Research Article
BibTex RIS Cite

The Syntheses and Characterization of New Dithiophosphonates derived from Novel 2,4-Bis(methoxytolyl)-1,3-dithia-2,4-diphosphetane 2,4- disulfides and Their Ni(II) Complexes

Year 2020, Volume: 7 Issue: 3, 789 - 800, 30.10.2020
https://doi.org/10.18596/jotcsa.773478

Abstract

Two new perthiophosphonic acid anhydrides, 2,4-bis(Rx,y)-1,3-dithia-2,4-diphosphetane 2,4-disulfide (Rx=3-methoxytolyle, SAV-B1 and Ry=2-methoxytolyle, SAV-B2) were synthesized. From the reaction of these dimers, (Rx,y‐P(S)S)2, with alcohols and then dry ammonia gas, ammonium salts of the dithiophosphonic acids ((Rx,y)(RnO)PS2H), Rn, R1= ethyl-, R2= 2-propyl-), namely, four new compounds of the type [NH4][S2P(Rx,y)(ORn)] were obtained. The ammonium salts were further reacted with NiCl2.6H2O to prepare four new dithiophosphonato nickel(II) complexes, [Ni(S2P(Rx,y)(ORn))].
The ligands and the complexes were characterized by mass-(ESI), 1H-, 13C-, 31P-NMR, IR-spectroscopy, HSQC techniques and elemental analyses. Complementary structural information was provided by the HSQC spectra of the [NH4][S2P(Rx,y)(OR2)]. The structure of the perthiophosphonic acid anhydrides were deduced from the structures of dithiophosphonates thereof.

Supporting Institution

The Project Coordination Application and Research Center of Yozgat Bozok University

Project Number

BAP 6602b-FEN/20-360

Thanks

This study is supported by the Project Coordination Application and Research Center of Yozgat Bozok University (BAP 6602b-FEN/20-360).

