Research Article
BibTex RIS Cite

Low-cost Pencil-Graphite Multi-electrodes for Simultaneous Detection of Iron and Copper

Year 2022, Volume: 9 Issue: 1, 1 - 12, 28.02.2022
https://doi.org/10.18596/jotcsa.949831

Abstract

Herein, two novel ion-selective electrodes are reported for simultaneous potentiometric determination of Fe3+ and Cu2+ ions. The liquid polymeric membrane components were optimized and the resulting pencil graphite electrodes gave Nernstian slopes of 20.7 mV/decade and 31.2 mV/decade with lower detection of limit of 1×10-6 mol L-1 and 2×10-6 mol L-1, and wide pH range of 1.5-3.5 and 2.0-4.7 for Fe3+ and Cu2+ ions, respectively. The electrodes exhibited very fast response time (<6 s). In addition, the electrodes exhibited high selectivity for Fe3+ and Cu2+ ions against different cations, which were tested by matched potential method. The sensing platform using the optimized electrodes were integrated with the Internet of Things concept are suitable for simultaneous monitoring of Fe3+ and Cu2+ in real samples with high accuracy and precision.

Supporting Institution

Research Fund of the Yildiz Technical University

Project Number

grant number 2021-07-07-GAP

Thanks

I would like to thank Prof. Dr. Charles S. Henry for editing English language throughout the manuscript.

