Research Article
BibTex RIS Cite
Year 2021, Volume: 8 Issue: 1, 9 - 20, 28.02.2021
https://doi.org/10.18596/jotcsa.781748

Abstract

References

  • 1. Lever AP. The phthalocyanines. Advances in Inorganic Chemistry and Radiochemistry. 7: Elsevier; 1965. p. 27-114.
  • 2. de la Torre G, Claessens CG, Torres T. Phthalocyanines: old dyes, new materials. Putting color in nanotechnology. Chemical communications. 2007(20):2000-15.
  • 3. Claessens CG, Hahn U, Torres T. Phthalocyanines: From outstanding electronic properties to emerging applications. The Chemical Record. 2008;8(2):75-97.
  • 4. Akyüz D, Dinçer H, Özkaya AR, Koca A. Electrocatalytic hydrogen evolution reaction with metallophthalocyanines modified with click electrochemistry. International Journal of Hydrogen Energy. 2015;40(38):12973-84.
  • 5. Özçeşmeci İ, Demir A, Akyüz D, Koca A, Gül A. Electrocatalytic hydrogen evolution reaction with a supramolecular cobalt (II) phthalocyanine carrying four cobaloxime moieties. Inorganica Chimica Acta. 2017;466:591-8.
  • 6. Zhang Y, Cai X, Bian Y, Jiang J. Organic semiconductors of phthalocyanine compounds for field effect transistors (FETs). Functional Phthalocyanine Molecular Materials: Springer; 2010. p. 275-321.
  • 7. Döring S, Otto T, Cehovski M, Charfi O, Caspary R, Kowalsky W, et al. Highly sensitive wide range organic photodiode based on zinc phthalocyanine: C60. physica status solidi (a). 2016;213(9):2387-91.
  • 8. Yıldız B, Güzel E, Akyüz D, Arslan BS, Koca A, Şener MK. Unsymmetrically pyrazole-3-carboxylic acid substituted phthalocyanine-based photoanodes for use in water splitting photoelectrochemical and dye-sensitized solar cells. Solar Energy. 2019;191:654-62.
  • 9. Aliosman M, Angelov I, Mitrev Y, Iliev I, Durmuş M, Mantareva V. Novel Zn (II) phthalocyanine with tyrosine moieties for photodynamic therapy: Synthesis and comparative study of light-associated properties. Polyhedron. 2019;162:121-8.
  • 10. Kaya M, MENTEŞE E, SÖKMEN BB, AKÇAY HT. The determination of molecular dynamic properties of Novel 5-oxo-1, 2, 4-triazole phthalocyanines and investigation of their urease inhibition properties. Journal of Molecular Structure. 2020:128870.
  • 11. Arslan T, Çakır N, Keleş T, Biyiklioglu Z, Senturk M. Triazole substituted metal-free, metallo-phthalocyanines and their water soluble derivatives as potential cholinesterases inhibitors: Design, synthesis and in vitro inhibition study. Bioorganic chemistry. 2019;90:103100.
  • 12. Demirbaş Ü, Akyüz D, Akçay HT, Koca A, Bekircan O, Kantekin H. Electrochemical and spectroelectrochemical study on novel non-peripherally tetra 1, 2, 4-triazole substituted phthalocyanines. Journal of Molecular Structure. 2018;1155:380-8.
  • 13. Barut B, Yalçın CÖ, Demirbaş Ü, Özel A. Photochemical and in vitro phototoxic properties of Zn (II) phthalocyanine bearing piperidinium groups on different cell lines. Journal of Organometallic Chemistry. 2020:121358.
  • 14. Demirbaş Ü, Pişkin M, Bayrak R, Durmuş M, Kantekin H. Zinc (II) and lead (II) phthalocyanines bearing thiadiazole substituents: Synthesis, characterization, photophysical and photochemical properties. Journal of Molecular Structure. 2019;1197:594-602.
  • 15. Volov AN, Burtsev ID. New glycosylated platinum (II) phthalocyanine containing ribose moiety–synthesis and photophysical properties. Journal of Organometallic Chemistry. 2020:121372.
  • 16. Baygu Y, Gök Y. A highly water-soluble zinc (II) phthalocyanines as potential for PDT studies: Synthesis and characterization. Inorganic Chemistry Communications. 2018;96:133-8.
  • 17. Demirbaş Ü, Akyüz D, Akçay HT, Koca A, Kantekin H. Non-peripherally tetra substituted lead (II), nickel (II) and copper (II) phthalocyanines bearing [1, 2, 3] triazole moeties: Synthesis, characterization and investigation of electrochemical and spectroelectrochemical properties. Journal of Molecular Structure. 2019;1176:695-702.
  • 18. Karaca H, Sezer S, Özalp-Yaman Ş, Tanyeli C. Concise synthesis, electrochemistry and spectroelectrochemistry of phthalocyanines having triazole functionality. Polyhedron. 2014;72:147-56.