References

  • 1. Van Zyl WE, Fackler JP. A General and Convenient Route to Dithiophosphonate Salt Derivatives, Phosphorus, Sulfur Silicon Relat. Elem. 2000; 167(1): 117-32.
  • 2. Diemert K, Kuchen W. Zur Kenntnis der Organophosphorverbindungen XVII, Dithiophosphinsauren RR’P(S)SH, Ihre Synthese, Derivate und MetallKomlexe”, Phosphorus, Sulfur Silicon Relat. Elem. 1977; 3: 131-36.
  • 3. Sağlam EG, Acar N. Syntheses and characterization of new dithiophosphinato zinc complexes. J. Turkish Chem. Soc. A. 2018; 5(2): 931-40.
  • 4. Aydemir C, Solak S, Acar Doğanlı G, Şensoy T, Arar D, Bozbeyoglu Mercan Dogan N, Lönnecke P, Hey-Hawkins E, Şekerci M, Karakuş M, Synthesis, Characterization, and Antibacterial Activity of Dithiophosphonates and Amidodithiophosphonates. Phosphorus, Sulfur Silicon Relat. Elem. 2015; 190(3): 300–9.
  • 5. Fay P, Lankelma HP. The Reaction of Cyclohexene with Phosphorus Pentasulfide. J. Am. Chem. Soc. 1952; 74: 4933-35.
  • 6. Lecher HZ, Greenwood RA, Whitehouse KC, Chao TH. The Phosphonation of Aromatic compounds with Phosphorus Pentasulfide. Am. Chem. Soc. 1956; 78: 5018–22.
  • 7. Newallis PE, Chupp JP, Groenweghe CD. Thionophosphine Sulfides. I. Preparation and Use in the Friedel-Crafts Reaction. J. Org. Chem. 1962; 27: 3829–83.
  • 8. Maier L. Organische Phosphorverbindungen VII. Zur Kenntnis der Reaktion von Phenylphosphin mit Schwefell. Helv. Chim. Acta. 1963; 46(5): 1812–18.
  • 9.Thomsen I, Clausen K, Scheibye S, Lawesson S-O. Thiation with 2,4-bis(4-Methoxyphenyl)-1,3,2,4- Dithiadiphosphetane 2,4-disulfide: N-methylthiopyrrolidone. Organic Syntheses, Coll. 1990; 7: 372.
  • 10. Avelino C‐S, Alejandra MN‐L, Rubicelia V, Jorge G. Dissociation energy for the P2S2 ring in a family of thionation reagents and the corresponding chemical reactivity of separated species: a density functional theory analysis. J. Phys. Org. Chem. 2016; 1–9.
  • 11. Foreman MRStJ, Slawin AMZ, Woollins JD. 2,4-Diferrocenyl-1,3,dithiadiphosphetane 2,4 disulfide; structure and reactions with catechols and [PtCl2(PR3)2] (R = Et or Bun). J. Chem. Soc., Dalton Trans. 1996; 3653–57.
  • 12. Ziyatdinova GK, Budnikov GK, Samigullin AI, Gabdullina GT, Sofronov AV, Al'metkina LA, Nizamov IS, Cherkasov RA. Electrochemical Determination of Synthetic Antioxidants of Bisdithiophosphonic Acids. J Anal Chem. 2010; 65: 1273-79.
  • 13. Mc.Cleverty JA, Rick SZ, Kowalski N, Bailey A, R Mulvaney, O'Cleirigh DA. Aspects of the inorganic chemistry of rubber vulcanisation. Part 4. Dialkyl- and diaryl-dithiophosphate and -dithiophosphinate complexes of zinc: phosphorus-31 nuclear magnetic resonance spectral studies and structures of [NMe4][Zn{S2P(OC6H4Me-p)2}3] and [NEt4][Zn(S2PPh2)3]. J. Chem. Soc. Dalton Trans. 1983; 627-34.
  • 14. Kabra V, Mitharwal S, Singh S. Synthesis and Insecticidal Activity of Novel Dithiophosphonates. Phosphorus, Sulfur Silicon Relat. Elem. 2009; 184(9): 2431-42. 15. Banaei A, Saadat A, McArdle P, Goli MM. Crystal structure, antibacterial activity and nanoparticles of Cd(II) complex derived from dithiophosphonate ligand. Phosphorus, Sulfur Silicon Relat. Elem. 2018; 193(6): 369-74.
  • 16. Xihong H, Guoxin T, Jing C, Linfeng R. Characterization of the extracted complexes of trivalent lanthanides with purified cyanex 301 in comparison with trivalent actinide complexes. J. Chem. Soc., Dalton Trans. 2014; 43: 17352-57.
