. 2011;399:1743–63. doi: 10.1007/s00216-010-4212-8.
  • 15. Brigelius-Flohé R, Flohé L. Selenium and redox signaling. Arch Biochem Biophys. 2017;617:48–59. doi: 10.1016/j.abb.2016.08.003.
  • 16. Hatfield DL, Tsuji PA, Carlson BA, Gladyshev VN. Selenium and selenocysteine: Roles in cancer, health, and development. Trends Biochem Sci. 2014;39(3):112–20. doi: 10.1016/j.tibs.2013.12.007.
  • 17. Labunskyy VM, Hatfield DL, Gladyshev VN. Selenoproteins: Molecular pathways and physiological roles. Physiol Rev. 2014;94:739–77. doi: 10.1152/physrev.00039.2013.
  • 18. Balkan BM, Sel T. Vitamin C’nin HepG2 hücrelerinde apoptozis üzerine etkileri. Ankara Üniv Vet Fak Derg. 2014;61:237–41.
  • 19. Balkan BM. HepG2 hücrelerinde selenyum ve vitamin C’nin apoptosis üzerine etkileri [Doktora Tezi]. [Ankara]: Ankara Üniversitesi; 2012.
  • 20. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;70(1):158–69. PMID: 6066618
  • 21. Aebi HE. Catalase in: H.U. Bermeyer (Hrsy). Methods of enzymatic analysis. Verlag Chemie; Weinheim, Bd. III; 1983. p. 273-286.
  • 22. Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–54. doi.org/10.1016/0003-2697(76)90527-3.
  • 23. Athreya K, Xavier MF. Antioxidants in the treatment of cancer. Nutrition and Cancer. 2017;69:1099–104. doi: 10.1080/01635581.2017.1362445.
  • 24. Guo Dong Mao, Thomas PD, Lopaschuk GD, Poznansky MJ. Superoxide dismutase (SOD)-catalase conjugates. Role of hydrogen peroxide and the fenton reaction in SOD toxicity. J Biol Chem. 1993;268(1):416–20. PMID: 8380162.
  • 25. Michiels C, Raes M, Toussaint O, Remacle J. Importance of SE-glutathione peroxidase, catalase, and CU/ZN-SOD for cell survival against oxidative stress. Free Radic Biol Med. 1994;17(3):235–48. Doi: 10.1016/0891-5849(94)90079-5.
  • 26. Heukamp I, Kilian M, Gregor JI, Neumann A, Jacobi CA, Guski H, et al. Effects of the antioxidative vitamins A, C and E on liver metastasis and intrametastatic lipid peroxidation in bop-induced pancreatic cancer in Syrian hamsters. Pancreatology. 2005;5(4–5):403–9. Doi: 10.1159/000086541.
  • 27. Van Der Loo B, Bachschmid M, Spitzer V, Brey L, Ullrich V, Lüscher TF. Decreased plasma and tissue levels of vitamin C in a rat model of aging: Implications for antioxidative defense. Biochem Biophys Res Commun. 2003;303(2):483–7. Doi: 10.1016/s0006-291x(03)00360-7.
  • 28. Chen Q, Espey MG, Krishna MC, Mitchell JB, Corpe CP, Buettner GR, et al. Pharmacologic ascorbic acid concentrations selectively kill cancer cells: Action as a pro-drug to deliver hydrogen peroxide to tissuse. Proc Natl Acad Sci USA. 2005;102(38):13604–9. Doi: 10.1073/pnas.0506390102.
  • 29. Chen P, Stone J, Sullivan G, Drisko JA, Chen Q. Anti-cancer effect of pharmacologic ascorbate and its interaction with supplementary parenteral glutathione in preclinical cancer models. Free Radic Biol Med. 2011;51(3):681–7. doi: 10.1016/j.freeradbiomed.2011.05.031.
  • 30. Du J, Cullen JJ, Buettner GR. Ascorbic acid: Chemistry, biology and the treatment of cancer. Biochim Biophys Acta - Rev Cancer. 2012;1826(2):443–57. doi: 10.1016/j.bbcan.2012.06.003.
  • 31. Levine M, Padayatty SJ, Espey MG. Vitamin C: A concentration-function approach yields pharmacology and therapeutic discoveries. Adv Nutr. 2011;2(2):78–88. doi: 10.3945/an.110.000109.
  • 32. Pathi SS, Lei P, Sreevalsan S, Chadalapaka G, Jutooru I, Safe S. Pharmacologic doses of ascorbic acid repress specificity protein (Sp) transcription factors and Sp-regulated genes in colon cancer cells. Nutr Cancer. 2011;63(7):1133–42. doi: 10.1080/01635581.2011.605984.