  • 19. Demirbaş Ü, Özçifçi Z, Akçay HT, Menteşe E. Novel phthalocyanines bearing 1, 2, 4 triazole substituents: Synthesis, characterization, photophysical and photochemical properties. Polyhedron. 2020:114470.
  • 20. Lever ABP, Leznoff CC. Phthalocyanines: properties and applications: New York: VCH, 1989-c1996.; 1996.
  • 21. Adebayo AI, Nyokong T. Synthesis, spectroscopic and electrochemical properties of manganese, nickel and iron octakis-(2-diethylaminoethanethiol)-phthalocyanine. Polyhedron. 2009;28(14):2831-8.
  • 22. Kamiloğlu AA, Akyüz D, Koca A, Acar İ. Synthesis and investigation of spectroelectrochemical properties of peripherally tetra-substituted phthalocyanine bearing 3-(4-{[3-(trifluoromethyl) benzyl] oxy} phenyl) propan-1-ol and its metallo compounds. Journal of Inclusion Phenomena and Macrocyclic Chemistry. 2018;92(1-2):223-35.
  • 23. Nar I, Gül A, Sivaev IB, Hamuryudan E. Cobaltacarborane functionalized phthalocyanines: Synthesis, photophysical, electrochemical and spectroelectrochemical properties. Synthetic Metals. 2015;210:376-85.
  • 24. Alemdar A, Özkaya AR, Bulut M. Synthesis, spectroscopy, electrochemistry and in situ spectroelectrochemistry of partly halogenated coumarin phthalonitrile and corresponding metal-free, cobalt and zinc phthalocyanines. Polyhedron. 2009;28(17):3788-96.
  • 25. Orman EB, Arıbal A, Özkaya AR, Bulut M, Salan Ü. Synthesis, characterization and electrochemical properties of isoflavone substituted zinc (II), cobalt (II), and metal-free phthalocyanines. Journal of Porphyrins and Phthalocyanines. 2019;23(07n08):856-69.
  • 26. Evans DH, O'Connell KM, Petersen RA, Kelly MJ. Cyclic voltammetry. ACS Publications; 1983.
  • 27. Matsuda H, Ayabe Y. Zur Theorie der Randles‐Sevčikschen Kathodenstrahl‐Polarographie. Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie. 1955;59(6):494-503.
  • 28. Karaoğlan GK, Gümrükçü G, Koca A, Gül A. The synthesis, characterization, electrochemical and spectroelectrochemical properties of a novel, cationic, water-soluble Zn phthalocyanine with extended conjugation. Dyes and Pigments. 2011;88(3):247-56.
  • 29. Mack J, Stillman MJ. Photochemical formation of the anion radical of zinc phthalocyanine and analysis of the absorption and magnetic circular dichroism spectral data. Assignment of the optical spectrum of [ZnPc (-3)]. Journal of the American Chemical Society. 1994;116(4):1292-304.
  • 30. Nyokong T, Gasyna Z, Stillman MJ. Phthalocyanine. pi.-cation-radical species: photochemical and electrochemical preparation of [ZnPc (-1).+ in solution. Inorganic Chemistry. 1987;26(4):548-53.
  • 31. Alemdar A, Özkaya AR, Bulut M. Preparation, characterization, electrochemistry and in situ spectroelectrochemistry of novel α-tetra [7-oxo-3-(2-chloro-4-fluorophenyl) coumarin]-substituted metal-free, cobalt and zinc phthalocyanines. Synthetic metals. 2010;160(13-14):1556-65.
  • 32. Ough EA, Crebera KA, Stillman MJ. Electrochemistry and spectroscopy of magnesium octaethyltetraazaporphyrin and magnesium octakis (methylthio) tetraazaporphyrin. Inorganica chimica acta. 1996;246(1-2):361-9.
  • 33. Rollmann LD, Iwamoto RT. Electrochemistry, electron paramagnetic resonance, and visible spectra of cobalt, nickel, copper, and metal-free phthalocyanines in dimethyl sulfoxide. Journal of the American Chemical Society. 1968;90(6):1455-63.
  • 34. Akyüz D, Demirbaş Ü, Akçay HT. Synthesis, characterization and electrochemistry of 1-phenoxypropan-2-yloxy substituted phthalocyanines. Journal of Organometallic Chemistry. 2020:121455.
  • 35. Demirbaş Ü, Akyüz D, Akçay HT, Koca A, Menteşe E, Kantekin H. Novel 1, 2, 4-triazole substituted metallo-phthalocyanines: Synthesis, characterization and investigation of electrochemical and spectroelectrochemical properties. Journal of Molecular Structure. 2018;1173:205-12.
  • 36. Kryjewski M, Rebis T, Milczarek G, Gdaniec Z, Goslinski T, Mielcarek J. Magnesium (ii) 1-(1-adamantylsulfanyl) phthalocyanine–synthesis, photochemical and electrochemical properties. New Journal of Chemistry. 2016;40(11):9774-80.

