Loading [a11y]/accessibility-menu.js
Research Article
BibTex RIS Cite

Improvement of The CO2 Sensitivity of HPTS Along With ZnO/CuO Nanoparticles: A Comparative Study Between Core-Shell And Hybrid Structures

Year 2021, Volume: 8 Issue: 4, 983 - 994, 30.11.2021
https://doi.org/10.18596/jotcsa.947087

Abstract

Semiconductor metal oxide materials have gained huge attention in gas sensors owing to their high sensitivity to many target gases. Herein, ZnO/CuO core-shell and ZnO/CuO hybrid, which were synthesized by different sol-gel methods and formed in two different crystal structures, were used as an additive material to enhance the response range of 8-hydroxypyrene-1, 3, 6-trisulfonic acid (HPTS) for the sensing of gaseous carbon dioxide. Metal oxide materials were characterized by using XPS, XRD, FTIR, SEM, UV–Vis, and PL spectroscopy. The HPTS dye along with the ZnO/CuO hybrid material displayed a higher CO2 gas sensitivity as 94% ratio (I0/I100=16.90) and Stern-Volmer constant (KSV) value and extended linear response range compared to the HPTS-based sensing thin films along with ZnO/CuO core-shell material and additive-free form. ZnO/CuO core-shell and hybrid structures were used for enhancing of carbon dioxide sensitivity of the HPTS dye.

Thanks

Characterization measurements were performed at Dokuz Eylul University, Center for Fabrication and Applications of Electronic Materials. I want to thank all.

