Research Article
BibTex RIS Cite

Role of Initiator Structure on Thiol-Ene Polymerization: A Comprehensive Theoretical Study

Year 2022, Volume: 9 Issue: 1, 149 - 162, 28.02.2022
https://doi.org/10.18596/jotcsa.1003469

Abstract

In this study, the effects of initiator structure on thiol-ene polymerization were investigated with two initiators, four thiols, and eight monomers by utilizing the M06-2X/6-31++G(d,p) level of theory. For this purpose, a comparative investigation was carried out by modeling hydrogen abstraction from thiols (kHA) and addition reaction to monomers (ki), which is considered a side reaction. It was confirmed that the 2,2-dimethoxy-2-phenylacetophenone (DMPA) initiator is a suitable thiol-ene initiator except for the polymerization of electron-deficient or conjugated monomers. It was determined that the azobisisobutyronitrile (AIBN) initiator could not give a homogeneous thiol-ene product regardless of the monomer structure. However, it has been found that aromatic thiols should be used to obtain relatively better results with this initiator.

Supporting Institution

THE SCIENTIFIC AND TECHNOLOGICAL RESEARCH COUNCIL OF TURKEY

Project Number

217Z073

Thanks

I. Degirmenci is thankful to the Scientific and Technological Research Council of Turkey (TUBITAK, Project Number: 217Z073) for funding and usage of computing resources.

