Research Article
BibTex RIS Cite
Year 2020, Volume: 7 Issue: 3, 635 - 648, 30.10.2020
https://doi.org/10.18596/jotcsa.635095

Abstract

References

  • 1. Sree KB, Kumar YM, Gopal NO, Ramu C. Preparation and characterization of pure and copper-doped PVC films. J Polym Eng. 2017;37(1):83–92. DOI:10.1515/polyeng-2015-0446.
  • 2. Sarawut R, Siriporn D, Patima W, Duangporn S, Sunan T. Characterization of coconut fiber-filled polyvinyl chloride/acrylonitrile styrene acrylate blends. J Reinf Plast Comp. 2011;30(20):1691–1702 DOI:10.1177/0731684411427484.
  • 3. Bijhanmanesh MJ, Etesami N, Darvishi R. Continuous dosing of fast initiator during vinyl chloride suspension polymerization: thermal stability of PVC resin. J Appl Polym Sci. 2017;134(1):44480-87. DOI:10.1002/APP.44480.
  • 4. Zhang X, Zhang J. Effect of temperature on the impact behavior of PVC/ASA binary blends with various ASA terpolymer contents. J Polym Eng. 2019;39(5):407–414. DOI:10.1515/polyeng-2018-0349.
  • 5. Yu J, Feng P, Zhang H. Effects of core‐shell acrylate particles on impact properties of chlorinated polyethylene/polyvinyl chloride blends. Polym Eng Sci. 2010;50(2):295-301. DOI:10.1002/pen.21539.
  • 6. Zhang Z, Wang S, Zhang J, Zhu W, Tian T. Remarkably improved toughness and thermal stability of poly (vinyl chloride) (PVC)/poly (α-methylstyrene-acrylonitrile) (α-MSAN) blend with the assistance of two impact modifiers. Polym Test. 2016;51:1-5. DOI:10.1016/j.polymertesting.2016.02.003.
  • 7. Zhang Z, Chen S, Zhang J. Improvement in the heat resistance of poly(vinyl chloride) profile with styrenic polymers. J Vinyl Addit Techn. 2011;17(2):85-91. DOI:10.1002/vnl.20251.
  • 8. Rimdusit S, Wongmanit P, Damrongsakkul S, Saramas D, Jubsilp C, Dueramae I. Characterizations of poly(vinyl chloride)/acrylonitrile styrene acrylate blends for outdoor applications. Eng J. 2013;18(1):105-118. DOI:10.4186/ej.2014.18.1.105.
  • 9. Mao Z, Zhang J. Largely improved the low temperature toughness of acrylonitrile-styrene-acrylate (ASA) resin: Fabricated a core-shell structure of two elastomers through the differences of interfacial tensions. Appl Surf Sci. 2018;444,345–354. DOI:10.1016/j.apsusc.2018.03.066.
  • 10. You F, Chen G, Zou J, Yang Z, Guo S. The experimental results and simulation of temperature dependence of brittle‐ductile transition in PVC/CPE blends and PVC/CPE/nano‐CaCO3 composites. J. Appl. Polym. Sci. 2012,123(3), 1833-1842. DOI:10.1002/app.34662.
  • 11. Chen M, Wang S, Zhou C, Liu Z, Zhang H. Toughening Poly (Vinyl Chloride) by PS/PB/PMMA Three-Layer Particles. Polym Plast Dent Eng. 2013;52(8):814-819. DOI:10.1080/03602559.2013.763359.
  • 12. Markarian J. Impact modifiers: how to make your compound tougher. Plast Addit Compd 2004;6(3):46-49. DOI:10.1016/S1464-391X(04)00203-X.
  • 13. Wang HL, Tan HS, Li YJ, Yu YZ. Phase morphology and dynamic mechanical behavior for MIS toughened polyvinyl chloride. J Appl Polym Sci. 2013;129(6):3466-3472. DOI:10.1002/app.39095.
  • 14. Wu S, Chen M, Wu G, Zhou C. Variation of core-shell structural particles and their toughening behavior in poly (vinyl chloride) (PVC) matrix. J Polym Res (2015);22:82. DOI:10.1007/s10965-015-0730-6.
  • 15. Scott G, Tahan M. The photo-oxidation of PVC and impact modified PVC. Chemical changes. Eur Polym J. 1977;13(12):989-996. DOI:10.1016/0014-3057(77)90171-9.
  • 16. Zhang LX, Zhou C, Sun SL, Ren L, Ma XL, Zhang MY, Zhang HX. Study of compatibility, morphology structure and mechanical properties of CPVC/ABS blends. J Appl Polym Sci. 2010;116(6):3448-3454. DOI:10.1002/app.31855.
  • 17. Zhang Y, Xu Y, Song Y, Zheng Q. Study of poly(vinyl chloride)/acrylonitrile–styrene–acrylate blends for compatibility, toughness, thermal stability and UV irradiation resistance. J Appl Polym Sci. 2013;130(3):2143-2151. DOI:10.1002/APP.39405.
