Research Article
BibTex RIS Cite
Year 2020, Volume: 7 Issue: 2, 505 - 516, 23.06.2020
https://doi.org/10.18596/jotcsa.733160

Abstract

References

  • 1. Duran C, Tumay SO, Ozdes D, Serencam H, Bektas H. Simultaneous separation and preconcentration of Ni(II) and Cu(II) ions by coprecipitation without any carrier element in some food and water samples. International Journal of Food Science & Technology. 2014;49(6):1586-92.
  • 2. Yan Z, Yuen M-F, Hu L, Sun P, Lee C-S. Advances for the colorimetric detection of Hg2+ in aqueous solution. RSC Advances. 2014;4(89):48373-88.
  • 3. Kim HN, Ren WX, Kim JS, Yoon J. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chemical Society Reviews. 2012;41(8):3210-44.
  • 4. Taki M, Akaoka K, Iyoshi S, Yamamoto Y. Rosamine-Based Fluorescent Sensor with Femtomolar Affinity for the Reversible Detection of a Mercury Ion. Inorganic Chemistry. 2012;51(24):13075-7.
  • 5. Liu D, Wang Y, Wang R, Wang B, Chang H, Chen J, et al. Fluorescein-based fluorescent sensor with high selectivity for mercury and its imaging in living cells. Inorganic Chemistry Communications. 2018;89:46-50.
  • 6. Gao Y, De Galan S, De Brauwere A, Baeyens W, Leermakers M. Mercury speciation in hair by headspace injection–gas chromatography–atomic fluorescence spectrometry (methylmercury) and combustion-atomic absorption spectrometry (total Hg). Talanta. 2010;82(5):1919-23.
  • 7. Tümay SO, Uslu A, Ardıç Alidağı H, Kazan HH, Bayraktar C, Yolaçan T, et al. A systematic series of fluorescence chemosensors with multiple binding sites for Hg(ii) based on pyrenyl-functionalized cyclotriphosphazenes and their application in live cell imaging. New Journal of Chemistry. 2018;42(17):14219-28.
  • 8. Deng B, Xiao Y, Xu X, Zhu P, Liang S, Mo W. Cold vapor generation interface for mercury speciation coupling capillary electrophoresis with electrothermal quartz tube furnace atomic absorption spectrometry: Determination of mercury and methylmercury. Talanta. 2009;79(5):1265-9.
  • 9. Mao Y, Liu G, Meichel G, Cai Y, Jiang G. Simultaneous Speciation of Monomethylmercury and Monoethylmercury by Aqueous Phenylation and Purge-and-Trap Preconcentration Followed by Atomic Spectrometry Detection. Analytical Chemistry. 2008;80(18):7163-8.
  • 10. Nguyen TH, Boman J, Leermakers M, Baeyens W. Mercury analysis in environmental samples by EDXRF and CV-AAS. Fresenius' Journal of Analytical Chemistry. 1998;360(2):199-204.
  • 11. Zheng C, Li Y, He Y, Ma Q, Hou X. Photo-induced chemical vapor generation with formic acid for ultrasensitive atomic fluorescence spectrometric determination of mercury: potential application to mercury speciation in water. Journal of Analytical Atomic Spectrometry. 2005;20(8):746-50.
  • 12. Zhang C, Gao B, Zhang Q, Zhang G, Shuang S, Dong C. A simple Schiff base fluorescence probe for highly sensitive and selective detection of Hg2+and Cu2+. Talanta. 2016;154:278-83.
  • 13. Wei T-b, Gao G-y, Qu W-j, Shi B-b, Lin Q, Yao H, et al. Selective fluorescent sensor for mercury(II) ion based on an easy to prepare double naphthalene Schiff base. Sensors and Actuators B: Chemical. 2014;199:142-7.
  • 14. Gujar V, Sangale V, Ottoor D. A Selective Turn off Fluorescence Sensor Based on Propranolol-SDS Assemblies for Fe3+ Detection. Journal of Fluorescence. 2019;29(1):91-100.
  • 15. Kim K, Choi SH, Jeon J, Lee H, Huh JO, Yoo J, et al. Control of On–Off or Off–On Fluorescent and Optical [Cu2+] and [Hg2+] Responses via Formal Me/H Substitution in Fully Characterized Thienyl “Scorpionate”-like BODIPY Systems. Inorganic Chemistry. 2011;50(12):5351-60.
  • 16. Long Y, Yang M-p, Yang B-q. Development and applications of two colorimetric and fluorescent indicators for Hg2+ detection. Journal of Inorganic Biochemistry. 2017;172:23-33.
  • 17. Wang H, Li Y, Xu S, Li Y, Zhou C, Fei X, et al. Rhodamine-based highly sensitive colorimetric off-on fluorescent chemosensor for Hg2+ in aqueous solution and for live cell imaging. Organic & Biomolecular Chemistry. 2011;9(8):2850-5.
