Research Article
BibTex RIS Cite
Year 2020, Volume: 7 Issue: 3, 649 - 660, 30.10.2020
https://doi.org/10.18596/jotcsa.752190

Abstract

Project Number

117M271

References

  • 1. Urquijo J, Guerrica-Echevarría G, Eguiazábal JI. Melt processed PLA/PCL blends: Effect of processing method on phase structure, morphology, and mechanical properties. Journal of Applied Polymer Science. 2015;132(41):42641-50.
  • 2. López‐Rodríguez N, López‐Arraiza A, Meaurio E, Sarasua JR. Crystallization, morphology, and mechanical behavior of polylactide/poly(ε‐caprolactone) blends. Polymer Engineering & Science. 2006;46(9):1299-308.
  • 3. Deokar MD, Idage SB, Idage BB, Sivaram S. Synthesis and characterization of well-defined random and block copolymers of ε-caprolactone with l-lactide as an additive for toughening polylactide: Influence of the molecular architecture. Journal of Applied Polymer Science. 2016;133(14): 43267-79.
  • 4. Broz ME, VanderHart DL, Washburn NR. Structure and mechanical properties of poly(d,l-lactic acid)/poly(ε-caprolactone) blends. Biomaterials. 2003 2003/10/01/;24(23):4181-90.
  • 5. Simões CL, Viana JC, Cunha AM. Mechanical properties of poly(ε-caprolactone) and poly(lactic acid) blends. Journal of Applied Polymer Science. 2009;112(1):345-52.
  • 6. Rao RU, Suman KNS, Rao VVSK, Bhanukıran K. Study of rheological and mechanical properties of biodegradable polylactide and polycaprolactone blends. International Journal of Engineering Science and Technology. 2011:6259-65.
  • 7. Matta AK, Rao RU, Suman KNS, Rambabu V. Preparation and Characterization of Biodegradable PLA/PCL Polymeric Blends. Procedia Materials Science. 2014 2014/01/01/;6:1266-70.
  • 8. Hiljanen-Vainio M, Karjalainen T, Seppälä J. Biodegradable lactone copolymers. I. Characterization and mechanical behavior of ε-caprolactone and lactide copolymers. Journal of Applied Polymer Science. 1996;59(8):1281-8.
  • 9. Li H, Qiao T, Song P, Guo H, Song X, Zhang B, et al. Star-shaped PCL/PLLA blended fiber membrane via electrospinning. Journal of Biomaterials Science, Polymer Edition. 2015 2015/05/03;26(7):420-32.
  • 10. Qin Y, Liu S, Zhang Y, Yuan M, Li H, Yuan M. Effect of poly(ɛ-caprolactone-co-l-lactide) on thermal and functional properties of poly(l-lactide). International Journal of Biological Macromolecules. 2014 2014/09/01/;70:327-33.
  • 11. Liu Z, Hu D, Huang L, Li W, Tian J, Lu L, et al. Simultaneous improvement in toughness, strength and biocompatibility of poly(lactic acid) with polyhedral oligomeric silsesquioxane. Chemical Engineering Journal. 2018 2018/08/15/;346:649-61.
  • 12. Pan R, Shanks R, He Y, Su Y. Molecular shape conversion of POSS-(PLLA)x with various arm lengths and its effect on the compatibility of PLLA/POSS-(PLLA)x as a nanofiller blended into PLLA matrix: From spiky ball to panel-like. Computational Materials Science. 2019 2019/06/15/;164:1-7.
  • 13. Kodal M, Sirin H, Ozkoc G. Effects of reactive and nonreactive POSS types on the mechanical, thermal, and morphological properties of plasticized poly(lactic acid). Polymer Engineering & Science. 2014;54(2):264-75.
  • 14. Dilek T, Humeyra S, Guralp O. Effects of POSS particles on the mechanical, thermal, and morphological properties of PLA and Plasticised PLA. Journal of Applied Polymer Science. 2011;121(2):1067-75.
  • 15. Pan H, Yu J, Qiu Z. Crystallization and morphology studies of biodegradable poly(ϵ‐caprolactone)/polyhedral oligomeric silsesquioxanes nanocomposites. Polymer Engineering & Science. 2011;51(11):2159-65.
  • 16. Monticelli O, Calabrese M, Gardella L, Fina A, Gioffredi E. Silsesquioxanes: Novel compatibilizing agents for tuning the microstructure and properties of PLA/PCL immiscible blends. European Polymer Journal. 2014 2014/09/01/;58:69-78.
  • 17. Wang W, Fei M, Jie X, Wang P, Cao H, Yu J. Synthesis and characterization of star-shaped block copolymers with polyhedral oligomeric silsesquioxane (POSS)core via ATRP. Polymer Bulletin. 2010 December 01;65(9):863-72.
  • 18. Lee KS, Chang YW. Thermal and mechanical properties of poly (ε‐caprolactone)/polyhedral oligomeric silsesquioxane nanocomposites. Polymer International. 2013;62(1):64-70.
  • 19. Dandan Doganci M, Aynali F, Doganci E, Ozkoc G. Mechanical, thermal and morphological properties of poly(lactic acid) by using star-shaped poly(ε-caprolactone) with POSS core. European Polymer Journal. 2019 2019/12/01/;121:109316-29.
  • 20. Sun Y, He C. Biodegradable “Core–Shell” Rubber Nanoparticles and Their Toughening of Poly(lactides). Macromolecules. 2013 2013/12/23;46(24):9625-33.
  • 21. Aloorkar N, Kulkarni A, Patil R, Ingale D. Star polymers: an overview. Int J Pharm Sci Nanotech. 2012;5:1675-84.
  • 22. Turan D, Sirin H, Ozkoc G. Effects of POSS particles on the mechanical, thermal, and morphological properties of PLA and Plasticised PLA. Journal of Applied Polymer Science. 2011;121(2):1067-75.
  • 23. Romero-Guzmán ME, Romo-Uribe A, Zárate-Hernández BM, Cruz-Silva R. Viscoelastic properties of POSS–styrene nanocomposite blended with polystyrene. Rheologica Acta. 2009 July 01;48(6):641-52.
  • 24. Meredith JC, Amis EJ. LCST phase separation in biodegradable polymer blends: poly(D,L‐lactide) and poly(ϵ‐caprolactone). Macromolecular Chemistry and Physics. 2000;201(6):733-9.
  • 25. Dogan SK, Reyes EA, Rastogi S, Ozkoc G. Reactive compatibilization of PLA/TPU blends with a diisocyanate. Journal of Applied Polymer Science. 2014;131(10): 40251-61.
  • 26. Kilic NT, Can BN, Kodal M, Ozkoc G. Compatibilization of PLA/PBAT blends by using Epoxy-POSS. Journal of Applied Polymer Science. 2019;136(12):47217-35.
  • 27. Zhao X, Hu H, Wang X, Yu X, Zhou W, Peng S. Super tough poly (lactic acid) blends: a comprehensive review. RSC Advances. 2020;10(22):13316-68.
  • 28. Fortelny I, Ujčić A, Fambri L, Slouf M. Phase structure, compatibility and toughness of PLA/PCL blends: a review. Frontiers in Materials. 2019;6:206-19.
  • 29. Zhao H, Zhao G. Mechanical and thermal properties of conventional and microcellular injection molded poly (lactic acid)/poly (ε-caprolactone) blends. Journal of the Mechanical Behavior of Biomedical Materials. 2016 2016/01/01/;53:59-67.
  • 30. Yeh J-T, Wu C-J, Tsou C-H, Chai W-L, Chow J-D, Huang C-Y, et al. Study on the Crystallization, Miscibility, Morphology, Properties of Poly(lactic acid)/Poly(ε-caprolactone) Blends. Polymer-Plastics Technology and Engineering. 2009 2009/05/18;48(6):571-8.
  • 31. Garlotta D. A Literature Review of Poly(Lactic Acid). Journal of Polymers and the Environment. 2001 April 01;9(2):63-84.
  • 32. Migliaresi C, Cohn D, De Lollis A, Fambri L. Dynamic mechanical and calorimetric analysis of compression-molded PLLA of different molecular weights: Effect of thermal treatments. Journal of Applied Polymer Science. 1991;43(1):83-95.
  • 33. Lim LT, Auras R, Rubino M. Processing technologies for poly(lactic acid). Progress in Polymer Science. 2008 2008/08/01/;33(8):820-52.