  • 18. Pickett JE, Gibson DA, Gardner MM. Effects of irradiation conditions on the weathering of engineering thermoplastics. Polym Degrad Stab. 2008;93(8):1597-1606. DOI:10.1016/j.polymdegradstab.2008.02.009.
  • 19. Du YG, Gao JG, Yang JB, Liu XQ. Dynamic rheological behavior and mechanical properties and of PVC/ASA blends. J Polym Res. 2012;19(11):9993. DOI:10.1007/s10965-012-9993-3.
  • 20. Gawade AR, Lodha AV, Joshi PS. PVC/ABS blends: Thermal and morphological studies. J Macr Sci. Part B: Physics. 2008;47(1):201–210. DOI:10.1080/00222340701748701.
  • 21. Yin B, Hakkarainen M. Core–shell nanoparticle–plasticizers for design of high-performance polymeric materials with improved stiffness and toughness. J. Mater. Chem. 2010;21(24):8670-8677. DOI:10.1039/C1JM10624D.
  • 22. Szamborski G. Superior balance of weatherability and impact performance with acrylic-capped vinyl siding. J Vinyl Addit Tech. 2007;13(1):26-30. DOI:10.1002/vnl.20094.
  • 23. Crosby AJ, Lee JY. Polymer nanocomposites: The “nano” effect on mechanical properties. Polym. Rev. 2007;47(2):217-229. DOI:10.1080/15583720701271278.
  • 24. Pagacz J, Pielichowski K. PVC/MMT nanocomposites. J Therm Anal Calorim 2013;111(2):1571-1575. DOI:10.1007/s10973-012-2484-2.
  • 25. Guo F, Aryana S, Han Y, Jiao Y. A review of the synthesis and applications of polymer–nanoclay composites. Appl Sci. 2018;8(9):1696. DOI:10.3390/app8091696.
  • 26. Ismail H, Munusamy Y. Polyvinyl Chloride/Organoclay Nanocomposites: Effects of Filler Loading and Maleic Anhydride. J Reinf Plastc Comp. 2007;26(16):1681-1694. DOI: 10.1177/0731684407081446.
  • 27. Mondragon M, Valdes SS, Sanchez-Espindola ME, Rivera-Lopez JE. Morphology, mechanical properties, and thermal stability of rigid PVC/Clay nanocomposites. Polym Eng Sci. 2011;51(4):641-646. DOI:10.1002/pen.21867.
  • 28. Wang C, Li N, Huo L, Gao J. Effect of carbon nanotube on the mechanical, plasticizing behavior and thermal stability of PVC/poly(acrylonitrile–styrene–acrylate) nanocomposites. Polym Bul. 2015;72(8):1849–1861. DOI:10.1007/s00289-015-1376-6.
  • 29. Li W, Tang XZ, Zhang HB, Jiang ZG, Yu ZZ, Du XS, Mai YW. Simultaneous surface functionalization and reduction of graphene oxide with octadecylamine for electrically conductive polystyrene composites. Carbon. 2011;49(14)4724-4730. DOI:10.1016/j.carbon.2011.06.077.
  • 30. Pasternack RM, Amy SR, Chabal YJ. Attachment of 3-(aminopropyl) triethoxysilane on silicon oxide surfaces: Dependence on solution temperature. Langmuir. 2008;24(22):12963-12971. DOI:10.1021/la8024827.
  • 31. Liang ZM, Wan CY, Zhang Y, Wei P, Yin J. PVC/Montmorillonite Nanocomposites Based on a Thermally Stable, Rigid-Rod Aromatic Amine Modifier. J Appl Polym Sci. 2004;92:567-575. DOI:10.1002/app.20041.
  • 32. Shimpi NG, Mishra S. Influence of surface modification of montomorillonite on properties of PVC nanocomposites. J Comp Mat. 2011;45(23):2447–2453. DOI: 10.1177/0021998311401095.
  • 33. Wan C, Qiao X, Zhang Y, Zhang Y. Effect of different clay treatment on morphology and mechanical properties of PVC-clay nanocomposites. Polym Test. 2003;22(4):453-461. DOI: 10.1016/S0142-9418(02)00126-5
  • 34. Ramesh S, Leen KH, Kumutha K, Arof AK. FTIR studies of PVC/PMMA blend based polymer electrolytes. Spectrochim Acta Part A Mol Biomol Spectrosc. 2007;66(4-5):1237-1242. DOI:10.1016/j.saa.2006.06.012.
  • 35. Orlov AS, Kiselev SA, Kiseleva EA, Budeeva AV, Mashukov VI. Determination of styrene-butadiene rubber composition by attenuated total internal reflection infrared spectroscopy. J Appl Spectrosc. 2013;80(1):47-53. DOI:10.1007/s10812-013-9719-2.
  • 36. Chuayjuljit S, Thongraar R, Saravari O. Preparation and properties of PVC/EVA/Organomodified montmorillonite nanocomposites. J Reinf Plast Comp. 2008;27(4):431-442. DOI:10.1177/0731684407084124.
  • 37. Datta P, Guha C, Sarkhel G. Effect of Zn+2 poly(ethylene-co-methacrylic acid) ionomer on mechanical properties, thermal properties, morphology and process rheology of acrylonitrile styrene acrylate (ASA) terpolymer. Polym Plast Tech Eng. 2014;53(1):80-89. DOI:10.1080/03602559.2013.843692.