References

  • 1. Ghasemi Z, Mohammadi A. Sensitive and selective colorimetric detection of Cu (II) in water samples by thiazolylazopyrimidine-functionalized TiO2 nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2020 Oct;239:118554.
  • 2. Kaur I, Sharma M, Kaur S, Kaur A. Ultra-sensitive electrochemical sensors based on self-assembled chelating dithiol on gold electrode for trace level detection of copper(II) ions. Sensors and Actuators B: Chemical. 2020 Jun;312:127935.
  • 3. Paul A, Nair RR, Chatterjee PB, Srivastava DN. Fabrication of a Cu(II)-Selective Electrode in the Polyvinyl Chloride Matrix Utilizing Mechanochemically Synthesized Rhodamine 6g as an Ionophore. ACS Omega. 2018 Nov 30;3(11):16230–7.
  • 4. Tang S, Chang Y, Shen W, Lee HK. Selective extraction by dissolvable (nitriloacetic acid-nickel)-layered double hydroxide coupled with reaction with potassium thiocyanate for sensitive detection of iron(III). Talanta. 2016 Jul;154:416–22.
  • 5. Zhao Y, Ouyang H, Feng S, Luo Y, Shi Q, Zhu C, et al. Rapid and selective detection of Fe (III) by using a smartphone-based device as a portable detector and hydroxyl functionalized metal-organic frameworks as the fluorescence probe. Analytica Chimica Acta. 2019 Oct;1077:160–6.
  • 6. Di Masi S, Pennetta A, Guerreiro A, Canfarotta F, De Benedetto GE, Malitesta C. Sensor based on electrosynthesised imprinted polymeric film for rapid and trace detection of copper(II) ions. Sensors and Actuators B: Chemical. 2020 Mar;307:127648.
  • 7. Akhond M, Absalan G, Pourshamsi T, Ramezani AM. Gas-assisted dispersive liquid-phase microextraction using ionic liquid as extracting solvent for spectrophotometric speciation of copper. Talanta. 2016 Jul;154:461–6.
  • 8. Yasukawa T, Kiba Y, Mizutani F. A Dual Electrochemical Sensor Based on a Test-strip Assay for the Quantitative Determination of Albumin and Creatinine. Anal Sci. 2015;31(7):583–9.
  • 9. Soloviev V, Varnek A, Babain V, Polukeev V, Ashina J, Legin E, et al. QSPR modeling of potentiometric sensitivity towards heavy metal ions for polymeric membrane sensors. Sensors and Actuators B: Chemical. 2019 Dec;301:126941.
  • 10. Mahanty B, Satpati AK, Kumar S, Leoncini A, Huskens J, Verboom W, et al. Development of polyvinyl chloride (PVC)-based highly efficient potentiometric sensors containing two benzene-centered tripodal diglycolamides as ionophores. Sensors and Actuators B: Chemical. 2020 Oct;320:127961.
  • 11. Bakker E, Bühlmann P, Pretsch E. Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 1. General Characteristics. Chem Rev. 1997 Dec 1;97(8):3083–132.
  • 12. Pungor E, Tóth K. Ion selective electrodes. A review. Anal Sci. 1987;3(5):387–93.
  • 13. McQuade DT, Pullen AE, Swager TM. Conjugated Polymer-Based Chemical Sensors. Chem Rev. 2000 Jul 1;100(7):2537–74.
  • 14. Qi Z-L, Cheng Y-H, Xu Z, Chen M-L. Recent Advances in Porphyrin-Based Materials for Metal Ions Detection. IJMS. 2020 Aug 14;21(16):5839.
  • 15. Chen X, Wang Y, Zhao X, Liu B, Xu Y, Wang Y. A gadolinium(III)-porphyrin based coordination polymer for colorimetric and fluorometric dual mode determination of ferric ions. Microchim Acta. 2019 Feb;186(2):63.
  • 16. Agir I, Yildirim R, Nigde M, Isildak I. Internet of Things Implementation of Nitrate and Ammonium Sensors for Online Water Monitoring. Anal Sci. 2021 Jul 10;37(7):971–6.
  • 17. Manov GG, Bates RG, Hamer WJ, Acree SF. Values of the Constants in the Debye—Hückel Equation for Activity Coefficients 1. J Am Chem Soc. 1943 Sep;65(9):1765–7.
  • 18. Ozer T, Isildak I. A New Fe (III)-Selective Membrane Electrode Based on Fe (II) Phthalocyanine. J Electrochem Sci Technol. 2019 Sep 30; 321-8.
  • 19. Li L, Zhang Y, Du P, Qian Y, Zhang P, Guo Q. Polymeric Membrane Electrodes Using Calix[4]pyrrole Bis/Tetra-Phosphonate Cavitands as Ionophores for Potentiometric Acetylcholine Sensing with High Selectivity. Anal Chem. 2020 Nov 3;92(21):14740–6.
  • 20. Mahajan RK, Sood P. Novel Copper (II)-selective electrode based on 2, 2’: 5’, 2’’-terthiophene in PVC matrix. Int J Electrochem Sci. 2007;2:832–47.
  • 21. Umezawa Y, Umezawa K, Sato H. Selectivity coefficients for ion-selective electrodes: Recommended methods for reporting KA,Bpot values (Technical Report). Pure and Applied Chemistry. 1995 Jan 1;67(3):507–18.
  • 22. K. Mittal S, Kumar S, Kaur N. Enhanced Performance of CNT‐doped Imine Based Receptors as Fe(III) Sensor Using Potentiometry and Voltammetry. Electroanalysis. 2019 Jul;31(7):1229–37.
  • 23. Khan A, Khan AAP, Hussein MA, Neppolian B, Asiri AM. Preparation of new and novel wave like poly(2-anisidine) zirconium tungstate nanocomposite: Thermal, electrical and ion-selective studies. Chinese Journal of Chemical Engineering. 2019 Feb;27(2):459–66.
  • 24. Zareh MM, Zordek W, Abd-Alhady A. Iron-Selective Electrode Based on Phosphorylated Calix-6-Arene Derivative. JST. 2014;04(04):186–94.
  • 25. Yari A. A Novel Iron(III) Potentiometric Sensor Based on (E)-N’-((2- hydroxynaphthalen-3-yl)methylene)benzohydrazide. Int J Electrochem Sci. 2016 Aug;6597–608.
  • 26. Gupta VK, Singh AK, Al Khayat M, Gupta B. Neutral carriers based polymeric membrane electrodes for selective determination of mercury (II). Analytica Chimica Acta. 2007 May;590(1):81–90.
  • 27. Paut A, Prkić A, Mitar I, Bošković P, Jozić D, Jakić M, et al. Potentiometric Response of Solid-State Sensors Based on Ferric Phosphate for Iron(III) Determination. Sensors. 2021 Feb 25;21(5):1612.
  • 28. Wardak C, Lenik J. Application of ionic liquid to the construction of Cu(II) ion-selective electrode with solid contact. Sensors and Actuators B: Chemical. 2013 Dec;189:52–9.
  • 29. Ali TA, Mohamed GG, El-Dessouky MMI, Abou El-Ella SM, Mohamed RTF. Modified Screen-Printed Electrode for Potentiometric Determination of Copper(II) in Water Samples. J Solution Chem. 2013 Jul;42(6):1336–54.
  • 30. Jesús Gismera M, Antonia Mendiola M, Rodriguez Procopio J, Teresa Sevilla M. Copper potentiometric sensors based on copper complexes containing thiohydrazone and thiosemicarbazone ligands. Analytica Chimica Acta. 1999 Apr;385(1–3):143–9.
  • 31. Hassan S, Elnemma E, Mohamed A. Novel potentiometric copper (II) selective membrane sensors based on cyclic tetrapeptide derivatives as neutral ionophores. Talanta. 2005 May 15;66(4):1034–41.
Year 2022, Volume: 9 Issue: 1, 1 - 12, 28.02.2022
https://doi.org/10.18596/jotcsa.949831

