Research Article
BibTex RIS Cite

Improved Photocatalytic Degradation of Methyl Orange Dye in UV Light Irradiation by K2Ti6O13 Nanorods

Year 2021, Volume: 8 Issue: 3, 723 - 730, 31.08.2021
https://doi.org/10.18596/jotcsa.766952

Abstract

The K2Ti6O13 nanorods (KTNRs) were synthesized by Molten Salt Solution method (MSS) using TiO2 nanoparticles and potassium chloride as precursors. As synthesized KTNRs was characterized by powder X-ray diffraction to know the crystallinity, scanning electron microscopy confirms the rod type morphology with diameter 10 to 12 nm with length up to 80 nm, functional groups were studied with FT-IR spectroscopy, optical property of KTNRs showed the bandgap energy Eg= 3.41 eV by UV-Vis spectrophotometry. The synthesized KTNRs was used as photocatalyst for degradation of the methyl orange dye under UV light illumination. The degradation of methyl orange dye followed the pseudo first order rate law. The kinetics and mechanism of MO dye degradation dye was studied for different photocatalyst dosage 5, 10 and 15 mg of KTNRs, maximum for rate constant is found for 10 mg of photocatalyst.

Supporting Institution

DST-Science and Engineering Research Board, Government of India

Project Number

SB/EMEQ-171/2014.

Thanks

Authors acknowledge the financial support from the DST-Science and Engineering Research Board, Government of India