References

  • 1. Ali R, Saleh SM, Meier RJ, Azab HA, Abdelgawad II, Wolfbeis OS. Upconverting nanoparticle based optical sensor for carbon dioxide. Sensors and Actuators B: Chemical. 2010 Sep;150(1):126–31.
  • 2. Chu C-S, Lo Y-L, Sung T-W. Review on recent developments of fluorescent oxygen and carbon dioxide optical fiber sensors. Photonic Sens. 2011 Sep;1(3):234–50.
  • 3. Swickrath M, Anderson M, McMillin S, Broerman C. Application of Commercial Non-Dispersive Infrared Spectroscopy Sensors for Sub-ambient Carbon Dioxide Detection. In: 42nd International Conference on Environmental Systems [Internet]. San Diego, California: American Institute of Aeronautics and Astronautics; 2012 [cited 2021 Aug 24].
  • 4. Shimizu Y, Yamashita N. Solid electrolyte CO2 sensor using NASICON and perovskite-type oxide electrode. Sensors and Actuators B: Chemical. 2000 Jun;64(1–3):102–6.
  • 5. Malins C, MacCraith BD. Dye-doped organically modified silica glass for fluorescence based carbon dioxide gas detection. Analyst. 1998;123(11):2373–6.
  • 6. Zeyrek Ongun M. Tuning CO2 sensitivity of HPTS by ZnO and ZnO@Ag nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry. 2020 Sep;400:112664.
  • 7. Neurauter G, Klimant I, Wolfbeis OS. Microsecond lifetime-based optical carbon dioxide sensor using luminescence resonance energy transfer. Analytica Chimica Acta. 1999 Feb;382(1–2):67–75.
  • 8. Schutting S, Jokic T, Strobl M, Borisov SM, Beer D de, Klimant I. NIR optical carbon dioxide sensors based on highly photostable dihydroxy-aza-BODIPY dyes. J Mater Chem C. 2015;3(21):5474–83.
  • 9. Schutting S, Borisov SM, Klimant I. Diketo-Pyrrolo-Pyrrole Dyes as New Colorimetric and Fluorescent pH Indicators for Optical Carbon Dioxide Sensors. Anal Chem. 2013 Mar 19;85(6):3271–9.
  • 10. Borchert NB, Kerry JP, Papkovsky DB. A CO2 sensor based on Pt-porphyrin dye and FRET scheme for food packaging applications. Sensors and Actuators B: Chemical. 2013 Jan;176:157–65.
  • 11. von Bültzingslöwen C, McEvoy AK, McDonagh C, MacCraith BD, Klimant I, Krause C, et al. Sol–gel based optical carbon dioxide sensor employing dual luminophore referencing for application in food packaging technology. Analyst. 2002;127(11):1478–83.
  • 12. Nivens D. Multilayer sol–gel membranes for optical sensing applications: single layer pH and dual layer CO2 and NH3 sensors. Talanta. 2002 Sep 12;58(3):543–50.
  • 13. Wolfbeis OS, Kovács B, Goswami K, Klainer SM. Fiber-optic fluorescence carbon dioxide sensor for environmental monitoring. Mikrochim Acta. 1998 Sep;129(3–4):181–8.
  • 14. Neurauter G, Klimant I, Wolfbeis OS. Fiber-optic microsensor for high resolution pCO 2 sensing in marine environment. Fresenius’ Journal of Analytical Chemistry. 2000 Mar 2;366(5):481–7. 15. Oter O, Polat B. Spectrofluorometric Determination of Carbon Dioxide Using 8-Hydroxypyrene-1,3,6-trisulfonic Acid in a Zeolite Composite. Analytical Letters. 2015 Feb 11;48(3):489–502.
  • 16. McEvoy AK, Von Bueltzingsloewen C, McDonagh CM, MacCraith BD, Klimant I, Wolfbeis OS. Optical sensors for application in intelligent food-packaging technology. In: Glynn TJ, editor. Galway, Ireland; 2003 [cited 2021 Aug 24]. p. 806.
  • 17. Ertekin K. Characterization of a reservoir-type capillary optical microsensor for pCO2 measurements. Talanta. 2003 Feb 6;59(2):261–7.