References

  • 1. Griesbaum K. Problems and Possibilities of the Free-Radical Addition of Thiols to Unsaturated Compounds. Angew Chem Int Ed Engl. 1970 Apr;9(4):273–87.
  • 2. Dondoni A. The Emergence of Thiol-Ene Coupling as a Click Process for Materials and Bioorganic Chemistry. Angew Chem Int Ed. 2008 Nov 10;47(47):8995–7.
  • 3. Hoyle CE, Bowman CN. Thiol-Ene Click Chemistry. Angewandte Chemie International Edition. 2010 Feb 22;49(9):1540–73.
  • 4. Hoyle CE, Lowe AB, Bowman CN. Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis. Chem Soc Rev. 2010;39(4):1355-87.
  • 5. Jacobine A, Fouassier J, Rabek J. Radiation curing in polymer science and technology. vol III, Elsevier (London). 1993;
  • 6. Sun Y, Gao Y, Zhou L, Huang J, Fang H, Ma H, et al. A Study on the Electro-Optical Properties of Thiol-Ene Polymer Dispersed Cholesteric Liquid Crystal (PDChLC) Films. Molecules. 2017 Feb 22;22(2):317.
  • 7. Heidecke CD, Lindhorst TK. Iterative Synthesis of Spacered Glycodendrons as Oligomannoside Mimetics and Evaluation of Their Antiadhesive Properties. Chem Eur J. 2007 Nov 5;13(32):9056–67.
  • 8. Chen G, Amajjahe S, Stenzel MH. Synthesis of thiol-linked neoglycopolymers and thermo-responsive glycomicelles as potential drug carrier. Chem Commun. 2009;(10):1198-200.
  • 9. Natali M, Begolo S, Carofiglio T, Mistura G. Rapid prototyping of multilayer thiolene microfluidic chips by photopolymerization and transfer lamination. Lab Chip. 2008;8(3):492-4.
  • 10. Cabral JT, Hudson SD, Harrison C, Douglas JF. Frontal Photopolymerization for Microfluidic Applications. Langmuir. 2004 Nov 1;20(23):10020–9.
  • 11. Cygan ZT, Cabral JT, Beers KL, Amis EJ. Microfluidic Platform for the Generation of Organic-Phase Microreactors. Langmuir. 2005 Apr 1;21(8):3629–34.
  • 12. Cramer NB, Reddy SK, O’Brien AK, Bowman CN. Thiol−Ene Photopolymerization Mechanism and Rate Limiting Step Changes for Various Vinyl Functional Group Chemistries. Macromolecules. 2003 Oct 1;36(21):7964–9.
  • 13. Zgrzeba A, Andrzejewska E, Marcinkowska A. Ionic liquid – containing ionogels by thiol–ene photopolymerization. Kinetics and solvent effect. RSC Adv. 2015;5(121):100354–61.
  • 14. Marcinkowska A, Zgrzeba A, Lota G, Kopczyński K, Andrzejewska E. Ionogels by thiol-ene photopolymerization in ionic liquids: Formation, morphology and properties. Polymer. 2019 Jan;160:272–81.
  • 15. Munar I, Fındık V, Degirmenci I, Aviyente V. Solvent Effects on Thiol–Ene Kinetics and Reactivity of Carbon and Sulfur Radicals. J Phys Chem A. 2020 Apr 2;124(13):2580–90.
  • 16. Northrop BH, Coffey RN. Thiol–Ene Click Chemistry: Computational and Kinetic Analysis of the Influence of Alkene Functionality. J Am Chem Soc. 2012 Aug 22;134(33):13804–17.
  • 17. Fındık V, Degirmenci I, Çatak Ş, Aviyente V. Theoretical investigation of thiol-ene click reactions: A DFT perspective. European Polymer Journal. 2019 Jan;110:211–20.
  • 18. Long KF, Bongiardina NJ, Mayordomo P, Olin MJ, Ortega AD, Bowman CN. Effects of 1°, 2°, and 3° Thiols on Thiol–Ene Reactions: Polymerization Kinetics and Mechanical Behavior. Macromolecules. 2020 Jul 28;53(14):5805–15.
  • 19. Coote ML, Degirmenci I. Theory and Applications of Thiyl Radicals in Polymer Chemistry. In: Computational Quantum Chemistry [Internet]. Elsevier; 2019 [cited 2021 Dec 29]. p. 195–218. ISBN: 978-0-12-815983-5. <URL>.