References

  • 1. Frank SN, Bard AJ. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J Phys Chem. 1977;81(15):1484–8. DOI: https://doi.org/10.1021/j100530a011.
  • 2. Ge M, Cao C, Huang J, Li S, Chen Z, Zhang K-Q, et al. A review of one-dimensional TiO 2 nanostructured materials for environmental and energy applications. J Mater Chem A. 2016;4(18):6772–801. DOI: https://doi.org/10.1039/C5TA09323F.
  • 3. Lieber CM. One-dimensional nanostructures: Chemistry, physics & applications. Solid State Communications. 1998;107(11):607–16. DOI: https://doi.org/10.1016/S0038-1098(98)00209-9.
  • 4. Xie JL, Guo CX, Li CM. Construction of one-dimensional nanostructures on graphene for efficient energy conversion and storage. Energy Environ Sci. 2014 30;7(8):2559. DOI: https://doi.org/10.1039/C4EE00531G.
  • 5. Cho C-P, Perng T-P. One-Dimensional Organic and Organometallic Nanostructured Materials. j nanosci nanotechnol. 2008;8(1):69–87. DOI: https://doi.org/10.1166/jnn.2008.N14.
  • 6. Nowak DJ, Hirabayashi S, Bodine A, Greenfield E. Tree and forest effects on air quality and human health in the United States. Environmental Pollution. 2014;193:119–29. DOI: https://doi.org/10.1016/j.envpol.2014.05.028.
  • 7. Xu Y, Zhang B. Recent advances in porous Pt-based nanostructures: synthesis and electrochemical applications. Chem Soc Rev. 2014;43(8):2439. DOI: https://doi.org/10.1039/c3cs60351b.
  • 8. Kilinc N, Cakmak O, Kosemen A, Ermek E, Ozturk S, Yerli Y, et al. Fabrication of 1D ZnO nanostructures on MEMS cantilever for VOC sensor application. Sensors and Actuators B: Chemical. 2014;202:357–64. DOI: https://doi.org/10.1016/j.snb.2014.05.078.
  • 9. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Formation of Titanium Oxide Nanotube. Langmuir. 1998 1;14(12):3160–3. DOI: https://doi.org/10.1021/la9713816.
  • 10. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Titania Nanotubes Prepared by Chemical Processing. Adv Mater. 1999;11(15):1307–11.
  • 11. Anderson C, Bard AJ. An Improved Photocatalyst of TiO2/SiO2 Prepared by a Sol-Gel Synthesis. J Phys Chem. 1995;99(24):9882–5. DOI: https://doi.org/10.1021/j100024a033.
  • 12. Ma S, Li R, Lv C, Xu W, Gou X. Facile synthesis of ZnO nanorod arrays and hierarchical nanostructures for photocatalysis and gas sensor applications. Journal of Hazardous Materials. 2011;192(2):730–40. DOI: https://doi.org/10.1016/j.jhazmat.2011.05.082.
  • 13. Cao J, Wang A, Yin H, Shen L, Ren M, Han S, et al. Selective Synthesis of Potassium Titanate Whiskers Starting from Metatitanic Acid and Potassium Carbonate. Ind Eng Chem Res. 2010 6;49(19):9128–34. DOI: https://doi.org/10.1021/ie101154q.
  • 14. Choy J-H, Han Y-S. A combinative flux evaporation–slow cooling route to potassium titanate fibres. Materials Letters. 1998;34(3–6):111–8. DOI: https://doi.org/10.1016/S0167-577X(97)00157-2.
  • 15. Makarova NM, Kulapina EG, Tret’yachenko EV, Gorokhovskii AV, Zakharevich AM. Effect of the sorption of polyoxyethylated nonylphenols on the surface structure of potassium polytitanate. Russ J Phys Chem. 2014;88(12):2209–13. DOI: https://doi.org/10.1134/S0036024414120206.
  • 16. Wang X, Li Y. Solution-Based Synthetic Strategies for 1-D Nanostructures. Inorg Chem. 2006 1;45(19):7522–34. DOI: https://doi.org/10.1021/ic051885o.
  • 17. Yuan Z-Y, Zhang X-B, Su B-L. Moderate hydrothermal synthesis of potassium titanate nanowires. Appl Phys A. 2004 Apr;78(7):1063–6. DOI: https://doi.org/10.1007/s00339-003-2165-x.