Electrochemical and in-situ spectroelectrochemical behaviors of non-peripherally tetra substituted zinc(II) and magnesium(II) phthalocyanines

Year 2021, Volume: 8 Issue: 1, 9 - 20, 28.02.2021
https://doi.org/10.18596/jotcsa.781748

Abstract

The electrochemical behaviors of non-peripherally tetra substituted zinc(II) and magnesium(II) phthalocyanines were studied at glassy carbon electrode in dimethylformamide using cyclic and square wave voltammetry techniques. Electrochemical mechanisms of complexes were illuminated by using the relationship between scan rate and peak current. The complexes exhibited reversible and diffusion controlled behaviors. The effect of metal center on redox properties of complexes were investigated and compared. Electrochemical results were supported with in-situ spectroelectrochemical measurements. Moreover, the color changes were recorded and observed sharp color transitions during the reduction and oxidation redox process.

References

  • 1. Lever AP. The phthalocyanines. Advances in Inorganic Chemistry and Radiochemistry. 7: Elsevier; 1965. p. 27-114.
  • 2. de la Torre G, Claessens CG, Torres T. Phthalocyanines: old dyes, new materials. Putting color in nanotechnology. Chemical communications. 2007(20):2000-15.
  • 3. Claessens CG, Hahn U, Torres T. Phthalocyanines: From outstanding electronic properties to emerging applications. The Chemical Record. 2008;8(2):75-97.
  • 4. Akyüz D, Dinçer H, Özkaya AR, Koca A. Electrocatalytic hydrogen evolution reaction with metallophthalocyanines modified with click electrochemistry. International Journal of Hydrogen Energy. 2015;40(38):12973-84.
  • 5. Özçeşmeci İ, Demir A, Akyüz D, Koca A, Gül A. Electrocatalytic hydrogen evolution reaction with a supramolecular cobalt (II) phthalocyanine carrying four cobaloxime moieties. Inorganica Chimica Acta. 2017;466:591-8.
  • 6. Zhang Y, Cai X, Bian Y, Jiang J. Organic semiconductors of phthalocyanine compounds for field effect transistors (FETs). Functional Phthalocyanine Molecular Materials: Springer; 2010. p. 275-321.
  • 7. Döring S, Otto T, Cehovski M, Charfi O, Caspary R, Kowalsky W, et al. Highly sensitive wide range organic photodiode based on zinc phthalocyanine: C60. physica status solidi (a). 2016;213(9):2387-91.
  • 8. Yıldız B, Güzel E, Akyüz D, Arslan BS, Koca A, Şener MK. Unsymmetrically pyrazole-3-carboxylic acid substituted phthalocyanine-based photoanodes for use in water splitting photoelectrochemical and dye-sensitized solar cells. Solar Energy. 2019;191:654-62.
  • 9. Aliosman M, Angelov I, Mitrev Y, Iliev I, Durmuş M, Mantareva V. Novel Zn (II) phthalocyanine with tyrosine moieties for photodynamic therapy: Synthesis and comparative study of light-associated properties. Polyhedron. 2019;162:121-8.
  • 10. Kaya M, MENTEŞE E, SÖKMEN BB, AKÇAY HT. The determination of molecular dynamic properties of Novel 5-oxo-1, 2, 4-triazole phthalocyanines and investigation of their urease inhibition properties. Journal of Molecular Structure. 2020:128870.
  • 11. Arslan T, Çakır N, Keleş T, Biyiklioglu Z, Senturk M. Triazole substituted metal-free, metallo-phthalocyanines and their water soluble derivatives as potential cholinesterases inhibitors: Design, synthesis and in vitro inhibition study. Bioorganic chemistry. 2019;90:103100.