  • 18. Oter O, Sabancı G, Ertekin K. Enhanced CO<SUB>2</SUB> Sensing with Ionic Liquid Modified Electrospun Nanofibers: Effect of Ionic Liquid Type. sen lett. 2013 Sep 1;11(9):1591–9.
  • 19. Zeyrek Ongun M, Oğuzlar S, Köse Yaman P, Öter Ö. Tuning CO2 sensing properties of HPTS along with newly synthesized coordination polymers (CPs). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2021 Dec;263:120224.
  • 20. Arafat MM, Dinan B, Akbar SA, Haseeb ASMA. Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides: A Review. Sensors. 2012 May 30;12(6):7207–58.
  • 21. Lavín A, Sivasamy R, Mosquera E, Morel MJ. High proportion ZnO/CuO nanocomposites: Synthesis, structural and optical properties, and their photocatalytic behavior. Surfaces and Interfaces. 2019 Dec;17:100367.
  • 22. Fan C, Sun F, Wang X, Majidi M, Huang Z, Kumar P, et al. Enhanced H2S gas sensing properties by the optimization of p-CuO/n-ZnO composite nanofibers. J Mater Sci. 2020 Jun;55(18):7702–14.
  • 23. Zhyrovetsky VM, Popovych DI, Savka SS, Serednytski AS. Nanopowder Metal Oxide for Photoluminescent Gas Sensing. Nanoscale Res Lett. 2017 Dec;12(1):132.
  • 24. Mariammal RN, Ramachandran K. Study on gas sensing mechanism in p-CuO/n-ZnO heterojunction sensor. Materials Research Bulletin. 2018 Apr;100:420–8.
  • 25. Wang JX, Sun XW, Yang Y, Kyaw KKA, Huang XY, Yin JZ, et al. Free-standing ZnO–CuO composite nanowire array films and their gas sensing properties. Nanotechnology. 2011 Aug 12;22(32):325704. 26. Oter O, Ertekin K, Derinkuyu S. Ratiometric sensing of CO2 in ionic liquid modified ethyl cellulose matrix. Talanta. 2008 Jul 30;76(3):557–63.
  • 27. Yang C, Cao X, Wang S, Zhang L, Xiao F, Su X, et al. Complex-directed hybridization of CuO/ZnO nanostructures and their gas sensing and photocatalytic properties. Ceramics International. 2015 Jan;41(1):1749–56.
  • 28. Mahajan P, Singh A, Arya S. Improved performance of solution processed organic solar cells with an additive layer of sol-gel synthesized ZnO/CuO core/shell nanoparticles. Journal of Alloys and Compounds. 2020 Jan;814:152292.
  • 29. Ongun MZ, Oter O, Sabancı G, Ertekin K, Celik E. Enhanced stability of ruthenium complex in ionic liquid doped electrospun fibers. Sensors and Actuators B: Chemical. 2013 Jul;183:11–9.
  • 30. Chen W, Qiu Y, Zhong Y, Wong KS, Yang S. High-Efficiency Dye-Sensitized Solar Cells Based on the Composite Photoanodes of SnO 2 Nanoparticles/ZnO Nanotetrapods. J Phys Chem A. 2010 Mar 11;114(9):3127–38. 31. Wang X, Li S, Xie L, Li X, Lin D, Zhu Z. Low-temperature and highly sensitivity H2S gas sensor based on ZnO/CuO composite derived from bimetal metal-organic frameworks. Ceramics International. 2020 Jul;46(10):15858–66.
  • 32. Choi MF. Spectroscopic behaviour of 8-hydroxy-1,3,6-pyrenetrisulphonate immobilized in ethyl cellulose. Journal of Photochemistry and Photobiology A: Chemistry. 1997 Apr;104(1–3):207–12.
  • 33. Ratterman M, Shen L, Klotzkin D, Papautsky I. Carbon dioxide luminescent sensor based on a CMOS image array. Sensors and Actuators B: Chemical. 2014 Jul;198:1–6.
  • 34. Dey A. Semiconductor metal oxide gas sensors: A review. Materials Science and Engineering: B. 2018 Mar;229:206–17.
  • 35. Aydin I, Ertekin K, Demirci S, Gultekin S, Celik E. Sol-gel synthesized Sr4Al14O25:Eu2+/Dy3+ blue–green phosphorous as oxygen sensing materials. Optical Materials. 2016 Dec;62:285–96.
Year 2021, Volume: 8 Issue: 4, 983 - 994, 30.11.2021
https://doi.org/10.18596/jotcsa.947087