  • 18. Burress CN, Bodine MI, Elbjeirami O, Reibenspies JH, Omary MA, Gabbaï FP. Enhancement of External Spin−Orbit Coupling Effects Caused by Metal−Metal Cooperativity. Inorganic Chemistry. 2007;46(4):1388-95.
  • 19. Coskun A, Akkaya EU. Signal Ratio Amplification via Modulation of Resonance Energy Transfer:  Proof of Principle in an Emission Ratiometric Hg(II) Sensor. Journal of the American Chemical Society. 2006;128(45):14474-5.
  • 20. Tian M, Ihmels H. Selective ratiometric detection of mercury(ii) ions in water with an acridizinium-based fluorescent probe. Chemical Communications. 2009(22):3175-7.
  • 21. Alizadeh K, Parooi R, Hashemi P, Rezaei B, Ganjali MR. A new Schiff's base ligand immobilized agarose membrane optical sensor for selective monitoring of mercury ion. Journal of Hazardous Materials. 2011;186(2):1794-800.
  • 22. Quang DT, Wu J-S, Luyen ND, Duong T, Dan ND, Bao NC, et al. Rhodamine-derived Schiff base for the selective determination of mercuric ions in water media. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2011;78(2):753-6.
  • 23. Kaur B, Gupta A, Kaur N. A novel, anthracene-based naked eye probe for detecting Hg2+ ions in aqueous as well as solid state media. Microchemical Journal. 2020;153:104508.
  • 24. Zhou Y, Zhu C-Y, Gao X-S, You X-Y, Yao C. Hg2+-Selective Ratiometric and “Off−On” Chemosensor Based on the Azadiene−Pyrene Derivative. Organic Letters. 2010;12(11):2566-9.
  • 25. Tümay SO, Yeşilot S. Tripodal synthetic receptors based on cyclotriphosphazene scaffold for highly selective and sensitive spectrofluorimetric determination of iron(III) in water samples. Journal of Photochemistry and Photobiology A: Chemistry. 2019;372:156-67.
  • 26. Sie Y-W, Wan C-F, Wu A-T. A multifunctional Schiff base fluorescence sensor for Hg2+, Cu2+ and Co2+ ions. RSC Advances. 2017;7(5):2460-5.
  • 27. Kaur B, Kaur N. Detection of Al3+ and Hg2+ ions with anthracene appended Schiff base and its reduced analogue. Journal of Coordination Chemistry. 2019;72(13):2189-99.
  • 28. Ke C, Destecroix H, Crump MP, Davis AP. A simple and accessible synthetic lectin for glucose recognition and sensing. Nature Chemistry. 2012;4(9):718-23.
  • 29. Mondal B, Banerjee S, Ray J, Jana S, Senapati S, Tripathy T. “Novel Dextrin-Cysteine Schiff Base: A Highly Efficient Sensor for Mercury Ions in Aqueous Environment”. ChemistrySelect. 2020;5(6):2082-93.
  • 30. Guven N, Camurlu P. Electrosyntheses of anthracene clicked poly(thienylpyrrole)s and investigation of their electrochromic properties. Polymer. 2015;73:122-30.
  • 31. Fery-Forgues S, Lavabre D. Are Fluorescence Quantum Yields So Tricky to Measure? A Demonstration Using Familiar Stationery Products. Journal of Chemical Education. 1999;76(9):1260.
  • 32. Melhuish WH. QUANTUM EFFICIENCIES OF FLUORESCENCE OF ORGANIC SUBSTANCES: EFFECT OF SOLVENT AND CONCENTRATION OF THE FLUORESCENT SOLUTE1. The Journal of Physical Chemistry. 1961;65(2):229-35.
  • 33. Bayindir S. A simple rhodanine-based fluorescent sensor for mercury and copper: The recognition of Hg2+ in aqueous solution, and Hg2+/Cu2+ in organic solvent. Journal of Photochemistry and Photobiology A: Chemistry. 2019;372:235-44.
  • 34. Xu Y, Mao S, Peng H, Wang F, Zhang H, Aderinto SO, et al. A fluorescent sensor for selective recognition of Al3+ based on naphthalimide Schiff-base in aqueous media. Journal of Luminescence. 2017;192:56-63.
  • 35. Wee SS, Ng YH, Ng SM. Synthesis of fluorescent carbon dots via simple acid hydrolysis of bovine serum albumin and its potential as sensitive sensing probe for lead (II) ions. Talanta. 2013;116:71-6.
  • 36. Chai SC, Lu J-P, Ye Q-Z. Determination of binding affinity of metal cofactor to the active site of methionine aminopeptidase based on quantitation of functional enzyme. Anal Biochem. 2009;395(2):263-4.
  • 37. Chai SC, Ye Q-Z. Analysis of the stoichiometric metal activation of methionine aminopeptidase. BMC Biochem. 2009;10:32-.