  • 33. Schoenfeld JD, Sibenaller ZA, Mapuskar KA, Wagner BA, Cramer-Morales KL, Furqan M, et al. O2⋅− and H2O2-mediated disruption of Fe metabolism causes the differential susceptibility of NSCLC and GBM cancer cells to pharmacological ascorbate. Cancer Cell. 2017;31(4):487-500. doi: 10.1016/j.ccell.2017.02.018.
  • 34. Ryszawy D, Pudełek M, Catapano J, Ciarach M, Setkowicz Z, Konduracka E, et al. High doses of sodium ascorbate interfere with the expansion of glioblastoma multiforme cells in vitro and in vivo. Life Sci. 2019;232:116657. doi: 10.1016/j.lfs.2019.116657.
  • 35. Gao P, Zhang H, Dinavahi R, Li F, Xiang Y, Raman V, et al. HIF-Dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell. 2007;12(3):230–8. Doi: 10.1016/j.ccr.2007.08.004.
  • 36. Susin SA, Daugas E, Ravagnan L, Samejima K, Zamzami N, Loeffler M, et al. Two distinct pathways leading to nuclear apoptosis. J Exp Med. 2000;192(4):571–9. Doi: 10.1084/jem.192.4.571.
  • 37. Uǧuz AC, Naziroglu M, Espino J, Bejarano I, González D, Rodríguez AB, et al. Selenium modulates oxidative stress-induced cell apoptosis in human myeloid HL-60 cells through regulation of calcium release and caspase-3 and -9 activities. J Membr Biol. 2009;232(1–3):15–23. doi: 10.1007/s00232-009-9212-2.
  • 39. Wu X, Zhao G, He Y, Wang W, Yang CS, Zhang J. Pharmacological mechanisms of the anticancer action of sodium selenite against peritoneal cancer in mice. Pharmacol Res. 2019;147:104360. doi: 10.1016/j.phrs.2019.104360.
  • 40. Chen T, Zheng W, Wong YS, Yang F. Mitochondria-mediated apoptosis in human breast carcinoma MCF-7 cells induced by a novel selenadiazole derivative. Biomed Pharmacother. 2008;62(2):77–84. doi: 10.1016/j.biopha.2007.12.002.
  • 41. Rayman MP. The importance of selenium to human health. Lancet. 2000;356(9225):233–41. Doi: 10.1016/S0140-6736(00)02490-9.
  • 42. El-Bayoumy K, Sinha R. Mechanisms of mammary cancer chemoprevention by organoselenium compounds. Mutat Res. 2004;551(1–2):181–97. Doi: 10.1016/j.mrfmmm.2004.02.023.
  • 43. Whanger PD. Selenium and its relationship to cancer: an update. Br J Nutr. 2004;91(1):11–28. Doi: 10.1079/bjn20031015.
  • 44. Gopee N V., Johnson VJ, Sharma RP. Sodium selenite-induced apoptosis in murine B-lymphoma cells is associated with inhibition of protein kinase C-δ, nuclear factor κB, and inhibitor of apoptosis protein. Toxicol Sci. 2004;78(2):204–14. Doi: 10.1093/toxsci/kfh072.
  • 45. Shilo S, Tirosh O. Selenite activates caspase-independent necrotic cell death in Jurkat T cells and J774.2 macrophages by affecting mitochondrial oxidant generation. Antioxidants Redox Signal. 2003;5(3):273–9. Doi: 10.1089/152308603322110850.
  • 46. Rudolf E, Rudolf K, Červinka M. Selenium activates p53 and p38 pathways and induces caspase-independent cell death in cervical cancer cells. Cell Biol Toxicol. 2008;24(2):123–41. Doi: 10.1007/s10565-007-9022-1.
  • 47. Estevez H, Garcia-Lidon JC, Luque-Garcia JL, Camara C. Effects of chitosan-stabilized selenium nanoparticles on cell proliferation, apoptosis and cell cycle pattern in HepG2 cells: Comparison with other selenospecies. Colloids Surfaces B Biointerfaces. 2014;122:184–93. doi: 10.1016/j.colsurfb.2014.06.062.
Year 2020, Volume: 7 Issue: 2, 581 - 588, 23.06.2020
https://doi.org/10.18596/jotcsa.724117