  • 18. Yu D, Wu J, Zhou L, Xie D, Wu S. The dielectric and mechanical properties of a potassium-titanate-whisker-reinforced PP/PA blend. Composites Science and Technology. 2000 Mar;60(4):499–508. DOI: https://doi.org/10.1016/S0266-3538(99)00149-9.
  • 19. Murakami R, Matsui K. Evaluation of mechanical and wear properties of potassium acid titanate whisker-reinforced copper matrix composites formed by hot isostatic pressing. Wear. 1996 Dec;201(1–2):193–8. DOI: https://doi.org/10.1016/S0043-1648(96)07239-0.
  • 20. Wang BL, Chen Q, Wang RH, Peng L-M. Synthesis and characterization of K2Ti6O13 nanowires. Chemical Physics Letters. 2003 Jul;376(5–6):726–31. DOI: https://doi.org/10.1016/S0009-2614(03)01068-6.
  • 21. Du GH, Chen Q, Han PD, Yu Y, Peng L-M. Potassium titanate nanowires: Structure, growth, and optical properties. Phys Rev B. 2003 Jan 30;67(3):035323. DOI: https://doi.org/10.1103/PhysRevB.67.035323.
  • 22. Wang RH, Chen Q, Wang BL, Zhang S, Peng L-M. Strain-induced formation of K2Ti6O13 nanowires via ion exchange. Appl Phys Lett. 2005 Mar 28;86(13):133101. DOI: https://doi.org/10.1063/1.1890470.
  • 23. Hanaor DAH, Chironi I, Karatchevtseva I, Triani G, Sorrell CC. Single and mixed phase TiO 2 powders prepared by excess hydrolysis of titanium alkoxide. Advances in Applied Ceramics. 2012 Apr;111(3):149–58. DOI: https://doi.org/10.1179/1743676111Y.0000000059.
  • 24. Cid-Dresdner H, Buerger MJ. The crystal structure of potassium hexatitanate K2Ti6O13. Zeitschrift für Kristallographie - Crystalline Materials [Internet]. 1962 Jan [cited 2021 Jun 14];117(1–6). DOI: https://doi.org/10.1524/zkri.1962.117.16.411.
  • 25. Saleh TA, Gupta VK. Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. Journal of Colloid and Interface Science. 2012 Apr;371(1):101–6. DOI: https://doi.org/10.1016/j.jcis.2011.12.038.
  • 26. Siddiqui MA, Chandel VS, Azam A. Comparative study of potassium hexatitanate (K2Ti6O13) whiskers prepared by sol–gel and solid state reaction routes. Applied Surface Science. 2012 Jul;258(19):7354–8. DOI: https://doi.org/10.1016/j.apsusc.2012.04.018.
  • 27. Pan H, Wang X, Xiao S, Yu L, Zhang Z. Preparation and characterization of TiO2 nanoparticles surface-modified by octadecyltrimethoxysilane. Ind J Eng&Mat Sci. 2013 Dec;20:561–7. URL: http://nopr.niscair.res.in/bitstream/123456789/25584/1/IJEMS%2020%286%29%20561-567.pdf.
  • 28. Liu G, Wu T, Zhao J, Hidaka H, Serpone N. Photoassisted Degradation of Dye Pollutants. 8. Irreversible Degradation of Alizarin Red under Visible Light Radiation in Air-Equilibrated Aqueous TiO 2 Dispersions. Environ Sci Technol. 1999 Jun;33(12):2081–7. DOI: https://doi.org/10.1021/es9807643.
  • 29. Veldurthi NK, Velchuri R, Pola S, Prasad G, Muniratnam NR, Vithal M. Synthesis, characterization and silver/copper-nitrogen substitutional effect on visible light driven photocatalytic performance of sodium hexatitanate nanostructures: Silver/copper-nitrogen substituted sodium hexatitanate. J Chem Technol Biotechnol. 2015 Aug;90(8):1507–14. DOI: https://doi.org/10.1002/jctb.4466.
  • 30. Choi J, Cui M, Lee Y, Kim J, Yoon Y, Jang M, et al. Synthesis, characterization and sonocatalytic applications of nano-structured carbon based TiO2 catalysts. Ultrasonics Sonochemistry. 2018 May;43:193–200. DOI: https://doi.org/10.1016/j.ultsonch.2018.01.010.
Year 2021, Volume: 8 Issue: 3, 723 - 730, 31.08.2021
https://doi.org/10.18596/jotcsa.766952

