Research Article
BibTex RIS Cite
Year 2021, Volume: 8 Issue: 1, 155 - 162, 28.02.2021
https://doi.org/10.18596/jotcsa.698612

Abstract

References

  • 1. Sahoo SS., Shukla S, Nandy S, Sahoo HB. Synthesis of Novel Coumarin Derivatives and its Biological Evaluations. European Journal of Experimental Biology. 2012;2(4):899-08.
  • 2. Skowronski L, Krupka O, Smokal V, Grabowski A, Naparty M, Derkowska-Zielinska B. Optical properties of coumarins containing copolymers. Optical Materials. 2015;47:18–23.
  • 3. Olayinka AO, Obinna NC. Microwave‐assisted synthesis and evaluation of antimicrobial activity of 3‐{3‐(s‐aryl and s‐heteroaromatic)acryloyl} ‐2H‐chromen‐2‐one derivatives. Journal of Heterocyclic Chemistry. 2010;47(1):179-87.
  • 4. Brahnbhatt DI, Gajera JM, Pandya VP, Patel MA. Synthesis of 3-(6-aryl-pyridin-2-yl)- and 8-(6-aryl-pyridin-2-yl) coumarins. Indian Journal of Chemistry. 2007;46(B):869-71.
  • 5. Tasior M, Kim D, Singha S, Krzeszewski M, Ahn KH, Gryko DT. pi-Expanded coumarins: synthesis, optical properties and applications. Journal of Materials Chemistry C. 2015;3:1421-46.
  • 6. Swanson SA, Wallraff GM, Chen JP, Zhang WJ, Bozano LD, Carter KR, Salem JR, Villa R, Scott JC. Stable and Efficient Fluorescent Red and Green Dyes for External and Internal Conversion of Blue OLED Emission. Chemistry of Materials. 2003;15(12):2305-12.
  • 7. Zhang H, Yu T, Zhao Y, Fan D, Qian L, Yang C, Zhang K. Syntheses, characterization and fluorescent properties of two triethylene-glycol dicoumarin-3-carboxylates. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2007;68(3):725–27.
  • 8. Jones G, Rahman MA, Fluorescence properties of coumarin laser dyes in aqueous polymer media. chromophore isolation in poly(methacrylic acid) hypercoils. J. Phys. Chem., 1994;98(49):13028–37.
  • 9. Gindre D, Iliopoulos K, Krupka O, Evrard M, Champigny E, Sallé M. Coumarin-Containing polymers for high density non-linear optical data storage. Molecules, 2016;21(2):147.
  • 10. Kim C, Trajkovska A, Wallace JU, Chen SH. New insight into photoalignment of liquid crystals on coumarin-containing polymer films. Macromolecules. 2006;39 (11):3817–23.
  • 11. Donovalova J, Cigan M, Stankovicova H, Gaspar J, Danko M, Gaplovsky A, Hrdlovic P. Spectral properties of substituted coumarins in solution and polymer matrices. Molecules. 2012;17:3259–76.
  • 12. Gindre D, Iliopoulos K, Krupka O, Champigny E, Morille Y, Sallé M. Image storage in coumarin-based copolymer thin films by photoinduced dimerization. Optics Letters. 2013;38(22):4636-39.
  • 13. Chen W, Tong US, Zeng T, Streb C, Song YF. Reversible photodimerization of coumarin-modified Wells–Dawson anions. Journal of Materials Chemistry C 2015;3:4388-93.
  • 14. Bakhtiari G, Moradi S, Soltanali S. A novel method for the synthesis of coumarin laser dyes derived from 3-(1H-benzoimidazol-2-yl) coumarin-2-one under microwave irradiation. Arabian Journal of Chemistry. 2014;7(6):972–75.
  • 15. Liu X, Xu Z, Cole JM. Molecular design of UV−vis absorption and emission properties in organic fluorophores: toward larger bathochromic shifts, enhanced molar extinction coefficients, and greater stokes shifts. The Journal of Physical Chemistry C. 2013;117(32);16584−95.
  • 16. Kurt A. Influence of AlCl3 on the optical properties of new synthesized 3-armed poly(methyl methacrylate) films. Turkish Journal of Chemistry.2010;34(1):67-69.
  • 17. Kurt A, Koca M. Blending of poly(ethyl methacrylate) with poly(2-hydroxy-3-phenoxypropyl methacrylate): thermal and optical properties. The Arabian Journal for Science and Engineering. 2014;39:5413–20.
  • 18. Gunduz B. Investigation of the spectral, optical and surface morphology properties of the N,N'-Dipentyl-3,4,9,10-perylenedicarboximide small molecule for optoelectronic applications. Polymers For Advanced Technologies. 2016;27:144-55.
  • 19. Gunduz B. Surface morphology properties of the 5,5'-di(4-biphenylyl)-2,2'-bithiophene (PPTTPP) nanofiber film and calculations of the optical parameters of the PPTTPP nanofiber optoelectronic devices. Journal of Nanoelectronics and Optoelectronics. 2015;10(1):1-8.
  • 20. Bai Y, Du J, Weng X. Synthesis, characterization, optical properties and theoretical calculations of 6-fluoro coumarin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2014;126:14–20.
  • 21. Rabahi A, Makhloufi-Chebli M, Hamdi SM, Silva AMS, Kheffache D, Kheddis BB, Hamdi M. Synthesis and optical properties of coumarins and iminocoumarins: Estimation of ground- and excited-state dipole moments from a solvatochromic shift and theoretical methods. Journal of Molecular Liquids. 2014;195:240–47.
  • 22. Gündüz B. Optical properties of poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene] light-emitting polymer solutions: effects of molarities and solvents. Polymer Bulletin. 2015;72(12):3241-67.
  • 23. Tauc J. Amorphous and Liquid Semiconductors, Plenum Press, New York, 1974.
  • 24. Gündüz B. Effects of molarity and solvents on the optical properties of the solutions of tris[4-(5-dicyanomethylidenemethyl-2-thienyl)phenyl]amine (TDCV-TPA) and structural properties of its film. Optical Materials. 2013;36(2):425-36.
  • 25. Tripathy SK. Refractive indices of semiconductors from energy gaps. Optical Materials. 2015;46:240-46.