A novel selective “turn-on’’ fluorescent sensor for Hg2+ and its utility for spectrofluorimetric analysis of real samples

Year 2020, Volume: 7 Issue: 2, 505 - 516, 23.06.2020
https://doi.org/10.18596/jotcsa.733160

Abstract

A novel anthracene-based dipodal Schiff base ‘‘turn-on’’ fluorescent sensor (FS) was designed and synthesized by accessible and straightforward Schiff base reaction of salicylaldehyde and 9,10-bis(aminomethyl)anthracene with high yield. The chemical characterization of fluorescent sensor FS was performed by standard spectroscopic techniques (MALDI-MS, FT-IR, 1H, and 13C NMR), and photophysical properties were exanimated by UV-vis and fluorescent spectroscopies. The fluorescent sensor FS can coordinate with Hg2+ via Schiff base moiety when analytical signal as a “turn on” fluorescent response was obtained via anthracene moiety after coordination. Also, spectrofluorimetric analysis of Hg2+ was carried out using fluorescent sensor FS in environmental water samples after optimization required experimental conditions such as pH, the time before measurements, and photostability. According to obtained results, the presented fluorescent sensor can be used for selective and sensitive spectrofluorimetric determination of Hg2+.

References

  • 1. Duran C, Tumay SO, Ozdes D, Serencam H, Bektas H. Simultaneous separation and preconcentration of Ni(II) and Cu(II) ions by coprecipitation without any carrier element in some food and water samples. International Journal of Food Science & Technology. 2014;49(6):1586-92.
  • 2. Yan Z, Yuen M-F, Hu L, Sun P, Lee C-S. Advances for the colorimetric detection of Hg2+ in aqueous solution. RSC Advances. 2014;4(89):48373-88.
  • 3. Kim HN, Ren WX, Kim JS, Yoon J. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chemical Society Reviews. 2012;41(8):3210-44.
  • 4. Taki M, Akaoka K, Iyoshi S, Yamamoto Y. Rosamine-Based Fluorescent Sensor with Femtomolar Affinity for the Reversible Detection of a Mercury Ion. Inorganic Chemistry. 2012;51(24):13075-7.
  • 5. Liu D, Wang Y, Wang R, Wang B, Chang H, Chen J, et al. Fluorescein-based fluorescent sensor with high selectivity for mercury and its imaging in living cells. Inorganic Chemistry Communications. 2018;89:46-50.
  • 6. Gao Y, De Galan S, De Brauwere A, Baeyens W, Leermakers M. Mercury speciation in hair by headspace injection–gas chromatography–atomic fluorescence spectrometry (methylmercury) and combustion-atomic absorption spectrometry (total Hg). Talanta. 2010;82(5):1919-23.
  • 7. Tümay SO, Uslu A, Ardıç Alidağı H, Kazan HH, Bayraktar C, Yolaçan T, et al. A systematic series of fluorescence chemosensors with multiple binding sites for Hg(ii) based on pyrenyl-functionalized cyclotriphosphazenes and their application in live cell imaging. New Journal of Chemistry. 2018;42(17):14219-28.
  • 8. Deng B, Xiao Y, Xu X, Zhu P, Liang S, Mo W. Cold vapor generation interface for mercury speciation coupling capillary electrophoresis with electrothermal quartz tube furnace atomic absorption spectrometry: Determination of mercury and methylmercury. Talanta. 2009;79(5):1265-9.