  • 18. Van Zyl WE, Woollins J D. The coordination chemistry of dithiophosphonates: An emerging and versatile ligand class. Coord. Chem. Rev. 2013; 257: 718–73.
  • 19. Sağlam EG, Bulat E, Acar N, Demirel İ. New Homodinuclear Alkyl- and Aryl- Dithiophosphonato Cd(II) and Hg(II) complexes: Syntheses and Characterizations. J. Turkish Chem. Soc. A. 2020; 7(1): 49-64.
  • 20. Sağlam EG, Ebinç A. Syntheses and Spectroscopic Characterization on New [O-3-phenyl-1-propyl-(4-methoxyphenyl)dithiophosphonato] Ni(II), Cd(II) and Hg(II) Complexes. J. Turkish Chem. Soc. A. 2018; 5(3); 1239-48.
  • 21. Sunder S, Hanlan L, Bernstein HJ. Resonance Raman Spectra of Metal Complexes of Substituted Dithiophospinic Acids. Inorg. Chem. 1975; 14(8): 2012-13.
  • 22. Aragoni MC, Arca M, Demartin F, Devillanova FA, Graiff C, Isaia F, Lippolis V, Tiripicchio A, Verani G. Reactivity of phosphonodithioato NiII complexes: solution equilibria, solid state studies and theoretical calculations on the adduct formation with some pyridine derivatives. J. Chem. Soc., Dalton Trans. 2001; 18: 2671-77.
  • 23. Chakravarty M, Pailloux S, Ouizem S, Smith KA, Duesler EN, Paine RT, Williams NJ, Hancock RD. Synthesis and metal coordination chemistry of (phenyl)(pyridine-2-ylmethyl)phosphinodithioic acid. Polyhedron [2-C5H4N]CH2P(S)(SH)(Ph). 2012; 33: 327-35.
  • 24. Heinz S, Keck H, Kuchen W. Mass spectrometric studies of dithiophosphinato metal complexes. Org. Mass Spectrom. 1984; 19: 82-6.
  • 25. Karakuş M, Yılmaz H. Synthesis and Characterization of Ni(II), Zn(II), and Cd(II) Complexes with Dithiophosphonate Derivatives. Russ. J. Coord. Chem. 2006; 32(6): 437–43.
  • 26. Keck H, Kuchen W. Massenspektrometrische Untersuchungen An Organophosphorverbindungen IV. Über den massenspektrometrischen Zerfall von Dithiophosphinsären. Phosphorus, Sulfur Silicon Relat. Elem. 1983; 14: 225-28.
  • 27. Kallinowski G, Vogt W. 13C Nuclear Magnetic Resonance Study of Some Phosphinolipids: Assignments and Conformational Studies. Magn Reson Chem. 1989; 27: 6476-52.
  • 28. Gray GA, Cremer SE. Carbon-13 nuclear magnetic resonance of organophosphorus compounds. III. Phosphorus heterocycles. J. Org. Chem. 1972; 37(22): 3458-69.
  • 29. Al‐Rawi JMA, Sheat MA, Ayed N. Carbon‐13 NMR of some organophosphorus compounds. 2—chemical shifts and P-C coupling constants of diaryl‐, dialkoxy‐ and diaryloxy‐phosphine amines with general formula Y2PNRR', Magn Reson Chem. 1984; 22(5): 336-39.
  • 30. Grossmann G, Beckmann H, Rademacher O, Krüger K, Ohms G. Crystal structure, nuclear magnetic resonance spectroscopy and individual gauge for localised orbitals (IGLO) calculations of C6H4P2S6, a new tetrathiadiphosphorinane, and comparison with related P–S compounds. J. Chem. Soc., Dalton Trans. 1995; 2797-2803.
  • 31. Beckmann H, Ohms G, Großmann G, Krüger K, Klostermann K, Kaiser V. Synthesis, crystal structure, and NMR spectroscopy of a 1,3,2λ5,4λ5‐oxathiadiphosphetane. Heteroat. Chem. 1996; 7(2): 111-18.
  • 32. Ernst L. 13C n.m.r. spectroscopy of diethyl alkyl‐ and benzyl‐phosphonates. A study of phosphorus–carbon spin–spin coupling constants over one to seven bonds. 1977; 9(1): 35-43.
Year 2020, Volume: 7 Issue: 3, 789 - 800, 30.10.2020
https://doi.org/10.18596/jotcsa.773478