A Study on the Optoelectronic Parameters of 4-Chloromethyl-7-Hydroxy Coumarin in Various Solvents and Concentrations

Year 2021, Volume: 8 Issue: 1, 155 - 162, 28.02.2021
https://doi.org/10.18596/jotcsa.698612

Abstract

A coumarin derivative compound, 4-chloromethyl-7-hydroxy coumarin (CMEHC), was synthesized in order to test the concentration and solvent effect on its optical properties. The spectral characterization of this compound was accomplished by FTIR and 1H-NMR techniques. The UV absorption spectra of CMEHC compound in various solvents (THF, DMSO, DMF) were recorded with a UV–VIS spectrophotometer. The optical parameters such as maximum peak position, absorption band edge and direct allowed band gap were reported for these solvents and also various concentrations. The lowest direct allowed band gap was obtained with THF solvent. The absorbance spectra of CMEHC compound were dominant at the near ultraviolet region. The refractive index values were compared with each other using Moss, Ravindra, Herve-Vandamme, Reddy and Kumar-Singh relations.

References

  • 1. Sahoo SS., Shukla S, Nandy S, Sahoo HB. Synthesis of Novel Coumarin Derivatives and its Biological Evaluations. European Journal of Experimental Biology. 2012;2(4):899-08.
  • 2. Skowronski L, Krupka O, Smokal V, Grabowski A, Naparty M, Derkowska-Zielinska B. Optical properties of coumarins containing copolymers. Optical Materials. 2015;47:18–23.
  • 3. Olayinka AO, Obinna NC. Microwave‐assisted synthesis and evaluation of antimicrobial activity of 3‐{3‐(s‐aryl and s‐heteroaromatic)acryloyl} ‐2H‐chromen‐2‐one derivatives. Journal of Heterocyclic Chemistry. 2010;47(1):179-87.
  • 4. Brahnbhatt DI, Gajera JM, Pandya VP, Patel MA. Synthesis of 3-(6-aryl-pyridin-2-yl)- and 8-(6-aryl-pyridin-2-yl) coumarins. Indian Journal of Chemistry. 2007;46(B):869-71.
  • 5. Tasior M, Kim D, Singha S, Krzeszewski M, Ahn KH, Gryko DT. pi-Expanded coumarins: synthesis, optical properties and applications. Journal of Materials Chemistry C. 2015;3:1421-46.
  • 6. Swanson SA, Wallraff GM, Chen JP, Zhang WJ, Bozano LD, Carter KR, Salem JR, Villa R, Scott JC. Stable and Efficient Fluorescent Red and Green Dyes for External and Internal Conversion of Blue OLED Emission. Chemistry of Materials. 2003;15(12):2305-12.
  • 7. Zhang H, Yu T, Zhao Y, Fan D, Qian L, Yang C, Zhang K. Syntheses, characterization and fluorescent properties of two triethylene-glycol dicoumarin-3-carboxylates. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2007;68(3):725–27.
  • 8. Jones G, Rahman MA, Fluorescence properties of coumarin laser dyes in aqueous polymer media. chromophore isolation in poly(methacrylic acid) hypercoils. J. Phys. Chem., 1994;98(49):13028–37.
  • 9. Gindre D, Iliopoulos K, Krupka O, Evrard M, Champigny E, Sallé M. Coumarin-Containing polymers for high density non-linear optical data storage. Molecules, 2016;21(2):147.
  • 10. Kim C, Trajkovska A, Wallace JU, Chen SH. New insight into photoalignment of liquid crystals on coumarin-containing polymer films. Macromolecules. 2006;39 (11):3817–23.
  • 11. Donovalova J, Cigan M, Stankovicova H, Gaspar J, Danko M, Gaplovsky A, Hrdlovic P. Spectral properties of substituted coumarins in solution and polymer matrices. Molecules. 2012;17:3259–76.