  • 9. Mao Y, Liu G, Meichel G, Cai Y, Jiang G. Simultaneous Speciation of Monomethylmercury and Monoethylmercury by Aqueous Phenylation and Purge-and-Trap Preconcentration Followed by Atomic Spectrometry Detection. Analytical Chemistry. 2008;80(18):7163-8.
  • 10. Nguyen TH, Boman J, Leermakers M, Baeyens W. Mercury analysis in environmental samples by EDXRF and CV-AAS. Fresenius' Journal of Analytical Chemistry. 1998;360(2):199-204.
  • 11. Zheng C, Li Y, He Y, Ma Q, Hou X. Photo-induced chemical vapor generation with formic acid for ultrasensitive atomic fluorescence spectrometric determination of mercury: potential application to mercury speciation in water. Journal of Analytical Atomic Spectrometry. 2005;20(8):746-50.
  • 12. Zhang C, Gao B, Zhang Q, Zhang G, Shuang S, Dong C. A simple Schiff base fluorescence probe for highly sensitive and selective detection of Hg2+and Cu2+. Talanta. 2016;154:278-83.
  • 13. Wei T-b, Gao G-y, Qu W-j, Shi B-b, Lin Q, Yao H, et al. Selective fluorescent sensor for mercury(II) ion based on an easy to prepare double naphthalene Schiff base. Sensors and Actuators B: Chemical. 2014;199:142-7.
  • 14. Gujar V, Sangale V, Ottoor D. A Selective Turn off Fluorescence Sensor Based on Propranolol-SDS Assemblies for Fe3+ Detection. Journal of Fluorescence. 2019;29(1):91-100.
  • 15. Kim K, Choi SH, Jeon J, Lee H, Huh JO, Yoo J, et al. Control of On–Off or Off–On Fluorescent and Optical [Cu2+] and [Hg2+] Responses via Formal Me/H Substitution in Fully Characterized Thienyl “Scorpionate”-like BODIPY Systems. Inorganic Chemistry. 2011;50(12):5351-60.
  • 16. Long Y, Yang M-p, Yang B-q. Development and applications of two colorimetric and fluorescent indicators for Hg2+ detection. Journal of Inorganic Biochemistry. 2017;172:23-33.
  • 17. Wang H, Li Y, Xu S, Li Y, Zhou C, Fei X, et al. Rhodamine-based highly sensitive colorimetric off-on fluorescent chemosensor for Hg2+ in aqueous solution and for live cell imaging. Organic & Biomolecular Chemistry. 2011;9(8):2850-5.
  • 18. Burress CN, Bodine MI, Elbjeirami O, Reibenspies JH, Omary MA, Gabbaï FP. Enhancement of External Spin−Orbit Coupling Effects Caused by Metal−Metal Cooperativity. Inorganic Chemistry. 2007;46(4):1388-95.
  • 19. Coskun A, Akkaya EU. Signal Ratio Amplification via Modulation of Resonance Energy Transfer:  Proof of Principle in an Emission Ratiometric Hg(II) Sensor. Journal of the American Chemical Society. 2006;128(45):14474-5.
  • 20. Tian M, Ihmels H. Selective ratiometric detection of mercury(ii) ions in water with an acridizinium-based fluorescent probe. Chemical Communications. 2009(22):3175-7.
  • 21. Alizadeh K, Parooi R, Hashemi P, Rezaei B, Ganjali MR. A new Schiff's base ligand immobilized agarose membrane optical sensor for selective monitoring of mercury ion. Journal of Hazardous Materials. 2011;186(2):1794-800.
  • 22. Quang DT, Wu J-S, Luyen ND, Duong T, Dan ND, Bao NC, et al. Rhodamine-derived Schiff base for the selective determination of mercuric ions in water media. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2011;78(2):753-6.
  • 23. Kaur B, Gupta A, Kaur N. A novel, anthracene-based naked eye probe for detecting Hg2+ ions in aqueous as well as solid state media. Microchemical Journal. 2020;153:104508.