  • 20. Hafeez S, Khatri V, Kashyap HK, Nebhani L. Computational and experimental approach to evaluate the effect of initiator concentration, solvents, and enes on the TEMPO driven thiol–ene reaction. New J Chem. 2020;44(43):18625–32.
  • 21. Degirmenci I. Effect of Initiator Structure on Thiol‐Ene Polymerization: A DFT Study. Macromol Theory Simul. 2021 Sep;2100040.
  • 22. Koo SPS, Stamenović MM, Prasath RA, Inglis AJ, Du Prez FE, Barner‐Kowollik C, et al. Limitations of radical thiol‐ene reactions for polymer–polymer conjugation. J Polym Sci A Polym Chem. 2010 Apr 15;48(8):1699–713.
  • 23. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J et al. Gaussian 16 Rev. B. 01. Gaussian, Inc., Wallingford, CT; 2016.
  • 24. Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Account. 2008 May;120(1–3):215–41.
  • 25. Furuncuoğlu T, Uğur İ, Değirmenci İ, Aviyente V. Role of Chain Transfer Agents in Free Radical Polymerization Kinetics. Macromolecules. 2010 Feb 23;43(4):1823–35.
  • 26. Truong TN, Truhlar DG. Ab initio transition state theory calculations of the reaction rate for OH+CH 4 →H 2 O+CH 3. The Journal of Chemical Physics. 1990 Aug;93(3):1761–9.
  • 27. Duan X, Scheiner S. Energetics, proton transfer rates, and kinetic isotope effects in bent hydrogen bonds. Journal of the American Chemical Society. 1992;114(14):5849–56. ISSN: 0002-7863.
  • 28. Griller D, Ingold KU. Persistent carbon-centered radicals. Accounts of Chemical Research. 1976;9(1):13–9. ISSN: 0001-4842.
  • 29. Coote ML, Lin CY, Beckwith ALJ, Zavitsas AA. A comparison of methods for measuring relative radical stabilities of carbon-centred radicals. Phys Chem Chem Phys. 2010;12(33):9597.
  • 30. Posner T. Beiträge zur Kenntniss der ungesättigten Verbindungen. II. Ueber die Addition von Mercaptanen an ungesättigte Kohlenwasserstoffe. Ber Dtsch Chem Ges. 1905;38(1):646–57.
  • 31. Hoyle CE, Lee TY, Roper T. Thiol-enes: Chemistry of the past with promise for the future. J Polym Sci A Polym Chem. 2004 Nov 1;42(21):5301–38.
  • 32. Chiou B-S, English RJ, Khan SA. Rheology and Photo-Cross-Linking of Thiol−Ene Polymers. Macromolecules. 1996 Jan 1;29(16):5368–74.
  • 33. Hoyle CE, Hensel RD, Grubb MB. Temperature dependence of the laser-initiated polymerization of a thiol-ene system. J Polym Sci Polym Chem Ed. 1984 Aug;22(8):1865–73.
  • 34. Cramer NB, Bowman CN. Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time fourier transform infrared. J Polym Sci A Polym Chem. 2001 Oct 1;39(19):3311–9.
  • 35. Cramer NB, Scott JP, Bowman CN. Photopolymerizations of Thiol−Ene Polymers without Photoinitiators. Macromolecules. 2002 Jul 1;35(14):5361–5.
  • 36. Cramer NB, Davies T, O’Brien AK, Bowman CN. Mechanism and Modeling of a Thiol−Ene Photopolymerization. Macromolecules. 2003 Jun 1;36(12):4631–6.
  • 37. Uygun M, Tasdelen MA, Yagci Y. Influence of Type of Initiation on Thiol-Ene “Click” Chemistry: Influence of Type of Initiation on Thiol-Ene “Click” Chemistry. Macromol Chem Phys. 2010 Jan 5;211(1):103–10.
  • 38. Derboven P, D’hooge DR, Stamenovic MM, Espeel P, Marin GB, Du Prez FE, et al. Kinetic Modeling of Radical Thiol–Ene Chemistry for Macromolecular Design: Importance of Side Reactions and Diffusional Limitations. Macromolecules. 2013 Mar 12;46(5):1732–42.
  • 39. Mucci V, Vallo C. Efficiency of 2,2-dimethoxy-2-phenylacetophenone for the photopolymerization of methacrylate monomers in thick sections. J Appl Polym Sci. 2012 Jan 5;123(1):418–25.
Year 2022, Volume: 9 Issue: 1, 149 - 162, 28.02.2022
https://doi.org/10.18596/jotcsa.1003469