  • 38. Hasan M, Kumar R, Barakat MA, Lee M. Synthesis of PVC/CNT nanocomposite fibers using a simple deposition technique for the application of Alizarin Red S (ARS) removal. RSC Adv. 2015;5:14393-14399. DOI:10.1039/C4RA16043F.
  • 39. Joseph J, Deshmukh K, Chidambaram K, Faisal M, Selvarajan E, Sadasivuni KK, Ahamed MB, Khadheer Pasha SK. Dielectric and electromagnetic interference shielding properties of germanium dioxide nanoparticle reinforced poly(vinyl chloride) and poly(methylmethacrylate) blend nanocomposites. J Mat Sci: Mat Elect. 2018;29(23):20172–20188. DOI:10.1007/s10854-018-0150-6.
  • 40. Sathyanarayana S, Olowojoba G, Weiss P, Caglar B, Pataki B, Mikonsaari I, Hübner C, Henning F. Compounding of MWCNTs with PS in a twin‐screw extruder with varying process parameters: Morphology, interfacial behavior, thermal stability, rheology, and volume resistivity. Macromol. Mater. Eng. 2013;298(1):89-105. DOI:10.1002/mame.201200018.
  • 41. Datta P, Guha C, Sarkhel G. Thermal, dynamic mechanical, and creep behavior of carbon nanotube reinforced ASA/Na-ionomer blend. Polym Adv Technol. 2015;26(10):1294–1301. DOI:10.1002/pat.3567.
  • 42. Rimdusit S, Atthakorn D, Damrongsakkul S, Saramas D, Tiptipakorn S. Mechanical, thermal, and water uptake characteristics of woodflour-filled polyvinyl chloride/acrylonitrile butadiene styrene blends. J Appl Polym Sci. 2012;124(2):943-950. DOI:10.1002/app.35130.
  • 43. Belhaneche-Bensemra N, Bedda A. Study of the properties of PVC /ABS blends. Polymer Reactive Processing, Stabilisation and Functionalisation. Italy: Wiley-VCH Verlag GmbH;2001.
  • 44. Han Y, Tai ZX, Zhou C, Zhang MY, Zhang HX, Liu FQ. Influence of blend composition on the mechanical properties and morphology of PC/ASA/SAN ternary blends. Polym Bull. 2009;62(6):855-866. DOI:10.1007/s00289-009-0057-8. 
  • 45. Greco R, Astarita MF, Dong L, Sorrentino A. Polycarbonate/ABS blends: Processability, thermal properties, and mechanical and impact behavior. Adv Polym Technol. 1994;13(4):259-274. DOI:10.1002/adv.1994.060130402.
  • 46. Ghazinezami A, Khan WS, Jabbarnia A, Asmatulu R. Impacts of nanoscale inclusions on fire retardancy, thermal stability, and mechanical properties of polymeric PVC nanocomposites. J Therm Eng. 2017;3(4-5):1308-1318. DOI:10.18186/journal-of-thermal-engineering.330150.
  • 47. Abu-Abdeen M. Static and dynamic mechanical properties of Poly(vinyl chloride) loaded with aluminum oxide nanopowder. Mat. Des. 2012;33:523–528. DOI:10.1016/j.matdes.2011.04.059.
  • 48. Saengiet B, Unob F, Srikulkit K. Effect of Styrene-Methyl Methacrylate/Styrene-Butadiene Rubber on Properties of Poly(vinyl chloride). J. Met. Mater. Miner. 2014;24(2):9-13. DOI:10.14456/jmmm.
  • 49. Zhang X, Zhang J. Effect of core–shell structures of acrylonitrile–styrene–acrylate (ASA) terpolymer on the properties of poly(vinyl chloride) (PVC)/ASA blends: Miscibility, toughness, and heat resistance. J. Appl. Polym. Sci. 2018;135(43):46839(1-8). DOI:10.1002/app.46839.
  • 50. Miri V, Persyn O, Lefebvre JM, Seguela R. Effect of water absorption on the plastic deformation behavior of nylon 6. Europ Polym J. 2009;45(3):757-762. DOI:10.1016/j.eurpolymj.2008.12.008.
  • 51. Pedroso AG, Rosa DS. Effects of the compatibilizer PE-g-GMA on the mechanical, thermal and morphological properties of virgin and reprocessed LDPE/corn starch blends. Polym Adv Technol. 2005;16:310-317. DOI:10.1002/pat.581.
  • 52. Pilarski JM, Matuana LM. Durability of wood flour-plastic composites exposed to accelerated freeze–thaw cycling. Part I. Rigid PVC matrix. J Vinyl Addtv. Techn. 2005;11(1):1-8. DOI:10.1002/vnl.20029.
  • 53. Tajvidi M, Haghdan S. Effects of accelerated freeze–thaw cycling on physical and mechanical properties of wood flour/PVC Composites. J Reinf Plastc Comp. 2009;28(15):1841-1846. DOI:10.1177/0731684408090367.