  • 12. Demirbaş Ü, Akyüz D, Akçay HT, Koca A, Bekircan O, Kantekin H. Electrochemical and spectroelectrochemical study on novel non-peripherally tetra 1, 2, 4-triazole substituted phthalocyanines. Journal of Molecular Structure. 2018;1155:380-8.
  • 13. Barut B, Yalçın CÖ, Demirbaş Ü, Özel A. Photochemical and in vitro phototoxic properties of Zn (II) phthalocyanine bearing piperidinium groups on different cell lines. Journal of Organometallic Chemistry. 2020:121358.
  • 14. Demirbaş Ü, Pişkin M, Bayrak R, Durmuş M, Kantekin H. Zinc (II) and lead (II) phthalocyanines bearing thiadiazole substituents: Synthesis, characterization, photophysical and photochemical properties. Journal of Molecular Structure. 2019;1197:594-602.
  • 15. Volov AN, Burtsev ID. New glycosylated platinum (II) phthalocyanine containing ribose moiety–synthesis and photophysical properties. Journal of Organometallic Chemistry. 2020:121372.
  • 16. Baygu Y, Gök Y. A highly water-soluble zinc (II) phthalocyanines as potential for PDT studies: Synthesis and characterization. Inorganic Chemistry Communications. 2018;96:133-8.
  • 17. Demirbaş Ü, Akyüz D, Akçay HT, Koca A, Kantekin H. Non-peripherally tetra substituted lead (II), nickel (II) and copper (II) phthalocyanines bearing [1, 2, 3] triazole moeties: Synthesis, characterization and investigation of electrochemical and spectroelectrochemical properties. Journal of Molecular Structure. 2019;1176:695-702.
  • 18. Karaca H, Sezer S, Özalp-Yaman Ş, Tanyeli C. Concise synthesis, electrochemistry and spectroelectrochemistry of phthalocyanines having triazole functionality. Polyhedron. 2014;72:147-56.
  • 19. Demirbaş Ü, Özçifçi Z, Akçay HT, Menteşe E. Novel phthalocyanines bearing 1, 2, 4 triazole substituents: Synthesis, characterization, photophysical and photochemical properties. Polyhedron. 2020:114470.
  • 20. Lever ABP, Leznoff CC. Phthalocyanines: properties and applications: New York: VCH, 1989-c1996.; 1996.
  • 21. Adebayo AI, Nyokong T. Synthesis, spectroscopic and electrochemical properties of manganese, nickel and iron octakis-(2-diethylaminoethanethiol)-phthalocyanine. Polyhedron. 2009;28(14):2831-8.
  • 22. Kamiloğlu AA, Akyüz D, Koca A, Acar İ. Synthesis and investigation of spectroelectrochemical properties of peripherally tetra-substituted phthalocyanine bearing 3-(4-{[3-(trifluoromethyl) benzyl] oxy} phenyl) propan-1-ol and its metallo compounds. Journal of Inclusion Phenomena and Macrocyclic Chemistry. 2018;92(1-2):223-35.
  • 23. Nar I, Gül A, Sivaev IB, Hamuryudan E. Cobaltacarborane functionalized phthalocyanines: Synthesis, photophysical, electrochemical and spectroelectrochemical properties. Synthetic Metals. 2015;210:376-85.
  • 24. Alemdar A, Özkaya AR, Bulut M. Synthesis, spectroscopy, electrochemistry and in situ spectroelectrochemistry of partly halogenated coumarin phthalonitrile and corresponding metal-free, cobalt and zinc phthalocyanines. Polyhedron. 2009;28(17):3788-96.