Abstract

Project Number

BAP 6602b-FEN/20-360

References

  • 1. Van Zyl WE, Fackler JP. A General and Convenient Route to Dithiophosphonate Salt Derivatives, Phosphorus, Sulfur Silicon Relat. Elem. 2000; 167(1): 117-32.
  • 2. Diemert K, Kuchen W. Zur Kenntnis der Organophosphorverbindungen XVII, Dithiophosphinsauren RR’P(S)SH, Ihre Synthese, Derivate und MetallKomlexe”, Phosphorus, Sulfur Silicon Relat. Elem. 1977; 3: 131-36.
  • 3. Sağlam EG, Acar N. Syntheses and characterization of new dithiophosphinato zinc complexes. J. Turkish Chem. Soc. A. 2018; 5(2): 931-40.
  • 4. Aydemir C, Solak S, Acar Doğanlı G, Şensoy T, Arar D, Bozbeyoglu Mercan Dogan N, Lönnecke P, Hey-Hawkins E, Şekerci M, Karakuş M, Synthesis, Characterization, and Antibacterial Activity of Dithiophosphonates and Amidodithiophosphonates. Phosphorus, Sulfur Silicon Relat. Elem. 2015; 190(3): 300–9.
  • 5. Fay P, Lankelma HP. The Reaction of Cyclohexene with Phosphorus Pentasulfide. J. Am. Chem. Soc. 1952; 74: 4933-35.
  • 6. Lecher HZ, Greenwood RA, Whitehouse KC, Chao TH. The Phosphonation of Aromatic compounds with Phosphorus Pentasulfide. Am. Chem. Soc. 1956; 78: 5018–22.
  • 7. Newallis PE, Chupp JP, Groenweghe CD. Thionophosphine Sulfides. I. Preparation and Use in the Friedel-Crafts Reaction. J. Org. Chem. 1962; 27: 3829–83.
  • 8. Maier L. Organische Phosphorverbindungen VII. Zur Kenntnis der Reaktion von Phenylphosphin mit Schwefell. Helv. Chim. Acta. 1963; 46(5): 1812–18.
  • 9.Thomsen I, Clausen K, Scheibye S, Lawesson S-O. Thiation with 2,4-bis(4-Methoxyphenyl)-1,3,2,4- Dithiadiphosphetane 2,4-disulfide: N-methylthiopyrrolidone. Organic Syntheses, Coll. 1990; 7: 372.
  • 10. Avelino C‐S, Alejandra MN‐L, Rubicelia V, Jorge G. Dissociation energy for the P2S2 ring in a family of thionation reagents and the corresponding chemical reactivity of separated species: a density functional theory analysis. J. Phys. Org. Chem. 2016; 1–9.
  • 11. Foreman MRStJ, Slawin AMZ, Woollins JD. 2,4-Diferrocenyl-1,3,dithiadiphosphetane 2,4 disulfide; structure and reactions with catechols and [PtCl2(PR3)2] (R = Et or Bun). J. Chem. Soc., Dalton Trans. 1996; 3653–57.
  • 12. Ziyatdinova GK, Budnikov GK, Samigullin AI, Gabdullina GT, Sofronov AV, Al'metkina LA, Nizamov IS, Cherkasov RA. Electrochemical Determination of Synthetic Antioxidants of Bisdithiophosphonic Acids. J Anal Chem. 2010; 65: 1273-79.
  • 13. Mc.Cleverty JA, Rick SZ, Kowalski N, Bailey A, R Mulvaney, O'Cleirigh DA. Aspects of the inorganic chemistry of rubber vulcanisation. Part 4. Dialkyl- and diaryl-dithiophosphate and -dithiophosphinate complexes of zinc: phosphorus-31 nuclear magnetic resonance spectral studies and structures of [NMe4][Zn{S2P(OC6H4Me-p)2}3] and [NEt4][Zn(S2PPh2)3]. J. Chem. Soc. Dalton Trans. 1983; 627-34.
  • 14. Kabra V, Mitharwal S, Singh S. Synthesis and Insecticidal Activity of Novel Dithiophosphonates. Phosphorus, Sulfur Silicon Relat. Elem. 2009; 184(9): 2431-42. 15. Banaei A, Saadat A, McArdle P, Goli MM. Crystal structure, antibacterial activity and nanoparticles of Cd(II) complex derived from dithiophosphonate ligand. Phosphorus, Sulfur Silicon Relat. Elem. 2018; 193(6): 369-74.
  • 16. Xihong H, Guoxin T, Jing C, Linfeng R. Characterization of the extracted complexes of trivalent lanthanides with purified cyanex 301 in comparison with trivalent actinide complexes. J. Chem. Soc., Dalton Trans. 2014; 43: 17352-57.
  • 18. Van Zyl WE, Woollins J D. The coordination chemistry of dithiophosphonates: An emerging and versatile ligand class. Coord. Chem. Rev. 2013; 257: 718–73.
