Abstract
A novel anthracene-based dipodal Schiff base ‘‘turn-on’’ fluorescent sensor (FS) was designed and synthesized by accessible and straightforward Schiff base reaction of salicylaldehyde and 9,10-bis(aminomethyl)anthracene with high yield. The chemical characterization of fluorescent sensor FS was performed by standard spectroscopic techniques (MALDI-MS, FT-IR, 1H, and 13C NMR), and photophysical properties were exanimated by UV-vis and fluorescent spectroscopies. The fluorescent sensor FS can coordinate with Hg2+ via Schiff base moiety when analytical signal as a “turn on” fluorescent response was obtained via anthracene moiety after coordination. Also, spectrofluorimetric analysis of Hg2+ was carried out using fluorescent sensor FS in environmental water samples after optimization required experimental conditions such as pH, the time before measurements, and photostability. According to obtained results, the presented fluorescent sensor can be used for selective and sensitive spectrofluorimetric determination of Hg2+.