Abstract

References

  • 1. Traber MG, Atkinson J. Vitamin E, antioxidant and nothing more. Free Radic Biol Med. 2007;43(1):4–15. Doi: 10.1016/j.freeradbiomed.2007.03.024.
  • 2. Zou Z, Chang H, Li H, Wang S. Induction of reactive oxygen species: an emerging approach for cancer therapy. Apoptosis. 2017;22(11):1321–35. doi: 10.1007/s10495-017-1424-9.
  • 3. Hatem E, Azzi S, El Banna N, He T, Heneman-Masurel A, Vernis L, et al. Auranofin/Vitamin C: A novel drug combination targeting triple-negative breast cancer. J Natl Cancer Inst. 2019;111(6):597-608. doi: 10.1093/ije/djy149.
  • 4. Shaaban S, Ashmawy AM, Negm A, Wessjohann LA. Synthesis and biochemical studies of novel organic selenides with increased selectivity for hepatocellular carcinoma and breast adenocarcinoma. Eur J Med Chem. 2019;179:515-526. doi:10.1016/j.ejmech.2019.06.075.
  • 5. Du J, Martin SM, Levine M, Wagner BA, Buettner GR, Wang SH, et al. Mechanisms of ascorbate-induced cytotoxicity in pancreatic cancer. Clin Cancer Res. 2010;16(2):509–20. doi: 10.1158/1078-0432.CCR-09-1713.
  • 6. Paolini M, Pozzetti L, Pedulli GF, Marchesi E, Cantelli-Forti G. The nature of prooxidant activity of vitamin C. Life Sci. 1999;64(23):273-278. Doi: 10.1016/s0024-3205(99)00167-8.
  • 7. Fernandes AP, Gandin V. Selenium compounds as therapeutic agents in cancer. Biochim Biophys Acta - Gen Subj. 2015;1850(8):1642–60. doi: 10.1016/j.bbagen.2014.10.008.
  • 8. Misra S, Boylan M, Selvam A, Spallholz JE, Björnstedt M. Redox-active selenium compounds—from toxicity and cell death to cancer treatment. Nutrients. 2015;7(5):3536–56. doi: 10.3390/nu7053536.
  • 9. Head KA. Ascorbic acid in the prevention and treatment of cancer. Altern Med Rev. 1998;3(3):174–86. PMID: 9630735.
  • 10. Combs GF. Status of selenium in prostate cancer prevention. Br J Cancer. 2004;91(2):195–9. Doi: 10.1038/sj.bjc.6601974.
  • 11. Knekt P, Marniemi J, Teppo L, Heliövaara M, Aromaa A. Is low selenium status a risk factor for lung cancer? Am J Epidemiol. 1998;148(10):975–82. Doi: 10.1093/oxfordjournals.aje.a009574.
  • 12. Mandrioli J, Michalke B, Solovyev N, Grill P, Violi F, Lunetta C, et al. Elevated levels of selenium species in cerebrospinal fluid of amyotrophic lateral sclerosis patients with disease-associated gene mutations. Neurodegener Dis. 2017;17(4–5):171–80. doi: 10.1159/000460253. 
  • 13. Vinceti M, Chiari A, Eichmüller M, Rothman KJ, Filippini T, Malagoli C, et al. A selenium species in cerebrospinal fluid predicts conversion to Alzheimer’s dementia in persons with mild cognitive impairment. Alzheimer’s Res Ther. 2017;9(1):100. doi: 10.1186/s13195-017-0323-1.
  • 14. Gammelgaard B, Jackson MI, Gabel-Jensen C. Surveying selenium speciation from soil to cell-forms and transformations. Analytical and Bioanalytical Chemistry. 2011;399:1743–63. doi: 10.1007/s00216-010-4212-8.
  • 15. Brigelius-Flohé R, Flohé L. Selenium and redox signaling. Arch Biochem Biophys. 2017;617:48–59. doi: 10.1016/j.abb.2016.08.003.
  • 16. Hatfield DL, Tsuji PA, Carlson BA, Gladyshev VN. Selenium and selenocysteine: Roles in cancer, health, and development. Trends Biochem Sci. 2014;39(3):112–20. doi: 10.1016/j.tibs.2013.12.007.
  • 17. Labunskyy VM, Hatfield DL, Gladyshev VN. Selenoproteins: Molecular pathways and physiological roles. Physiol Rev. 2014;94:739–77. doi: 10.1152/physrev.00039.2013.