  • 24. Zhou Y, Zhu C-Y, Gao X-S, You X-Y, Yao C. Hg2+-Selective Ratiometric and “Off−On” Chemosensor Based on the Azadiene−Pyrene Derivative. Organic Letters. 2010;12(11):2566-9.
  • 25. Tümay SO, Yeşilot S. Tripodal synthetic receptors based on cyclotriphosphazene scaffold for highly selective and sensitive spectrofluorimetric determination of iron(III) in water samples. Journal of Photochemistry and Photobiology A: Chemistry. 2019;372:156-67.
  • 26. Sie Y-W, Wan C-F, Wu A-T. A multifunctional Schiff base fluorescence sensor for Hg2+, Cu2+ and Co2+ ions. RSC Advances. 2017;7(5):2460-5.
  • 27. Kaur B, Kaur N. Detection of Al3+ and Hg2+ ions with anthracene appended Schiff base and its reduced analogue. Journal of Coordination Chemistry. 2019;72(13):2189-99.
  • 28. Ke C, Destecroix H, Crump MP, Davis AP. A simple and accessible synthetic lectin for glucose recognition and sensing. Nature Chemistry. 2012;4(9):718-23.
  • 29. Mondal B, Banerjee S, Ray J, Jana S, Senapati S, Tripathy T. “Novel Dextrin-Cysteine Schiff Base: A Highly Efficient Sensor for Mercury Ions in Aqueous Environment”. ChemistrySelect. 2020;5(6):2082-93.
  • 30. Guven N, Camurlu P. Electrosyntheses of anthracene clicked poly(thienylpyrrole)s and investigation of their electrochromic properties. Polymer. 2015;73:122-30.
  • 31. Fery-Forgues S, Lavabre D. Are Fluorescence Quantum Yields So Tricky to Measure? A Demonstration Using Familiar Stationery Products. Journal of Chemical Education. 1999;76(9):1260.
  • 32. Melhuish WH. QUANTUM EFFICIENCIES OF FLUORESCENCE OF ORGANIC SUBSTANCES: EFFECT OF SOLVENT AND CONCENTRATION OF THE FLUORESCENT SOLUTE1. The Journal of Physical Chemistry. 1961;65(2):229-35.
  • 33. Bayindir S. A simple rhodanine-based fluorescent sensor for mercury and copper: The recognition of Hg2+ in aqueous solution, and Hg2+/Cu2+ in organic solvent. Journal of Photochemistry and Photobiology A: Chemistry. 2019;372:235-44.
  • 34. Xu Y, Mao S, Peng H, Wang F, Zhang H, Aderinto SO, et al. A fluorescent sensor for selective recognition of Al3+ based on naphthalimide Schiff-base in aqueous media. Journal of Luminescence. 2017;192:56-63.
  • 35. Wee SS, Ng YH, Ng SM. Synthesis of fluorescent carbon dots via simple acid hydrolysis of bovine serum albumin and its potential as sensitive sensing probe for lead (II) ions. Talanta. 2013;116:71-6.
  • 36. Chai SC, Lu J-P, Ye Q-Z. Determination of binding affinity of metal cofactor to the active site of methionine aminopeptidase based on quantitation of functional enzyme. Anal Biochem. 2009;395(2):263-4.
  • 37. Chai SC, Ye Q-Z. Analysis of the stoichiometric metal activation of methionine aminopeptidase. BMC Biochem. 2009;10:32-.
There are 37 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry
Journal Section Articles
Authors

Süreyya Oğuz Tümay 0000-0002-0453-4021

Publication Date June 23, 2020
Submission Date May 6, 2020
Acceptance Date May 16, 2020
Published in Issue Year 2020 Volume: 7 Issue: 2

Cite

Vancouver Tümay SO. A novel selective “turn-on’’ fluorescent sensor for Hg2+ and its utility for spectrofluorimetric analysis of real samples. JOTCSA. 2020;7(2):505-16.