  • 25. Orman EB, Arıbal A, Özkaya AR, Bulut M, Salan Ü. Synthesis, characterization and electrochemical properties of isoflavone substituted zinc (II), cobalt (II), and metal-free phthalocyanines. Journal of Porphyrins and Phthalocyanines. 2019;23(07n08):856-69.
  • 26. Evans DH, O'Connell KM, Petersen RA, Kelly MJ. Cyclic voltammetry. ACS Publications; 1983.
  • 27. Matsuda H, Ayabe Y. Zur Theorie der Randles‐Sevčikschen Kathodenstrahl‐Polarographie. Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie. 1955;59(6):494-503.
  • 28. Karaoğlan GK, Gümrükçü G, Koca A, Gül A. The synthesis, characterization, electrochemical and spectroelectrochemical properties of a novel, cationic, water-soluble Zn phthalocyanine with extended conjugation. Dyes and Pigments. 2011;88(3):247-56.
  • 29. Mack J, Stillman MJ. Photochemical formation of the anion radical of zinc phthalocyanine and analysis of the absorption and magnetic circular dichroism spectral data. Assignment of the optical spectrum of [ZnPc (-3)]. Journal of the American Chemical Society. 1994;116(4):1292-304.
  • 30. Nyokong T, Gasyna Z, Stillman MJ. Phthalocyanine. pi.-cation-radical species: photochemical and electrochemical preparation of [ZnPc (-1).+ in solution. Inorganic Chemistry. 1987;26(4):548-53.
  • 31. Alemdar A, Özkaya AR, Bulut M. Preparation, characterization, electrochemistry and in situ spectroelectrochemistry of novel α-tetra [7-oxo-3-(2-chloro-4-fluorophenyl) coumarin]-substituted metal-free, cobalt and zinc phthalocyanines. Synthetic metals. 2010;160(13-14):1556-65.
  • 32. Ough EA, Crebera KA, Stillman MJ. Electrochemistry and spectroscopy of magnesium octaethyltetraazaporphyrin and magnesium octakis (methylthio) tetraazaporphyrin. Inorganica chimica acta. 1996;246(1-2):361-9.
  • 33. Rollmann LD, Iwamoto RT. Electrochemistry, electron paramagnetic resonance, and visible spectra of cobalt, nickel, copper, and metal-free phthalocyanines in dimethyl sulfoxide. Journal of the American Chemical Society. 1968;90(6):1455-63.
  • 34. Akyüz D, Demirbaş Ü, Akçay HT. Synthesis, characterization and electrochemistry of 1-phenoxypropan-2-yloxy substituted phthalocyanines. Journal of Organometallic Chemistry. 2020:121455.
  • 35. Demirbaş Ü, Akyüz D, Akçay HT, Koca A, Menteşe E, Kantekin H. Novel 1, 2, 4-triazole substituted metallo-phthalocyanines: Synthesis, characterization and investigation of electrochemical and spectroelectrochemical properties. Journal of Molecular Structure. 2018;1173:205-12.
  • 36. Kryjewski M, Rebis T, Milczarek G, Gdaniec Z, Goslinski T, Mielcarek J. Magnesium (ii) 1-(1-adamantylsulfanyl) phthalocyanine–synthesis, photochemical and electrochemical properties. New Journal of Chemistry. 2016;40(11):9774-80.
There are 36 citations in total.

Details

Primary Language English
Subjects Electrochemistry
Journal Section Articles
Authors

Duygu Akyüz Çubukçu 0000-0002-9258-9531

Publication Date February 28, 2021
Submission Date August 17, 2020
Acceptance Date October 24, 2020
Published in Issue Year 2021 Volume: 8 Issue: 1

Cite

Vancouver Akyüz Çubukçu D. Electrochemical and in-situ spectroelectrochemical behaviors of non-peripherally tetra substituted zinc(II) and magnesium(II) phthalocyanines. JOTCSA. 2021;8(1):9-20.