  • 18. Balkan BM, Sel T. Vitamin C’nin HepG2 hücrelerinde apoptozis üzerine etkileri. Ankara Üniv Vet Fak Derg. 2014;61:237–41.
  • 19. Balkan BM. HepG2 hücrelerinde selenyum ve vitamin C’nin apoptosis üzerine etkileri [Doktora Tezi]. [Ankara]: Ankara Üniversitesi; 2012.
  • 20. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;70(1):158–69. PMID: 6066618
  • 21. Aebi HE. Catalase in: H.U. Bermeyer (Hrsy). Methods of enzymatic analysis. Verlag Chemie; Weinheim, Bd. III; 1983. p. 273-286.
  • 22. Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–54. doi.org/10.1016/0003-2697(76)90527-3.
  • 23. Athreya K, Xavier MF. Antioxidants in the treatment of cancer. Nutrition and Cancer. 2017;69:1099–104. doi: 10.1080/01635581.2017.1362445.
  • 24. Guo Dong Mao, Thomas PD, Lopaschuk GD, Poznansky MJ. Superoxide dismutase (SOD)-catalase conjugates. Role of hydrogen peroxide and the fenton reaction in SOD toxicity. J Biol Chem. 1993;268(1):416–20. PMID: 8380162.
  • 25. Michiels C, Raes M, Toussaint O, Remacle J. Importance of SE-glutathione peroxidase, catalase, and CU/ZN-SOD for cell survival against oxidative stress. Free Radic Biol Med. 1994;17(3):235–48. Doi: 10.1016/0891-5849(94)90079-5.
  • 26. Heukamp I, Kilian M, Gregor JI, Neumann A, Jacobi CA, Guski H, et al. Effects of the antioxidative vitamins A, C and E on liver metastasis and intrametastatic lipid peroxidation in bop-induced pancreatic cancer in Syrian hamsters. Pancreatology. 2005;5(4–5):403–9. Doi: 10.1159/000086541.
  • 27. Van Der Loo B, Bachschmid M, Spitzer V, Brey L, Ullrich V, Lüscher TF. Decreased plasma and tissue levels of vitamin C in a rat model of aging: Implications for antioxidative defense. Biochem Biophys Res Commun. 2003;303(2):483–7. Doi: 10.1016/s0006-291x(03)00360-7.
  • 28. Chen Q, Espey MG, Krishna MC, Mitchell JB, Corpe CP, Buettner GR, et al. Pharmacologic ascorbic acid concentrations selectively kill cancer cells: Action as a pro-drug to deliver hydrogen peroxide to tissuse. Proc Natl Acad Sci USA. 2005;102(38):13604–9. Doi: 10.1073/pnas.0506390102.
  • 29. Chen P, Stone J, Sullivan G, Drisko JA, Chen Q. Anti-cancer effect of pharmacologic ascorbate and its interaction with supplementary parenteral glutathione in preclinical cancer models. Free Radic Biol Med. 2011;51(3):681–7. doi: 10.1016/j.freeradbiomed.2011.05.031.
  • 30. Du J, Cullen JJ, Buettner GR. Ascorbic acid: Chemistry, biology and the treatment of cancer. Biochim Biophys Acta - Rev Cancer. 2012;1826(2):443–57. doi: 10.1016/j.bbcan.2012.06.003.
  • 31. Levine M, Padayatty SJ, Espey MG. Vitamin C: A concentration-function approach yields pharmacology and therapeutic discoveries. Adv Nutr. 2011;2(2):78–88. doi: 10.3945/an.110.000109.
  • 32. Pathi SS, Lei P, Sreevalsan S, Chadalapaka G, Jutooru I, Safe S. Pharmacologic doses of ascorbic acid repress specificity protein (Sp) transcription factors and Sp-regulated genes in colon cancer cells. Nutr Cancer. 2011;63(7):1133–42. doi: 10.1080/01635581.2011.605984.
  • 33. Schoenfeld JD, Sibenaller ZA, Mapuskar KA, Wagner BA, Cramer-Morales KL, Furqan M, et al. O2⋅− and H2O2-mediated disruption of Fe metabolism causes the differential susceptibility of NSCLC and GBM cancer cells to pharmacological ascorbate. Cancer Cell. 2017;31(4):487-500. doi: 10.1016/j.ccell.2017.02.018.