Abstract

References

  • 1. Ali R, Saleh SM, Meier RJ, Azab HA, Abdelgawad II, Wolfbeis OS. Upconverting nanoparticle based optical sensor for carbon dioxide. Sensors and Actuators B: Chemical. 2010 Sep;150(1):126–31.
  • 2. Chu C-S, Lo Y-L, Sung T-W. Review on recent developments of fluorescent oxygen and carbon dioxide optical fiber sensors. Photonic Sens. 2011 Sep;1(3):234–50.
  • 3. Swickrath M, Anderson M, McMillin S, Broerman C. Application of Commercial Non-Dispersive Infrared Spectroscopy Sensors for Sub-ambient Carbon Dioxide Detection. In: 42nd International Conference on Environmental Systems [Internet]. San Diego, California: American Institute of Aeronautics and Astronautics; 2012 [cited 2021 Aug 24].
  • 4. Shimizu Y, Yamashita N. Solid electrolyte CO2 sensor using NASICON and perovskite-type oxide electrode. Sensors and Actuators B: Chemical. 2000 Jun;64(1–3):102–6.
  • 5. Malins C, MacCraith BD. Dye-doped organically modified silica glass for fluorescence based carbon dioxide gas detection. Analyst. 1998;123(11):2373–6.
  • 6. Zeyrek Ongun M. Tuning CO2 sensitivity of HPTS by ZnO and ZnO@Ag nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry. 2020 Sep;400:112664.
  • 7. Neurauter G, Klimant I, Wolfbeis OS. Microsecond lifetime-based optical carbon dioxide sensor using luminescence resonance energy transfer. Analytica Chimica Acta. 1999 Feb;382(1–2):67–75.
  • 8. Schutting S, Jokic T, Strobl M, Borisov SM, Beer D de, Klimant I. NIR optical carbon dioxide sensors based on highly photostable dihydroxy-aza-BODIPY dyes. J Mater Chem C. 2015;3(21):5474–83.
  • 9. Schutting S, Borisov SM, Klimant I. Diketo-Pyrrolo-Pyrrole Dyes as New Colorimetric and Fluorescent pH Indicators for Optical Carbon Dioxide Sensors. Anal Chem. 2013 Mar 19;85(6):3271–9.
  • 10. Borchert NB, Kerry JP, Papkovsky DB. A CO2 sensor based on Pt-porphyrin dye and FRET scheme for food packaging applications. Sensors and Actuators B: Chemical. 2013 Jan;176:157–65.
  • 11. von Bültzingslöwen C, McEvoy AK, McDonagh C, MacCraith BD, Klimant I, Krause C, et al. Sol–gel based optical carbon dioxide sensor employing dual luminophore referencing for application in food packaging technology. Analyst. 2002;127(11):1478–83.
  • 12. Nivens D. Multilayer sol–gel membranes for optical sensing applications: single layer pH and dual layer CO2 and NH3 sensors. Talanta. 2002 Sep 12;58(3):543–50.
  • 13. Wolfbeis OS, Kovács B, Goswami K, Klainer SM. Fiber-optic fluorescence carbon dioxide sensor for environmental monitoring. Mikrochim Acta. 1998 Sep;129(3–4):181–8.
  • 14. Neurauter G, Klimant I, Wolfbeis OS. Fiber-optic microsensor for high resolution pCO 2 sensing in marine environment. Fresenius’ Journal of Analytical Chemistry. 2000 Mar 2;366(5):481–7. 15. Oter O, Polat B. Spectrofluorometric Determination of Carbon Dioxide Using 8-Hydroxypyrene-1,3,6-trisulfonic Acid in a Zeolite Composite. Analytical Letters. 2015 Feb 11;48(3):489–502.
  • 16. McEvoy AK, Von Bueltzingsloewen C, McDonagh CM, MacCraith BD, Klimant I, Wolfbeis OS. Optical sensors for application in intelligent food-packaging technology. In: Glynn TJ, editor. Galway, Ireland; 2003 [cited 2021 Aug 24]. p. 806.
  • 17. Ertekin K. Characterization of a reservoir-type capillary optical microsensor for pCO2 measurements. Talanta. 2003 Feb 6;59(2):261–7.
  • 18. Oter O, Sabancı G, Ertekin K. Enhanced CO<SUB>2</SUB> Sensing with Ionic Liquid Modified Electrospun Nanofibers: Effect of Ionic Liquid Type. sen lett. 2013 Sep 1;11(9):1591–9.