Effect of o-MMT content on properties of Poly (vinyl chloride)/Poly (acrylonitrile styrene acrylate) blends

Year 2020, Volume: 7 Issue: 3, 635 - 648, 30.10.2020
https://doi.org/10.18596/jotcsa.635095

Abstract

In this study, poly(vinyl chloride) (PVC)/poly(acrylonitrile styrene acrylate)
(ASA)/ organophilic montmorillonite (o-MMT) nanocomposites were prepared and
the effects of o-MMT content on the properties of PVC/ASA blends were
investigated.
Surface morphology studies of the o-MMT
containing blends were also performed using scanning electron microscopy (SEM).
The thermal stability, mechanical properties and water
absorption percentage of the nanocomposites were studied.
TGA test results showed that o-MMT inclusion enhanced the thermal stability of
PVC/ASA/o-MMT nanocomposites and the Td50 decomposition temperature
increased by 7.5
˚C
when the o-MMT content is 10 wt%. The tensile strength value of the neat blend was
obtained as 32.51 MPa and found to increase as 36.01 MPa when the o-MMT content
is 6 wt% in the system. The water absorption test results demonstrated that the
water-resistance of the samples enhanced as the o-MMT content increased. Moreover,
PVC/ASA blends experienced a significant increase in the contact angle by the
presence of hydrophobic o-MMT. The weathering test results demonstrate that the
PVC/ASA/o-MMT nanocomposite films can be used for outdoor applications without
losing their properties too much.