Abstract

Project Number

SB/EMEQ-171/2014.

References

  • 1. Frank SN, Bard AJ. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J Phys Chem. 1977;81(15):1484–8. DOI: https://doi.org/10.1021/j100530a011.
  • 2. Ge M, Cao C, Huang J, Li S, Chen Z, Zhang K-Q, et al. A review of one-dimensional TiO 2 nanostructured materials for environmental and energy applications. J Mater Chem A. 2016;4(18):6772–801. DOI: https://doi.org/10.1039/C5TA09323F.
  • 3. Lieber CM. One-dimensional nanostructures: Chemistry, physics & applications. Solid State Communications. 1998;107(11):607–16. DOI: https://doi.org/10.1016/S0038-1098(98)00209-9.
  • 4. Xie JL, Guo CX, Li CM. Construction of one-dimensional nanostructures on graphene for efficient energy conversion and storage. Energy Environ Sci. 2014 30;7(8):2559. DOI: https://doi.org/10.1039/C4EE00531G.
  • 5. Cho C-P, Perng T-P. One-Dimensional Organic and Organometallic Nanostructured Materials. j nanosci nanotechnol. 2008;8(1):69–87. DOI: https://doi.org/10.1166/jnn.2008.N14.
  • 6. Nowak DJ, Hirabayashi S, Bodine A, Greenfield E. Tree and forest effects on air quality and human health in the United States. Environmental Pollution. 2014;193:119–29. DOI: https://doi.org/10.1016/j.envpol.2014.05.028.
  • 7. Xu Y, Zhang B. Recent advances in porous Pt-based nanostructures: synthesis and electrochemical applications. Chem Soc Rev. 2014;43(8):2439. DOI: https://doi.org/10.1039/c3cs60351b.
  • 8. Kilinc N, Cakmak O, Kosemen A, Ermek E, Ozturk S, Yerli Y, et al. Fabrication of 1D ZnO nanostructures on MEMS cantilever for VOC sensor application. Sensors and Actuators B: Chemical. 2014;202:357–64. DOI: https://doi.org/10.1016/j.snb.2014.05.078.
  • 9. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Formation of Titanium Oxide Nanotube. Langmuir. 1998 1;14(12):3160–3. DOI: https://doi.org/10.1021/la9713816.
  • 10. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Titania Nanotubes Prepared by Chemical Processing. Adv Mater. 1999;11(15):1307–11.
  • 11. Anderson C, Bard AJ. An Improved Photocatalyst of TiO2/SiO2 Prepared by a Sol-Gel Synthesis. J Phys Chem. 1995;99(24):9882–5. DOI: https://doi.org/10.1021/j100024a033.
  • 12. Ma S, Li R, Lv C, Xu W, Gou X. Facile synthesis of ZnO nanorod arrays and hierarchical nanostructures for photocatalysis and gas sensor applications. Journal of Hazardous Materials. 2011;192(2):730–40. DOI: https://doi.org/10.1016/j.jhazmat.2011.05.082.
  • 13. Cao J, Wang A, Yin H, Shen L, Ren M, Han S, et al. Selective Synthesis of Potassium Titanate Whiskers Starting from Metatitanic Acid and Potassium Carbonate. Ind Eng Chem Res. 2010 6;49(19):9128–34. DOI: https://doi.org/10.1021/ie101154q.
  • 14. Choy J-H, Han Y-S. A combinative flux evaporation–slow cooling route to potassium titanate fibres. Materials Letters. 1998;34(3–6):111–8. DOI: https://doi.org/10.1016/S0167-577X(97)00157-2.
  • 15. Makarova NM, Kulapina EG, Tret’yachenko EV, Gorokhovskii AV, Zakharevich AM. Effect of the sorption of polyoxyethylated nonylphenols on the surface structure of potassium polytitanate. Russ J Phys Chem. 2014;88(12):2209–13. DOI: https://doi.org/10.1134/S0036024414120206.
  • 16. Wang X, Li Y. Solution-Based Synthetic Strategies for 1-D Nanostructures. Inorg Chem. 2006 1;45(19):7522–34. DOI: https://doi.org/10.1021/ic051885o.
  • 17. Yuan Z-Y, Zhang X-B, Su B-L. Moderate hydrothermal synthesis of potassium titanate nanowires. Appl Phys A. 2004 Apr;78(7):1063–6. DOI: https://doi.org/10.1007/s00339-003-2165-x.
  • 18. Yu D, Wu J, Zhou L, Xie D, Wu S. The dielectric and mechanical properties of a potassium-titanate-whisker-reinforced PP/PA blend. Composites Science and Technology. 2000 Mar;60(4):499–508. DOI: https://doi.org/10.1016/S0266-3538(99)00149-9.