  • 19. Zeyrek Ongun M, Oğuzlar S, Köse Yaman P, Öter Ö. Tuning CO2 sensing properties of HPTS along with newly synthesized coordination polymers (CPs). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2021 Dec;263:120224.
  • 20. Arafat MM, Dinan B, Akbar SA, Haseeb ASMA. Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides: A Review. Sensors. 2012 May 30;12(6):7207–58.
  • 21. Lavín A, Sivasamy R, Mosquera E, Morel MJ. High proportion ZnO/CuO nanocomposites: Synthesis, structural and optical properties, and their photocatalytic behavior. Surfaces and Interfaces. 2019 Dec;17:100367.
  • 22. Fan C, Sun F, Wang X, Majidi M, Huang Z, Kumar P, et al. Enhanced H2S gas sensing properties by the optimization of p-CuO/n-ZnO composite nanofibers. J Mater Sci. 2020 Jun;55(18):7702–14.
  • 23. Zhyrovetsky VM, Popovych DI, Savka SS, Serednytski AS. Nanopowder Metal Oxide for Photoluminescent Gas Sensing. Nanoscale Res Lett. 2017 Dec;12(1):132.
  • 24. Mariammal RN, Ramachandran K. Study on gas sensing mechanism in p-CuO/n-ZnO heterojunction sensor. Materials Research Bulletin. 2018 Apr;100:420–8.
  • 25. Wang JX, Sun XW, Yang Y, Kyaw KKA, Huang XY, Yin JZ, et al. Free-standing ZnO–CuO composite nanowire array films and their gas sensing properties. Nanotechnology. 2011 Aug 12;22(32):325704. 26. Oter O, Ertekin K, Derinkuyu S. Ratiometric sensing of CO2 in ionic liquid modified ethyl cellulose matrix. Talanta. 2008 Jul 30;76(3):557–63.
  • 27. Yang C, Cao X, Wang S, Zhang L, Xiao F, Su X, et al. Complex-directed hybridization of CuO/ZnO nanostructures and their gas sensing and photocatalytic properties. Ceramics International. 2015 Jan;41(1):1749–56.
  • 28. Mahajan P, Singh A, Arya S. Improved performance of solution processed organic solar cells with an additive layer of sol-gel synthesized ZnO/CuO core/shell nanoparticles. Journal of Alloys and Compounds. 2020 Jan;814:152292.
  • 29. Ongun MZ, Oter O, Sabancı G, Ertekin K, Celik E. Enhanced stability of ruthenium complex in ionic liquid doped electrospun fibers. Sensors and Actuators B: Chemical. 2013 Jul;183:11–9.
  • 30. Chen W, Qiu Y, Zhong Y, Wong KS, Yang S. High-Efficiency Dye-Sensitized Solar Cells Based on the Composite Photoanodes of SnO 2 Nanoparticles/ZnO Nanotetrapods. J Phys Chem A. 2010 Mar 11;114(9):3127–38. 31. Wang X, Li S, Xie L, Li X, Lin D, Zhu Z. Low-temperature and highly sensitivity H2S gas sensor based on ZnO/CuO composite derived from bimetal metal-organic frameworks. Ceramics International. 2020 Jul;46(10):15858–66.
  • 32. Choi MF. Spectroscopic behaviour of 8-hydroxy-1,3,6-pyrenetrisulphonate immobilized in ethyl cellulose. Journal of Photochemistry and Photobiology A: Chemistry. 1997 Apr;104(1–3):207–12.
  • 33. Ratterman M, Shen L, Klotzkin D, Papautsky I. Carbon dioxide luminescent sensor based on a CMOS image array. Sensors and Actuators B: Chemical. 2014 Jul;198:1–6.
  • 34. Dey A. Semiconductor metal oxide gas sensors: A review. Materials Science and Engineering: B. 2018 Mar;229:206–17.
  • 35. Aydin I, Ertekin K, Demirci S, Gultekin S, Celik E. Sol-gel synthesized Sr4Al14O25:Eu2+/Dy3+ blue–green phosphorous as oxygen sensing materials. Optical Materials. 2016 Dec;62:285–96.
There are 32 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry
Journal Section Articles
Authors

Sibel Oğuzlar 0000-0001-9903-7484

Publication Date November 30, 2021
Submission Date June 2, 2021
Acceptance Date August 23, 2021
Published in Issue Year 2021 Volume: 8 Issue: 4

Cite

Vancouver Oğuzlar S. Improvement of The CO2 Sensitivity of HPTS Along With ZnO/CuO Nanoparticles: A Comparative Study Between Core-Shell And Hybrid Structures. JOTCSA. 2021;8(4):983-94.