References

  • 1. Sree KB, Kumar YM, Gopal NO, Ramu C. Preparation and characterization of pure and copper-doped PVC films. J Polym Eng. 2017;37(1):83–92. DOI:10.1515/polyeng-2015-0446.
  • 2. Sarawut R, Siriporn D, Patima W, Duangporn S, Sunan T. Characterization of coconut fiber-filled polyvinyl chloride/acrylonitrile styrene acrylate blends. J Reinf Plast Comp. 2011;30(20):1691–1702 DOI:10.1177/0731684411427484.
  • 3. Bijhanmanesh MJ, Etesami N, Darvishi R. Continuous dosing of fast initiator during vinyl chloride suspension polymerization: thermal stability of PVC resin. J Appl Polym Sci. 2017;134(1):44480-87. DOI:10.1002/APP.44480.
  • 4. Zhang X, Zhang J. Effect of temperature on the impact behavior of PVC/ASA binary blends with various ASA terpolymer contents. J Polym Eng. 2019;39(5):407–414. DOI:10.1515/polyeng-2018-0349.
  • 5. Yu J, Feng P, Zhang H. Effects of core‐shell acrylate particles on impact properties of chlorinated polyethylene/polyvinyl chloride blends. Polym Eng Sci. 2010;50(2):295-301. DOI:10.1002/pen.21539.
  • 6. Zhang Z, Wang S, Zhang J, Zhu W, Tian T. Remarkably improved toughness and thermal stability of poly (vinyl chloride) (PVC)/poly (α-methylstyrene-acrylonitrile) (α-MSAN) blend with the assistance of two impact modifiers. Polym Test. 2016;51:1-5. DOI:10.1016/j.polymertesting.2016.02.003.
  • 7. Zhang Z, Chen S, Zhang J. Improvement in the heat resistance of poly(vinyl chloride) profile with styrenic polymers. J Vinyl Addit Techn. 2011;17(2):85-91. DOI:10.1002/vnl.20251.
  • 8. Rimdusit S, Wongmanit P, Damrongsakkul S, Saramas D, Jubsilp C, Dueramae I. Characterizations of poly(vinyl chloride)/acrylonitrile styrene acrylate blends for outdoor applications. Eng J. 2013;18(1):105-118. DOI:10.4186/ej.2014.18.1.105.
  • 9. Mao Z, Zhang J. Largely improved the low temperature toughness of acrylonitrile-styrene-acrylate (ASA) resin: Fabricated a core-shell structure of two elastomers through the differences of interfacial tensions. Appl Surf Sci. 2018;444,345–354. DOI:10.1016/j.apsusc.2018.03.066.
  • 10. You F, Chen G, Zou J, Yang Z, Guo S. The experimental results and simulation of temperature dependence of brittle‐ductile transition in PVC/CPE blends and PVC/CPE/nano‐CaCO3 composites. J. Appl. Polym. Sci. 2012,123(3), 1833-1842. DOI:10.1002/app.34662.
  • 11. Chen M, Wang S, Zhou C, Liu Z, Zhang H. Toughening Poly (Vinyl Chloride) by PS/PB/PMMA Three-Layer Particles. Polym Plast Dent Eng. 2013;52(8):814-819. DOI:10.1080/03602559.2013.763359.
  • 12. Markarian J. Impact modifiers: how to make your compound tougher. Plast Addit Compd 2004;6(3):46-49. DOI:10.1016/S1464-391X(04)00203-X.
  • 13. Wang HL, Tan HS, Li YJ, Yu YZ. Phase morphology and dynamic mechanical behavior for MIS toughened polyvinyl chloride. J Appl Polym Sci. 2013;129(6):3466-3472. DOI:10.1002/app.39095.
  • 14. Wu S, Chen M, Wu G, Zhou C. Variation of core-shell structural particles and their toughening behavior in poly (vinyl chloride) (PVC) matrix. J Polym Res (2015);22:82. DOI:10.1007/s10965-015-0730-6.