Abstract

Project Number

grant number 2021-07-07-GAP

References

  • 1. Ghasemi Z, Mohammadi A. Sensitive and selective colorimetric detection of Cu (II) in water samples by thiazolylazopyrimidine-functionalized TiO2 nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2020 Oct;239:118554.
  • 2. Kaur I, Sharma M, Kaur S, Kaur A. Ultra-sensitive electrochemical sensors based on self-assembled chelating dithiol on gold electrode for trace level detection of copper(II) ions. Sensors and Actuators B: Chemical. 2020 Jun;312:127935.
  • 3. Paul A, Nair RR, Chatterjee PB, Srivastava DN. Fabrication of a Cu(II)-Selective Electrode in the Polyvinyl Chloride Matrix Utilizing Mechanochemically Synthesized Rhodamine 6g as an Ionophore. ACS Omega. 2018 Nov 30;3(11):16230–7.
  • 4. Tang S, Chang Y, Shen W, Lee HK. Selective extraction by dissolvable (nitriloacetic acid-nickel)-layered double hydroxide coupled with reaction with potassium thiocyanate for sensitive detection of iron(III). Talanta. 2016 Jul;154:416–22.
  • 5. Zhao Y, Ouyang H, Feng S, Luo Y, Shi Q, Zhu C, et al. Rapid and selective detection of Fe (III) by using a smartphone-based device as a portable detector and hydroxyl functionalized metal-organic frameworks as the fluorescence probe. Analytica Chimica Acta. 2019 Oct;1077:160–6.
  • 6. Di Masi S, Pennetta A, Guerreiro A, Canfarotta F, De Benedetto GE, Malitesta C. Sensor based on electrosynthesised imprinted polymeric film for rapid and trace detection of copper(II) ions. Sensors and Actuators B: Chemical. 2020 Mar;307:127648.
  • 7. Akhond M, Absalan G, Pourshamsi T, Ramezani AM. Gas-assisted dispersive liquid-phase microextraction using ionic liquid as extracting solvent for spectrophotometric speciation of copper. Talanta. 2016 Jul;154:461–6.
  • 8. Yasukawa T, Kiba Y, Mizutani F. A Dual Electrochemical Sensor Based on a Test-strip Assay for the Quantitative Determination of Albumin and Creatinine. Anal Sci. 2015;31(7):583–9.
  • 9. Soloviev V, Varnek A, Babain V, Polukeev V, Ashina J, Legin E, et al. QSPR modeling of potentiometric sensitivity towards heavy metal ions for polymeric membrane sensors. Sensors and Actuators B: Chemical. 2019 Dec;301:126941.
  • 10. Mahanty B, Satpati AK, Kumar S, Leoncini A, Huskens J, Verboom W, et al. Development of polyvinyl chloride (PVC)-based highly efficient potentiometric sensors containing two benzene-centered tripodal diglycolamides as ionophores. Sensors and Actuators B: Chemical. 2020 Oct;320:127961.
  • 11. Bakker E, Bühlmann P, Pretsch E. Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 1. General Characteristics. Chem Rev. 1997 Dec 1;97(8):3083–132.
  • 12. Pungor E, Tóth K. Ion selective electrodes. A review. Anal Sci. 1987;3(5):387–93.
  • 13. McQuade DT, Pullen AE, Swager TM. Conjugated Polymer-Based Chemical Sensors. Chem Rev. 2000 Jul 1;100(7):2537–74.
  • 14. Qi Z-L, Cheng Y-H, Xu Z, Chen M-L. Recent Advances in Porphyrin-Based Materials for Metal Ions Detection. IJMS. 2020 Aug 14;21(16):5839.
  • 15. Chen X, Wang Y, Zhao X, Liu B, Xu Y, Wang Y. A gadolinium(III)-porphyrin based coordination polymer for colorimetric and fluorometric dual mode determination of ferric ions. Microchim Acta. 2019 Feb;186(2):63.
  • 16. Agir I, Yildirim R, Nigde M, Isildak I. Internet of Things Implementation of Nitrate and Ammonium Sensors for Online Water Monitoring. Anal Sci. 2021 Jul 10;37(7):971–6.