  • 12. Gindre D, Iliopoulos K, Krupka O, Champigny E, Morille Y, Sallé M. Image storage in coumarin-based copolymer thin films by photoinduced dimerization. Optics Letters. 2013;38(22):4636-39.
  • 13. Chen W, Tong US, Zeng T, Streb C, Song YF. Reversible photodimerization of coumarin-modified Wells–Dawson anions. Journal of Materials Chemistry C 2015;3:4388-93.
  • 14. Bakhtiari G, Moradi S, Soltanali S. A novel method for the synthesis of coumarin laser dyes derived from 3-(1H-benzoimidazol-2-yl) coumarin-2-one under microwave irradiation. Arabian Journal of Chemistry. 2014;7(6):972–75.
  • 15. Liu X, Xu Z, Cole JM. Molecular design of UV−vis absorption and emission properties in organic fluorophores: toward larger bathochromic shifts, enhanced molar extinction coefficients, and greater stokes shifts. The Journal of Physical Chemistry C. 2013;117(32);16584−95.
  • 16. Kurt A. Influence of AlCl3 on the optical properties of new synthesized 3-armed poly(methyl methacrylate) films. Turkish Journal of Chemistry.2010;34(1):67-69.
  • 17. Kurt A, Koca M. Blending of poly(ethyl methacrylate) with poly(2-hydroxy-3-phenoxypropyl methacrylate): thermal and optical properties. The Arabian Journal for Science and Engineering. 2014;39:5413–20.
  • 18. Gunduz B. Investigation of the spectral, optical and surface morphology properties of the N,N'-Dipentyl-3,4,9,10-perylenedicarboximide small molecule for optoelectronic applications. Polymers For Advanced Technologies. 2016;27:144-55.
  • 19. Gunduz B. Surface morphology properties of the 5,5'-di(4-biphenylyl)-2,2'-bithiophene (PPTTPP) nanofiber film and calculations of the optical parameters of the PPTTPP nanofiber optoelectronic devices. Journal of Nanoelectronics and Optoelectronics. 2015;10(1):1-8.
  • 20. Bai Y, Du J, Weng X. Synthesis, characterization, optical properties and theoretical calculations of 6-fluoro coumarin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2014;126:14–20.
  • 21. Rabahi A, Makhloufi-Chebli M, Hamdi SM, Silva AMS, Kheffache D, Kheddis BB, Hamdi M. Synthesis and optical properties of coumarins and iminocoumarins: Estimation of ground- and excited-state dipole moments from a solvatochromic shift and theoretical methods. Journal of Molecular Liquids. 2014;195:240–47.
  • 22. Gündüz B. Optical properties of poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene] light-emitting polymer solutions: effects of molarities and solvents. Polymer Bulletin. 2015;72(12):3241-67.
  • 23. Tauc J. Amorphous and Liquid Semiconductors, Plenum Press, New York, 1974.
  • 24. Gündüz B. Effects of molarity and solvents on the optical properties of the solutions of tris[4-(5-dicyanomethylidenemethyl-2-thienyl)phenyl]amine (TDCV-TPA) and structural properties of its film. Optical Materials. 2013;36(2):425-36.
  • 25. Tripathy SK. Refractive indices of semiconductors from energy gaps. Optical Materials. 2015;46:240-46.
There are 25 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Adnan Kurt 0000-0001-6612-5234

Bayram Gündüz 0000-0002-1447-7534

Murat Koca 0000-0001-9377-2461

Publication Date February 28, 2021
Submission Date March 4, 2020
Acceptance Date November 28, 2020
Published in Issue Year 2021 Volume: 8 Issue: 1

Cite

Vancouver Kurt A, Gündüz B, Koca M. A Study on the Optoelectronic Parameters of 4-Chloromethyl-7-Hydroxy Coumarin in Various Solvents and Concentrations. JOTCSA. 2021;8(1):155-62.