Abstract

Project Number

217Z073

References

  • 1. Griesbaum K. Problems and Possibilities of the Free-Radical Addition of Thiols to Unsaturated Compounds. Angew Chem Int Ed Engl. 1970 Apr;9(4):273–87.
  • 2. Dondoni A. The Emergence of Thiol-Ene Coupling as a Click Process for Materials and Bioorganic Chemistry. Angew Chem Int Ed. 2008 Nov 10;47(47):8995–7.
  • 3. Hoyle CE, Bowman CN. Thiol-Ene Click Chemistry. Angewandte Chemie International Edition. 2010 Feb 22;49(9):1540–73.
  • 4. Hoyle CE, Lowe AB, Bowman CN. Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis. Chem Soc Rev. 2010;39(4):1355-87.
  • 5. Jacobine A, Fouassier J, Rabek J. Radiation curing in polymer science and technology. vol III, Elsevier (London). 1993;
  • 6. Sun Y, Gao Y, Zhou L, Huang J, Fang H, Ma H, et al. A Study on the Electro-Optical Properties of Thiol-Ene Polymer Dispersed Cholesteric Liquid Crystal (PDChLC) Films. Molecules. 2017 Feb 22;22(2):317.
  • 7. Heidecke CD, Lindhorst TK. Iterative Synthesis of Spacered Glycodendrons as Oligomannoside Mimetics and Evaluation of Their Antiadhesive Properties. Chem Eur J. 2007 Nov 5;13(32):9056–67.
  • 8. Chen G, Amajjahe S, Stenzel MH. Synthesis of thiol-linked neoglycopolymers and thermo-responsive glycomicelles as potential drug carrier. Chem Commun. 2009;(10):1198-200.
  • 9. Natali M, Begolo S, Carofiglio T, Mistura G. Rapid prototyping of multilayer thiolene microfluidic chips by photopolymerization and transfer lamination. Lab Chip. 2008;8(3):492-4.
  • 10. Cabral JT, Hudson SD, Harrison C, Douglas JF. Frontal Photopolymerization for Microfluidic Applications. Langmuir. 2004 Nov 1;20(23):10020–9.
  • 11. Cygan ZT, Cabral JT, Beers KL, Amis EJ. Microfluidic Platform for the Generation of Organic-Phase Microreactors. Langmuir. 2005 Apr 1;21(8):3629–34.
  • 12. Cramer NB, Reddy SK, O’Brien AK, Bowman CN. Thiol−Ene Photopolymerization Mechanism and Rate Limiting Step Changes for Various Vinyl Functional Group Chemistries. Macromolecules. 2003 Oct 1;36(21):7964–9.
  • 13. Zgrzeba A, Andrzejewska E, Marcinkowska A. Ionic liquid – containing ionogels by thiol–ene photopolymerization. Kinetics and solvent effect. RSC Adv. 2015;5(121):100354–61.
  • 14. Marcinkowska A, Zgrzeba A, Lota G, Kopczyński K, Andrzejewska E. Ionogels by thiol-ene photopolymerization in ionic liquids: Formation, morphology and properties. Polymer. 2019 Jan;160:272–81.
  • 15. Munar I, Fındık V, Degirmenci I, Aviyente V. Solvent Effects on Thiol–Ene Kinetics and Reactivity of Carbon and Sulfur Radicals. J Phys Chem A. 2020 Apr 2;124(13):2580–90.
  • 16. Northrop BH, Coffey RN. Thiol–Ene Click Chemistry: Computational and Kinetic Analysis of the Influence of Alkene Functionality. J Am Chem Soc. 2012 Aug 22;134(33):13804–17.
  • 17. Fındık V, Degirmenci I, Çatak Ş, Aviyente V. Theoretical investigation of thiol-ene click reactions: A DFT perspective. European Polymer Journal. 2019 Jan;110:211–20.
  • 18. Long KF, Bongiardina NJ, Mayordomo P, Olin MJ, Ortega AD, Bowman CN. Effects of 1°, 2°, and 3° Thiols on Thiol–Ene Reactions: Polymerization Kinetics and Mechanical Behavior. Macromolecules. 2020 Jul 28;53(14):5805–15.
  • 19. Coote ML, Degirmenci I. Theory and Applications of Thiyl Radicals in Polymer Chemistry. In: Computational Quantum Chemistry [Internet]. Elsevier; 2019 [cited 2021 Dec 29]. p. 195–218. ISBN: 978-0-12-815983-5. <URL>.
  • 20. Hafeez S, Khatri V, Kashyap HK, Nebhani L. Computational and experimental approach to evaluate the effect of initiator concentration, solvents, and enes on the TEMPO driven thiol–ene reaction. New J Chem. 2020;44(43):18625–32.