The Effects of Blending Ratio of Poly(lactic acid)/POSS Cored Star Poly(ε-caprolactone) Biopolymers

Year 2020, Volume: 7 Issue: 3, 649 - 660, 30.10.2020
https://doi.org/10.18596/jotcsa.752190

Abstract

Abstract: A8-type eight-arm star-shaped poly(ε-caprolactone) (PCL) polymers with polyhedral oligomeric silsesquioxane (POSS) (SP) core having different molecular weight with different chain lengths (n=10, 20, 30, and 50 repeating units) were synthesized via arm-first approach by combination of ring-opening polymerization (ROP) and “click” chemistry reactions. The obtained polymers were then melt-blended with neat poly(lactic acid) (PLA) to improve some of the properties like toughness of PLA. These blends were prepared depending on the blend ratio (95/5 and 80/20 wt%) via utilizing laboratory scale twin-screw mini extruder to examine morphological, thermal and mechanical properties of PLA/SP composite as a function of SP and blending ratio. In addition, the PLA/SP composites containing a blend ratio of 90/10 wt% which were prepared in the previous study was used to compare with other composite having different blend ratio. The incorporation of SP polymers improved some of the mechanical properties of PLA. It was verified that SP20 (n=20) is the most proper SP-type for enhancing the mechanical behavior of PLA at a blending ratio of 90/10. Also, 1,4-phenylene diisocyanate (PDI) which was used as a commercial compatibilizer was incorporated to blends at fixed amount (%1). It is concluded that the incorporation of SP polymers into PLA matrix decreased the tensile modulus with increasing blending ratio and increased the elongation at break values in the presence of PDI.