  • 19. Sağlam EG, Bulat E, Acar N, Demirel İ. New Homodinuclear Alkyl- and Aryl- Dithiophosphonato Cd(II) and Hg(II) complexes: Syntheses and Characterizations. J. Turkish Chem. Soc. A. 2020; 7(1): 49-64.
  • 20. Sağlam EG, Ebinç A. Syntheses and Spectroscopic Characterization on New [O-3-phenyl-1-propyl-(4-methoxyphenyl)dithiophosphonato] Ni(II), Cd(II) and Hg(II) Complexes. J. Turkish Chem. Soc. A. 2018; 5(3); 1239-48.
  • 21. Sunder S, Hanlan L, Bernstein HJ. Resonance Raman Spectra of Metal Complexes of Substituted Dithiophospinic Acids. Inorg. Chem. 1975; 14(8): 2012-13.
  • 22. Aragoni MC, Arca M, Demartin F, Devillanova FA, Graiff C, Isaia F, Lippolis V, Tiripicchio A, Verani G. Reactivity of phosphonodithioato NiII complexes: solution equilibria, solid state studies and theoretical calculations on the adduct formation with some pyridine derivatives. J. Chem. Soc., Dalton Trans. 2001; 18: 2671-77.
  • 23. Chakravarty M, Pailloux S, Ouizem S, Smith KA, Duesler EN, Paine RT, Williams NJ, Hancock RD. Synthesis and metal coordination chemistry of (phenyl)(pyridine-2-ylmethyl)phosphinodithioic acid. Polyhedron [2-C5H4N]CH2P(S)(SH)(Ph). 2012; 33: 327-35.
  • 24. Heinz S, Keck H, Kuchen W. Mass spectrometric studies of dithiophosphinato metal complexes. Org. Mass Spectrom. 1984; 19: 82-6.
  • 25. Karakuş M, Yılmaz H. Synthesis and Characterization of Ni(II), Zn(II), and Cd(II) Complexes with Dithiophosphonate Derivatives. Russ. J. Coord. Chem. 2006; 32(6): 437–43.
  • 26. Keck H, Kuchen W. Massenspektrometrische Untersuchungen An Organophosphorverbindungen IV. Über den massenspektrometrischen Zerfall von Dithiophosphinsären. Phosphorus, Sulfur Silicon Relat. Elem. 1983; 14: 225-28.
  • 27. Kallinowski G, Vogt W. 13C Nuclear Magnetic Resonance Study of Some Phosphinolipids: Assignments and Conformational Studies. Magn Reson Chem. 1989; 27: 6476-52.
  • 28. Gray GA, Cremer SE. Carbon-13 nuclear magnetic resonance of organophosphorus compounds. III. Phosphorus heterocycles. J. Org. Chem. 1972; 37(22): 3458-69.
  • 29. Al‐Rawi JMA, Sheat MA, Ayed N. Carbon‐13 NMR of some organophosphorus compounds. 2—chemical shifts and P-C coupling constants of diaryl‐, dialkoxy‐ and diaryloxy‐phosphine amines with general formula Y2PNRR', Magn Reson Chem. 1984; 22(5): 336-39.
  • 30. Grossmann G, Beckmann H, Rademacher O, Krüger K, Ohms G. Crystal structure, nuclear magnetic resonance spectroscopy and individual gauge for localised orbitals (IGLO) calculations of C6H4P2S6, a new tetrathiadiphosphorinane, and comparison with related P–S compounds. J. Chem. Soc., Dalton Trans. 1995; 2797-2803.
  • 31. Beckmann H, Ohms G, Großmann G, Krüger K, Klostermann K, Kaiser V. Synthesis, crystal structure, and NMR spectroscopy of a 1,3,2λ5,4λ5‐oxathiadiphosphetane. Heteroat. Chem. 1996; 7(2): 111-18.
  • 32. Ernst L. 13C n.m.r. spectroscopy of diethyl alkyl‐ and benzyl‐phosphonates. A study of phosphorus–carbon spin–spin coupling constants over one to seven bonds. 1977; 9(1): 35-43.
There are 30 citations in total.

Details

Primary Language English
Subjects Inorganic Chemistry
Journal Section Articles
Authors

Ertuğrul Gazi Sağlam 0000-0002-7719-3934

Elif Bulat 0000-0002-2164-3641

Hamza Yılmaz This is me 0000-0002-5692-8719

Project Number BAP 6602b-FEN/20-360
Publication Date October 30, 2020
Submission Date July 24, 2020
Acceptance Date August 27, 2020
Published in Issue Year 2020 Volume: 7 Issue: 3

Cite

Vancouver Sağlam EG, Bulat E, Yılmaz H. The Syntheses and Characterization of New Dithiophosphonates derived from Novel 2,4-Bis(methoxytolyl)-1,3-dithia-2,4-diphosphetane 2,4- disulfides and Their Ni(II) Complexes. JOTCSA. 2020;7(3):789-800.