  • 15. Scott G, Tahan M. The photo-oxidation of PVC and impact modified PVC. Chemical changes. Eur Polym J. 1977;13(12):989-996. DOI:10.1016/0014-3057(77)90171-9.
  • 16. Zhang LX, Zhou C, Sun SL, Ren L, Ma XL, Zhang MY, Zhang HX. Study of compatibility, morphology structure and mechanical properties of CPVC/ABS blends. J Appl Polym Sci. 2010;116(6):3448-3454. DOI:10.1002/app.31855.
  • 17. Zhang Y, Xu Y, Song Y, Zheng Q. Study of poly(vinyl chloride)/acrylonitrile–styrene–acrylate blends for compatibility, toughness, thermal stability and UV irradiation resistance. J Appl Polym Sci. 2013;130(3):2143-2151. DOI:10.1002/APP.39405.
  • 18. Pickett JE, Gibson DA, Gardner MM. Effects of irradiation conditions on the weathering of engineering thermoplastics. Polym Degrad Stab. 2008;93(8):1597-1606. DOI:10.1016/j.polymdegradstab.2008.02.009.
  • 19. Du YG, Gao JG, Yang JB, Liu XQ. Dynamic rheological behavior and mechanical properties and of PVC/ASA blends. J Polym Res. 2012;19(11):9993. DOI:10.1007/s10965-012-9993-3.
  • 20. Gawade AR, Lodha AV, Joshi PS. PVC/ABS blends: Thermal and morphological studies. J Macr Sci. Part B: Physics. 2008;47(1):201–210. DOI:10.1080/00222340701748701.
  • 21. Yin B, Hakkarainen M. Core–shell nanoparticle–plasticizers for design of high-performance polymeric materials with improved stiffness and toughness. J. Mater. Chem. 2010;21(24):8670-8677. DOI:10.1039/C1JM10624D.
  • 22. Szamborski G. Superior balance of weatherability and impact performance with acrylic-capped vinyl siding. J Vinyl Addit Tech. 2007;13(1):26-30. DOI:10.1002/vnl.20094.
  • 23. Crosby AJ, Lee JY. Polymer nanocomposites: The “nano” effect on mechanical properties. Polym. Rev. 2007;47(2):217-229. DOI:10.1080/15583720701271278.
  • 24. Pagacz J, Pielichowski K. PVC/MMT nanocomposites. J Therm Anal Calorim 2013;111(2):1571-1575. DOI:10.1007/s10973-012-2484-2.
  • 25. Guo F, Aryana S, Han Y, Jiao Y. A review of the synthesis and applications of polymer–nanoclay composites. Appl Sci. 2018;8(9):1696. DOI:10.3390/app8091696.
  • 26. Ismail H, Munusamy Y. Polyvinyl Chloride/Organoclay Nanocomposites: Effects of Filler Loading and Maleic Anhydride. J Reinf Plastc Comp. 2007;26(16):1681-1694. DOI: 10.1177/0731684407081446.
  • 27. Mondragon M, Valdes SS, Sanchez-Espindola ME, Rivera-Lopez JE. Morphology, mechanical properties, and thermal stability of rigid PVC/Clay nanocomposites. Polym Eng Sci. 2011;51(4):641-646. DOI:10.1002/pen.21867.
  • 28. Wang C, Li N, Huo L, Gao J. Effect of carbon nanotube on the mechanical, plasticizing behavior and thermal stability of PVC/poly(acrylonitrile–styrene–acrylate) nanocomposites. Polym Bul. 2015;72(8):1849–1861. DOI:10.1007/s00289-015-1376-6.
  • 29. Li W, Tang XZ, Zhang HB, Jiang ZG, Yu ZZ, Du XS, Mai YW. Simultaneous surface functionalization and reduction of graphene oxide with octadecylamine for electrically conductive polystyrene composites. Carbon. 2011;49(14)4724-4730. DOI:10.1016/j.carbon.2011.06.077.