  • 34. Ryszawy D, Pudełek M, Catapano J, Ciarach M, Setkowicz Z, Konduracka E, et al. High doses of sodium ascorbate interfere with the expansion of glioblastoma multiforme cells in vitro and in vivo. Life Sci. 2019;232:116657. doi: 10.1016/j.lfs.2019.116657.
  • 35. Gao P, Zhang H, Dinavahi R, Li F, Xiang Y, Raman V, et al. HIF-Dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell. 2007;12(3):230–8. Doi: 10.1016/j.ccr.2007.08.004.
  • 36. Susin SA, Daugas E, Ravagnan L, Samejima K, Zamzami N, Loeffler M, et al. Two distinct pathways leading to nuclear apoptosis. J Exp Med. 2000;192(4):571–9. Doi: 10.1084/jem.192.4.571.
  • 37. Uǧuz AC, Naziroglu M, Espino J, Bejarano I, González D, Rodríguez AB, et al. Selenium modulates oxidative stress-induced cell apoptosis in human myeloid HL-60 cells through regulation of calcium release and caspase-3 and -9 activities. J Membr Biol. 2009;232(1–3):15–23. doi: 10.1007/s00232-009-9212-2.
  • 39. Wu X, Zhao G, He Y, Wang W, Yang CS, Zhang J. Pharmacological mechanisms of the anticancer action of sodium selenite against peritoneal cancer in mice. Pharmacol Res. 2019;147:104360. doi: 10.1016/j.phrs.2019.104360.
  • 40. Chen T, Zheng W, Wong YS, Yang F. Mitochondria-mediated apoptosis in human breast carcinoma MCF-7 cells induced by a novel selenadiazole derivative. Biomed Pharmacother. 2008;62(2):77–84. doi: 10.1016/j.biopha.2007.12.002.
  • 41. Rayman MP. The importance of selenium to human health. Lancet. 2000;356(9225):233–41. Doi: 10.1016/S0140-6736(00)02490-9.
  • 42. El-Bayoumy K, Sinha R. Mechanisms of mammary cancer chemoprevention by organoselenium compounds. Mutat Res. 2004;551(1–2):181–97. Doi: 10.1016/j.mrfmmm.2004.02.023.
  • 43. Whanger PD. Selenium and its relationship to cancer: an update. Br J Nutr. 2004;91(1):11–28. Doi: 10.1079/bjn20031015.
  • 44. Gopee N V., Johnson VJ, Sharma RP. Sodium selenite-induced apoptosis in murine B-lymphoma cells is associated with inhibition of protein kinase C-δ, nuclear factor κB, and inhibitor of apoptosis protein. Toxicol Sci. 2004;78(2):204–14. Doi: 10.1093/toxsci/kfh072.
  • 45. Shilo S, Tirosh O. Selenite activates caspase-independent necrotic cell death in Jurkat T cells and J774.2 macrophages by affecting mitochondrial oxidant generation. Antioxidants Redox Signal. 2003;5(3):273–9. Doi: 10.1089/152308603322110850.
  • 46. Rudolf E, Rudolf K, Červinka M. Selenium activates p53 and p38 pathways and induces caspase-independent cell death in cervical cancer cells. Cell Biol Toxicol. 2008;24(2):123–41. Doi: 10.1007/s10565-007-9022-1.
  • 47. Estevez H, Garcia-Lidon JC, Luque-Garcia JL, Camara C. Effects of chitosan-stabilized selenium nanoparticles on cell proliferation, apoptosis and cell cycle pattern in HepG2 cells: Comparison with other selenospecies. Colloids Surfaces B Biointerfaces. 2014;122:184–93. doi: 10.1016/j.colsurfb.2014.06.062.
There are 46 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Articles
Authors

Burcu Menekşe Balkan 0000-0002-0206-6455

Öğünç Meral 0000-0001-8813-4991

Gorkem Kismali 0000-0003-3414-4697

Tevhide Sel 0000-0002-9753-779X

Publication Date June 23, 2020
Submission Date April 21, 2020
Acceptance Date May 29, 2020
Published in Issue Year 2020 Volume: 7 Issue: 2

Cite

Vancouver Balkan BM, Meral Ö, Kismali G, Sel T. Antioxidant Enzyme Activities in Ascorbic Acid and Selenium Applied Hepatocellular Carcinoma Cells. JOTCSA. 2020;7(2):581-8.