Supporting Institution

TUBITAK

Project Number

117M271

References

  • 1. Urquijo J, Guerrica-Echevarría G, Eguiazábal JI. Melt processed PLA/PCL blends: Effect of processing method on phase structure, morphology, and mechanical properties. Journal of Applied Polymer Science. 2015;132(41):42641-50.
  • 2. López‐Rodríguez N, López‐Arraiza A, Meaurio E, Sarasua JR. Crystallization, morphology, and mechanical behavior of polylactide/poly(ε‐caprolactone) blends. Polymer Engineering & Science. 2006;46(9):1299-308.
  • 3. Deokar MD, Idage SB, Idage BB, Sivaram S. Synthesis and characterization of well-defined random and block copolymers of ε-caprolactone with l-lactide as an additive for toughening polylactide: Influence of the molecular architecture. Journal of Applied Polymer Science. 2016;133(14): 43267-79.
  • 4. Broz ME, VanderHart DL, Washburn NR. Structure and mechanical properties of poly(d,l-lactic acid)/poly(ε-caprolactone) blends. Biomaterials. 2003 2003/10/01/;24(23):4181-90.
  • 5. Simões CL, Viana JC, Cunha AM. Mechanical properties of poly(ε-caprolactone) and poly(lactic acid) blends. Journal of Applied Polymer Science. 2009;112(1):345-52.
  • 6. Rao RU, Suman KNS, Rao VVSK, Bhanukıran K. Study of rheological and mechanical properties of biodegradable polylactide and polycaprolactone blends. International Journal of Engineering Science and Technology. 2011:6259-65.
  • 7. Matta AK, Rao RU, Suman KNS, Rambabu V. Preparation and Characterization of Biodegradable PLA/PCL Polymeric Blends. Procedia Materials Science. 2014 2014/01/01/;6:1266-70.
  • 8. Hiljanen-Vainio M, Karjalainen T, Seppälä J. Biodegradable lactone copolymers. I. Characterization and mechanical behavior of ε-caprolactone and lactide copolymers. Journal of Applied Polymer Science. 1996;59(8):1281-8.
  • 9. Li H, Qiao T, Song P, Guo H, Song X, Zhang B, et al. Star-shaped PCL/PLLA blended fiber membrane via electrospinning. Journal of Biomaterials Science, Polymer Edition. 2015 2015/05/03;26(7):420-32.
  • 10. Qin Y, Liu S, Zhang Y, Yuan M, Li H, Yuan M. Effect of poly(ɛ-caprolactone-co-l-lactide) on thermal and functional properties of poly(l-lactide). International Journal of Biological Macromolecules. 2014 2014/09/01/;70:327-33.
  • 11. Liu Z, Hu D, Huang L, Li W, Tian J, Lu L, et al. Simultaneous improvement in toughness, strength and biocompatibility of poly(lactic acid) with polyhedral oligomeric silsesquioxane. Chemical Engineering Journal. 2018 2018/08/15/;346:649-61.
  • 12. Pan R, Shanks R, He Y, Su Y. Molecular shape conversion of POSS-(PLLA)x with various arm lengths and its effect on the compatibility of PLLA/POSS-(PLLA)x as a nanofiller blended into PLLA matrix: From spiky ball to panel-like. Computational Materials Science. 2019 2019/06/15/;164:1-7.
  • 13. Kodal M, Sirin H, Ozkoc G. Effects of reactive and nonreactive POSS types on the mechanical, thermal, and morphological properties of plasticized poly(lactic acid). Polymer Engineering & Science. 2014;54(2):264-75.
  • 14. Dilek T, Humeyra S, Guralp O. Effects of POSS particles on the mechanical, thermal, and morphological properties of PLA and Plasticised PLA. Journal of Applied Polymer Science. 2011;121(2):1067-75.
  • 15. Pan H, Yu J, Qiu Z. Crystallization and morphology studies of biodegradable poly(ϵ‐caprolactone)/polyhedral oligomeric silsesquioxanes nanocomposites. Polymer Engineering & Science. 2011;51(11):2159-65.
  • 16. Monticelli O, Calabrese M, Gardella L, Fina A, Gioffredi E. Silsesquioxanes: Novel compatibilizing agents for tuning the microstructure and properties of PLA/PCL immiscible blends. European Polymer Journal. 2014 2014/09/01/;58:69-78.