  • 30. Pasternack RM, Amy SR, Chabal YJ. Attachment of 3-(aminopropyl) triethoxysilane on silicon oxide surfaces: Dependence on solution temperature. Langmuir. 2008;24(22):12963-12971. DOI:10.1021/la8024827.
  • 31. Liang ZM, Wan CY, Zhang Y, Wei P, Yin J. PVC/Montmorillonite Nanocomposites Based on a Thermally Stable, Rigid-Rod Aromatic Amine Modifier. J Appl Polym Sci. 2004;92:567-575. DOI:10.1002/app.20041.
  • 32. Shimpi NG, Mishra S. Influence of surface modification of montomorillonite on properties of PVC nanocomposites. J Comp Mat. 2011;45(23):2447–2453. DOI: 10.1177/0021998311401095.
  • 33. Wan C, Qiao X, Zhang Y, Zhang Y. Effect of different clay treatment on morphology and mechanical properties of PVC-clay nanocomposites. Polym Test. 2003;22(4):453-461. DOI: 10.1016/S0142-9418(02)00126-5
  • 34. Ramesh S, Leen KH, Kumutha K, Arof AK. FTIR studies of PVC/PMMA blend based polymer electrolytes. Spectrochim Acta Part A Mol Biomol Spectrosc. 2007;66(4-5):1237-1242. DOI:10.1016/j.saa.2006.06.012.
  • 35. Orlov AS, Kiselev SA, Kiseleva EA, Budeeva AV, Mashukov VI. Determination of styrene-butadiene rubber composition by attenuated total internal reflection infrared spectroscopy. J Appl Spectrosc. 2013;80(1):47-53. DOI:10.1007/s10812-013-9719-2.
  • 36. Chuayjuljit S, Thongraar R, Saravari O. Preparation and properties of PVC/EVA/Organomodified montmorillonite nanocomposites. J Reinf Plast Comp. 2008;27(4):431-442. DOI:10.1177/0731684407084124.
  • 37. Datta P, Guha C, Sarkhel G. Effect of Zn+2 poly(ethylene-co-methacrylic acid) ionomer on mechanical properties, thermal properties, morphology and process rheology of acrylonitrile styrene acrylate (ASA) terpolymer. Polym Plast Tech Eng. 2014;53(1):80-89. DOI:10.1080/03602559.2013.843692.
  • 38. Hasan M, Kumar R, Barakat MA, Lee M. Synthesis of PVC/CNT nanocomposite fibers using a simple deposition technique for the application of Alizarin Red S (ARS) removal. RSC Adv. 2015;5:14393-14399. DOI:10.1039/C4RA16043F.
  • 39. Joseph J, Deshmukh K, Chidambaram K, Faisal M, Selvarajan E, Sadasivuni KK, Ahamed MB, Khadheer Pasha SK. Dielectric and electromagnetic interference shielding properties of germanium dioxide nanoparticle reinforced poly(vinyl chloride) and poly(methylmethacrylate) blend nanocomposites. J Mat Sci: Mat Elect. 2018;29(23):20172–20188. DOI:10.1007/s10854-018-0150-6.
  • 40. Sathyanarayana S, Olowojoba G, Weiss P, Caglar B, Pataki B, Mikonsaari I, Hübner C, Henning F. Compounding of MWCNTs with PS in a twin‐screw extruder with varying process parameters: Morphology, interfacial behavior, thermal stability, rheology, and volume resistivity. Macromol. Mater. Eng. 2013;298(1):89-105. DOI:10.1002/mame.201200018.
  • 41. Datta P, Guha C, Sarkhel G. Thermal, dynamic mechanical, and creep behavior of carbon nanotube reinforced ASA/Na-ionomer blend. Polym Adv Technol. 2015;26(10):1294–1301. DOI:10.1002/pat.3567.
  • 42. Rimdusit S, Atthakorn D, Damrongsakkul S, Saramas D, Tiptipakorn S. Mechanical, thermal, and water uptake characteristics of woodflour-filled polyvinyl chloride/acrylonitrile butadiene styrene blends. J Appl Polym Sci. 2012;124(2):943-950. DOI:10.1002/app.35130.