  • 19. Murakami R, Matsui K. Evaluation of mechanical and wear properties of potassium acid titanate whisker-reinforced copper matrix composites formed by hot isostatic pressing. Wear. 1996 Dec;201(1–2):193–8. DOI: https://doi.org/10.1016/S0043-1648(96)07239-0.
  • 20. Wang BL, Chen Q, Wang RH, Peng L-M. Synthesis and characterization of K2Ti6O13 nanowires. Chemical Physics Letters. 2003 Jul;376(5–6):726–31. DOI: https://doi.org/10.1016/S0009-2614(03)01068-6.
  • 21. Du GH, Chen Q, Han PD, Yu Y, Peng L-M. Potassium titanate nanowires: Structure, growth, and optical properties. Phys Rev B. 2003 Jan 30;67(3):035323. DOI: https://doi.org/10.1103/PhysRevB.67.035323.
  • 22. Wang RH, Chen Q, Wang BL, Zhang S, Peng L-M. Strain-induced formation of K2Ti6O13 nanowires via ion exchange. Appl Phys Lett. 2005 Mar 28;86(13):133101. DOI: https://doi.org/10.1063/1.1890470.
  • 23. Hanaor DAH, Chironi I, Karatchevtseva I, Triani G, Sorrell CC. Single and mixed phase TiO 2 powders prepared by excess hydrolysis of titanium alkoxide. Advances in Applied Ceramics. 2012 Apr;111(3):149–58. DOI: https://doi.org/10.1179/1743676111Y.0000000059.
  • 24. Cid-Dresdner H, Buerger MJ. The crystal structure of potassium hexatitanate K2Ti6O13. Zeitschrift für Kristallographie - Crystalline Materials [Internet]. 1962 Jan [cited 2021 Jun 14];117(1–6). DOI: https://doi.org/10.1524/zkri.1962.117.16.411.
  • 25. Saleh TA, Gupta VK. Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. Journal of Colloid and Interface Science. 2012 Apr;371(1):101–6. DOI: https://doi.org/10.1016/j.jcis.2011.12.038.
  • 26. Siddiqui MA, Chandel VS, Azam A. Comparative study of potassium hexatitanate (K2Ti6O13) whiskers prepared by sol–gel and solid state reaction routes. Applied Surface Science. 2012 Jul;258(19):7354–8. DOI: https://doi.org/10.1016/j.apsusc.2012.04.018.
  • 27. Pan H, Wang X, Xiao S, Yu L, Zhang Z. Preparation and characterization of TiO2 nanoparticles surface-modified by octadecyltrimethoxysilane. Ind J Eng&Mat Sci. 2013 Dec;20:561–7. URL: http://nopr.niscair.res.in/bitstream/123456789/25584/1/IJEMS%2020%286%29%20561-567.pdf.
  • 28. Liu G, Wu T, Zhao J, Hidaka H, Serpone N. Photoassisted Degradation of Dye Pollutants. 8. Irreversible Degradation of Alizarin Red under Visible Light Radiation in Air-Equilibrated Aqueous TiO 2 Dispersions. Environ Sci Technol. 1999 Jun;33(12):2081–7. DOI: https://doi.org/10.1021/es9807643.
  • 29. Veldurthi NK, Velchuri R, Pola S, Prasad G, Muniratnam NR, Vithal M. Synthesis, characterization and silver/copper-nitrogen substitutional effect on visible light driven photocatalytic performance of sodium hexatitanate nanostructures: Silver/copper-nitrogen substituted sodium hexatitanate. J Chem Technol Biotechnol. 2015 Aug;90(8):1507–14. DOI: https://doi.org/10.1002/jctb.4466.
  • 30. Choi J, Cui M, Lee Y, Kim J, Yoon Y, Jang M, et al. Synthesis, characterization and sonocatalytic applications of nano-structured carbon based TiO2 catalysts. Ultrasonics Sonochemistry. 2018 May;43:193–200. DOI: https://doi.org/10.1016/j.ultsonch.2018.01.010.
There are 30 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Kiran K S 0000-0002-1031-3583

Lokesh S V 0000-0001-8666-4286

Project Number SB/EMEQ-171/2014.
Publication Date August 31, 2021
Submission Date July 9, 2020
Acceptance Date June 14, 2021
Published in Issue Year 2021 Volume: 8 Issue: 3

Cite

Vancouver K S K, S V L. Improved Photocatalytic Degradation of Methyl Orange Dye in UV Light Irradiation by K2Ti6O13 Nanorods. JOTCSA. 2021;8(3):723-30.