  • 17. Wang W, Fei M, Jie X, Wang P, Cao H, Yu J. Synthesis and characterization of star-shaped block copolymers with polyhedral oligomeric silsesquioxane (POSS)core via ATRP. Polymer Bulletin. 2010 December 01;65(9):863-72.
  • 18. Lee KS, Chang YW. Thermal and mechanical properties of poly (ε‐caprolactone)/polyhedral oligomeric silsesquioxane nanocomposites. Polymer International. 2013;62(1):64-70.
  • 19. Dandan Doganci M, Aynali F, Doganci E, Ozkoc G. Mechanical, thermal and morphological properties of poly(lactic acid) by using star-shaped poly(ε-caprolactone) with POSS core. European Polymer Journal. 2019 2019/12/01/;121:109316-29.
  • 20. Sun Y, He C. Biodegradable “Core–Shell” Rubber Nanoparticles and Their Toughening of Poly(lactides). Macromolecules. 2013 2013/12/23;46(24):9625-33.
  • 21. Aloorkar N, Kulkarni A, Patil R, Ingale D. Star polymers: an overview. Int J Pharm Sci Nanotech. 2012;5:1675-84.
  • 22. Turan D, Sirin H, Ozkoc G. Effects of POSS particles on the mechanical, thermal, and morphological properties of PLA and Plasticised PLA. Journal of Applied Polymer Science. 2011;121(2):1067-75.
  • 23. Romero-Guzmán ME, Romo-Uribe A, Zárate-Hernández BM, Cruz-Silva R. Viscoelastic properties of POSS–styrene nanocomposite blended with polystyrene. Rheologica Acta. 2009 July 01;48(6):641-52.
  • 24. Meredith JC, Amis EJ. LCST phase separation in biodegradable polymer blends: poly(D,L‐lactide) and poly(ϵ‐caprolactone). Macromolecular Chemistry and Physics. 2000;201(6):733-9.
  • 25. Dogan SK, Reyes EA, Rastogi S, Ozkoc G. Reactive compatibilization of PLA/TPU blends with a diisocyanate. Journal of Applied Polymer Science. 2014;131(10): 40251-61.
  • 26. Kilic NT, Can BN, Kodal M, Ozkoc G. Compatibilization of PLA/PBAT blends by using Epoxy-POSS. Journal of Applied Polymer Science. 2019;136(12):47217-35.
  • 27. Zhao X, Hu H, Wang X, Yu X, Zhou W, Peng S. Super tough poly (lactic acid) blends: a comprehensive review. RSC Advances. 2020;10(22):13316-68.
  • 28. Fortelny I, Ujčić A, Fambri L, Slouf M. Phase structure, compatibility and toughness of PLA/PCL blends: a review. Frontiers in Materials. 2019;6:206-19.
  • 29. Zhao H, Zhao G. Mechanical and thermal properties of conventional and microcellular injection molded poly (lactic acid)/poly (ε-caprolactone) blends. Journal of the Mechanical Behavior of Biomedical Materials. 2016 2016/01/01/;53:59-67.
  • 30. Yeh J-T, Wu C-J, Tsou C-H, Chai W-L, Chow J-D, Huang C-Y, et al. Study on the Crystallization, Miscibility, Morphology, Properties of Poly(lactic acid)/Poly(ε-caprolactone) Blends. Polymer-Plastics Technology and Engineering. 2009 2009/05/18;48(6):571-8.
  • 31. Garlotta D. A Literature Review of Poly(Lactic Acid). Journal of Polymers and the Environment. 2001 April 01;9(2):63-84.
  • 32. Migliaresi C, Cohn D, De Lollis A, Fambri L. Dynamic mechanical and calorimetric analysis of compression-molded PLLA of different molecular weights: Effect of thermal treatments. Journal of Applied Polymer Science. 1991;43(1):83-95.
  • 33. Lim LT, Auras R, Rubino M. Processing technologies for poly(lactic acid). Progress in Polymer Science. 2008 2008/08/01/;33(8):820-52.
There are 33 citations in total.

Details

Primary Language English
Subjects Polymer Science and Technologies
Journal Section Articles
Authors

Merve Dandan Doğancı 0000-0001-5393-6820

Project Number 117M271
Publication Date October 30, 2020
Submission Date June 12, 2020
Acceptance Date July 9, 2020
Published in Issue Year 2020 Volume: 7 Issue: 3

Cite

Vancouver Dandan Doğancı M. The Effects of Blending Ratio of Poly(lactic acid)/POSS Cored Star Poly(ε-caprolactone) Biopolymers. JOTCSA. 2020;7(3):649-60.