  • 43. Belhaneche-Bensemra N, Bedda A. Study of the properties of PVC /ABS blends. Polymer Reactive Processing, Stabilisation and Functionalisation. Italy: Wiley-VCH Verlag GmbH;2001.
  • 44. Han Y, Tai ZX, Zhou C, Zhang MY, Zhang HX, Liu FQ. Influence of blend composition on the mechanical properties and morphology of PC/ASA/SAN ternary blends. Polym Bull. 2009;62(6):855-866. DOI:10.1007/s00289-009-0057-8. 
  • 45. Greco R, Astarita MF, Dong L, Sorrentino A. Polycarbonate/ABS blends: Processability, thermal properties, and mechanical and impact behavior. Adv Polym Technol. 1994;13(4):259-274. DOI:10.1002/adv.1994.060130402.
  • 46. Ghazinezami A, Khan WS, Jabbarnia A, Asmatulu R. Impacts of nanoscale inclusions on fire retardancy, thermal stability, and mechanical properties of polymeric PVC nanocomposites. J Therm Eng. 2017;3(4-5):1308-1318. DOI:10.18186/journal-of-thermal-engineering.330150.
  • 47. Abu-Abdeen M. Static and dynamic mechanical properties of Poly(vinyl chloride) loaded with aluminum oxide nanopowder. Mat. Des. 2012;33:523–528. DOI:10.1016/j.matdes.2011.04.059.
  • 48. Saengiet B, Unob F, Srikulkit K. Effect of Styrene-Methyl Methacrylate/Styrene-Butadiene Rubber on Properties of Poly(vinyl chloride). J. Met. Mater. Miner. 2014;24(2):9-13. DOI:10.14456/jmmm.
  • 49. Zhang X, Zhang J. Effect of core–shell structures of acrylonitrile–styrene–acrylate (ASA) terpolymer on the properties of poly(vinyl chloride) (PVC)/ASA blends: Miscibility, toughness, and heat resistance. J. Appl. Polym. Sci. 2018;135(43):46839(1-8). DOI:10.1002/app.46839.
  • 50. Miri V, Persyn O, Lefebvre JM, Seguela R. Effect of water absorption on the plastic deformation behavior of nylon 6. Europ Polym J. 2009;45(3):757-762. DOI:10.1016/j.eurpolymj.2008.12.008.
  • 51. Pedroso AG, Rosa DS. Effects of the compatibilizer PE-g-GMA on the mechanical, thermal and morphological properties of virgin and reprocessed LDPE/corn starch blends. Polym Adv Technol. 2005;16:310-317. DOI:10.1002/pat.581.
  • 52. Pilarski JM, Matuana LM. Durability of wood flour-plastic composites exposed to accelerated freeze–thaw cycling. Part I. Rigid PVC matrix. J Vinyl Addtv. Techn. 2005;11(1):1-8. DOI:10.1002/vnl.20029.
  • 53. Tajvidi M, Haghdan S. Effects of accelerated freeze–thaw cycling on physical and mechanical properties of wood flour/PVC Composites. J Reinf Plastc Comp. 2009;28(15):1841-1846. DOI:10.1177/0731684408090367.
There are 53 citations in total.

Details

Primary Language English
Subjects Polymer Science and Technologies
Journal Section Articles
Authors

Yunus Emre Kökçan This is me 0000-0001-8448-0600

Yasemin Tamer 0000-0001-7499-3445

Publication Date October 30, 2020
Submission Date October 20, 2019
Acceptance Date June 27, 2020
Published in Issue Year 2020 Volume: 7 Issue: 3

Cite

Vancouver Kökçan YE, Tamer Y. Effect of o-MMT content on properties of Poly (vinyl chloride)/Poly (acrylonitrile styrene acrylate) blends. JOTCSA. 2020;7(3):635-48.