  • 17. Manov GG, Bates RG, Hamer WJ, Acree SF. Values of the Constants in the Debye—Hückel Equation for Activity Coefficients 1. J Am Chem Soc. 1943 Sep;65(9):1765–7.
  • 18. Ozer T, Isildak I. A New Fe (III)-Selective Membrane Electrode Based on Fe (II) Phthalocyanine. J Electrochem Sci Technol. 2019 Sep 30; 321-8.
  • 19. Li L, Zhang Y, Du P, Qian Y, Zhang P, Guo Q. Polymeric Membrane Electrodes Using Calix[4]pyrrole Bis/Tetra-Phosphonate Cavitands as Ionophores for Potentiometric Acetylcholine Sensing with High Selectivity. Anal Chem. 2020 Nov 3;92(21):14740–6.
  • 20. Mahajan RK, Sood P. Novel Copper (II)-selective electrode based on 2, 2’: 5’, 2’’-terthiophene in PVC matrix. Int J Electrochem Sci. 2007;2:832–47.
  • 21. Umezawa Y, Umezawa K, Sato H. Selectivity coefficients for ion-selective electrodes: Recommended methods for reporting KA,Bpot values (Technical Report). Pure and Applied Chemistry. 1995 Jan 1;67(3):507–18.
  • 22. K. Mittal S, Kumar S, Kaur N. Enhanced Performance of CNT‐doped Imine Based Receptors as Fe(III) Sensor Using Potentiometry and Voltammetry. Electroanalysis. 2019 Jul;31(7):1229–37.
  • 23. Khan A, Khan AAP, Hussein MA, Neppolian B, Asiri AM. Preparation of new and novel wave like poly(2-anisidine) zirconium tungstate nanocomposite: Thermal, electrical and ion-selective studies. Chinese Journal of Chemical Engineering. 2019 Feb;27(2):459–66.
  • 24. Zareh MM, Zordek W, Abd-Alhady A. Iron-Selective Electrode Based on Phosphorylated Calix-6-Arene Derivative. JST. 2014;04(04):186–94.
  • 25. Yari A. A Novel Iron(III) Potentiometric Sensor Based on (E)-N’-((2- hydroxynaphthalen-3-yl)methylene)benzohydrazide. Int J Electrochem Sci. 2016 Aug;6597–608.
  • 26. Gupta VK, Singh AK, Al Khayat M, Gupta B. Neutral carriers based polymeric membrane electrodes for selective determination of mercury (II). Analytica Chimica Acta. 2007 May;590(1):81–90.
  • 27. Paut A, Prkić A, Mitar I, Bošković P, Jozić D, Jakić M, et al. Potentiometric Response of Solid-State Sensors Based on Ferric Phosphate for Iron(III) Determination. Sensors. 2021 Feb 25;21(5):1612.
  • 28. Wardak C, Lenik J. Application of ionic liquid to the construction of Cu(II) ion-selective electrode with solid contact. Sensors and Actuators B: Chemical. 2013 Dec;189:52–9.
  • 29. Ali TA, Mohamed GG, El-Dessouky MMI, Abou El-Ella SM, Mohamed RTF. Modified Screen-Printed Electrode for Potentiometric Determination of Copper(II) in Water Samples. J Solution Chem. 2013 Jul;42(6):1336–54.
  • 30. Jesús Gismera M, Antonia Mendiola M, Rodriguez Procopio J, Teresa Sevilla M. Copper potentiometric sensors based on copper complexes containing thiohydrazone and thiosemicarbazone ligands. Analytica Chimica Acta. 1999 Apr;385(1–3):143–9.
  • 31. Hassan S, Elnemma E, Mohamed A. Novel potentiometric copper (II) selective membrane sensors based on cyclic tetrapeptide derivatives as neutral ionophores. Talanta. 2005 May 15;66(4):1034–41.
There are 31 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry, Electrochemistry
Journal Section Articles
Authors

Tuğba Özer 0000-0002-5928-9940

Project Number grant number 2021-07-07-GAP
Publication Date February 28, 2022
Submission Date June 8, 2021
Acceptance Date November 16, 2021
Published in Issue Year 2022 Volume: 9 Issue: 1

Cite

Vancouver Özer T. Low-cost Pencil-Graphite Multi-electrodes for Simultaneous Detection of Iron and Copper. JOTCSA. 2022;9(1):1-12.