  • 21. Degirmenci I. Effect of Initiator Structure on Thiol‐Ene Polymerization: A DFT Study. Macromol Theory Simul. 2021 Sep;2100040.
  • 22. Koo SPS, Stamenović MM, Prasath RA, Inglis AJ, Du Prez FE, Barner‐Kowollik C, et al. Limitations of radical thiol‐ene reactions for polymer–polymer conjugation. J Polym Sci A Polym Chem. 2010 Apr 15;48(8):1699–713.
  • 23. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J et al. Gaussian 16 Rev. B. 01. Gaussian, Inc., Wallingford, CT; 2016.
  • 24. Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Account. 2008 May;120(1–3):215–41.
  • 25. Furuncuoğlu T, Uğur İ, Değirmenci İ, Aviyente V. Role of Chain Transfer Agents in Free Radical Polymerization Kinetics. Macromolecules. 2010 Feb 23;43(4):1823–35.
  • 26. Truong TN, Truhlar DG. Ab initio transition state theory calculations of the reaction rate for OH+CH 4 →H 2 O+CH 3. The Journal of Chemical Physics. 1990 Aug;93(3):1761–9.
  • 27. Duan X, Scheiner S. Energetics, proton transfer rates, and kinetic isotope effects in bent hydrogen bonds. Journal of the American Chemical Society. 1992;114(14):5849–56. ISSN: 0002-7863.
  • 28. Griller D, Ingold KU. Persistent carbon-centered radicals. Accounts of Chemical Research. 1976;9(1):13–9. ISSN: 0001-4842.
  • 29. Coote ML, Lin CY, Beckwith ALJ, Zavitsas AA. A comparison of methods for measuring relative radical stabilities of carbon-centred radicals. Phys Chem Chem Phys. 2010;12(33):9597.
  • 30. Posner T. Beiträge zur Kenntniss der ungesättigten Verbindungen. II. Ueber die Addition von Mercaptanen an ungesättigte Kohlenwasserstoffe. Ber Dtsch Chem Ges. 1905;38(1):646–57.
  • 31. Hoyle CE, Lee TY, Roper T. Thiol-enes: Chemistry of the past with promise for the future. J Polym Sci A Polym Chem. 2004 Nov 1;42(21):5301–38.
  • 32. Chiou B-S, English RJ, Khan SA. Rheology and Photo-Cross-Linking of Thiol−Ene Polymers. Macromolecules. 1996 Jan 1;29(16):5368–74.
  • 33. Hoyle CE, Hensel RD, Grubb MB. Temperature dependence of the laser-initiated polymerization of a thiol-ene system. J Polym Sci Polym Chem Ed. 1984 Aug;22(8):1865–73.
  • 34. Cramer NB, Bowman CN. Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time fourier transform infrared. J Polym Sci A Polym Chem. 2001 Oct 1;39(19):3311–9.
  • 35. Cramer NB, Scott JP, Bowman CN. Photopolymerizations of Thiol−Ene Polymers without Photoinitiators. Macromolecules. 2002 Jul 1;35(14):5361–5.
  • 36. Cramer NB, Davies T, O’Brien AK, Bowman CN. Mechanism and Modeling of a Thiol−Ene Photopolymerization. Macromolecules. 2003 Jun 1;36(12):4631–6.
  • 37. Uygun M, Tasdelen MA, Yagci Y. Influence of Type of Initiation on Thiol-Ene “Click” Chemistry: Influence of Type of Initiation on Thiol-Ene “Click” Chemistry. Macromol Chem Phys. 2010 Jan 5;211(1):103–10.
  • 38. Derboven P, D’hooge DR, Stamenovic MM, Espeel P, Marin GB, Du Prez FE, et al. Kinetic Modeling of Radical Thiol–Ene Chemistry for Macromolecular Design: Importance of Side Reactions and Diffusional Limitations. Macromolecules. 2013 Mar 12;46(5):1732–42.
  • 39. Mucci V, Vallo C. Efficiency of 2,2-dimethoxy-2-phenylacetophenone for the photopolymerization of methacrylate monomers in thick sections. J Appl Polym Sci. 2012 Jan 5;123(1):418–25.
There are 39 citations in total.

Details

Primary Language English
Subjects Polymer Science and Technologies
Journal Section Articles
Authors

İsa Degirmenci 0000-0002-2708-7930

Project Number 217Z073
Publication Date February 28, 2022
Submission Date October 1, 2021
Acceptance Date December 28, 2021
Published in Issue Year 2022 Volume: 9 Issue: 1

Cite

Vancouver Degirmenci İ. Role of Initiator Structure on Thiol-Ene Polymerization: A Comprehensive Theoretical Study. JOTCSA. 2022;9(1):149-62.