Research Article
BibTex RIS Cite

A novel potentiometric sensor for the determination of Pb(II) ions based on a carbothioamide derivative in PVC matrix

Year 2022, Volume: 9 Issue: 3, 651 - 662, 31.08.2022
https://doi.org/10.18596/jotcsa.1060973

Abstract

In this research, a carbothioamide derivative molecule was synthesized to be used as an electroactive material, and poly (vinyl chloride) (PVC) membrane lead(II)–selective potentiometric sensors with different components were prepared. Among various compositions, the best potentiometric performance was exhibited by the membrane having the electroactive material, bis(2–ethylhexyl)sebacate (BEHS), PVC, and potassium tetrakis(p–chlorophenyl)borate (KTpClPB) in the ratio of 4.0:63.0:32.0:1.0 (w/w). The proposed sensor exhibited a Nernstian response in the concentration range of 1.0×10-5–1.0×10-1 mol L-1 with a slope of 29.5±1.6 mV/decade. The detection limit of the sensor was 3.96×10-6 mol L-1. The potentiometric response of the lead(II)–selective sensor was independent of pH of test solution in the pH range of 5.0–9.0. The developed sensor had very good repeatability, stability, and selectivity, as well as a response time of 5s. These novel lead(II)–selective sensors, produced cost–efficiently, have been successfully used as an indicator electrode for the potentiometric titration of Pb(II) against EDTA and for the determination of Pb(II) ions in different water samples.

Thanks

The author would like to thank Assoc. Prof. Meliha Burcu Gürdere, Prof. Ömer Isildak, Research Assistant Caglar Berkel and MSc student Alper Cetin for their important contributions.

References

  • 1. Esmailzadeh A, Afzali D, Fayazi M. Determination of lead (II) in environmental water samples by solid-phase extraction using a novel modified carbon hybridised sepiolite combined with flame atomic absorption spectrometry. Int. J. Environ. Anal. Chem. 2020; 1-13. .
  • 2. Wuilloud RG, Acevedo HA, Vazquez FA, Martinez LD. Determination of lead in drinking water by ICP-AES with ultrasonic nebulization and flow-injection on-line preconcentration using an amberlite XAD-16 resin. Anal. Lett. 2002; 35(10): 1649-1665. .
  • 3. Kendüzler E, Dinç MD, Trak D, Kabak B, Arslan Y. Separation/preconcentration and determination of lead (II) in drinking, spring and lake water samples. J. Anal. Chem. 2020; 75(10): 1264-1269. .
  • 4. Rapp I, Schlosser C, Rusiecka D, Gledhill M, Achterberg EP. Automated preconcentration of Fe, Zn, Cu, Ni, Cd, Pb, Co, and Mn in seawater with analysis using high-resolution sector field inductively coupled plasma mass spectrometry. Anal. Chim. Acta 2017; 976: 1–13. .
  • 5. Yang G, Hu Q, Huang Z, Yin J. Study on the determination of lead, cadmium, mercury, nickel and zinc by a rapid column high-performance liquid chromatographyatography. J. Braz. Chem. Soc. 2005; 16: 1154–1159. .
  • 6. Tinas H, Ozbek N, Akman S. Determination of lead in flour samples directly by solid sampling high resolution continuum source graphite furnace atomic absorption spectrometry. Spectrochim. Acta Part B 2018; 140: 73–75. .
  • 7. Özbek O, Isildak Ö, Isildak I. A potentiometric biosensor for the determination of valproic acid: human blood–based study of an anti–epileptic drug. Biochem. Eng. J. 2021; 176: 108181. .
  • 8. Isildak Ö, Özbek O. Silver(I)-selective PVC membrane potentiometric sensor based on 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine and potentiometric applications. J. Chem. Sci. 2020; 132: 29. .
  • 9. Isildak Ö, Özbek O. Yigit KM. Zinc(II)-selective PVC membrane potentiometric sensor for analysis of Zn2+ in drug sample and different environmental samples. Int. J. Environ. Anal. Chem. 101 (2021) 2035–2045. .
  • 10. Özbek O, Isildak Ö, Berkel C. The use of porphyrins in potentiometric sensors as ionophores. J. Incl. Phenom. Macrocycl. Chem. 2020; 98: 1–9. .
  • 11. Isildak Ö, Özbek O. Application of potentiometric sensors in real samples. Crit. Rev. Anal. Chem. 2021; 51: 218–231. .
  • 12. Özbek O, Berkel C, Isildak Ö, Isildak I. Potentiometric urea biosensors. Clin. Chim. Acta 2022; 524: 154–163. .
  • 13. Alam MS, Liu L, Lee DU. Cytotoxicity of new 5-phenyl-4, 5-dihydro-1, 3, 4-thiadiazole analogues. Chem. Pharm. Bull. 2011; 59(11): 1413-1416. .
  • 14. Özbek O, Isildak Ö. Potentiometric PVC membrane sensor for the determination of anti-epileptic drug levetiracetam in pharmaceutical formulations. ChemistrySelect, 2022; 7(3): e202103988. .
  • 15. Isildak Ö, Özbek O, Gürdere MB. Development of chromium(III)-selective potentiometric sensor by using synthesized pyrazole derivative as an ionophore in PVC matrix and its applications. J. Anal. Test. 2020; 4: 273–280. .
  • 16. Işıldak Ö, Deligönül N, Özbek O. A novel silver(I)-selective PVC membrane sensor and its potentiometric applications. Turk. J. Chem. 2019; 43: 1149–1158. .
  • 17. Topcu C. Highly selective direct determination of chlorate ions by using a newly developed potentiometric electrode based on modified smectite. Talanta 2016; 161: 623–631. .
  • 18. Buck RP, Lindner E. Recommendations for nomenclature of ion-selective electrodes. Pure Appl. Chem. 1994; 66: 2527–2536. .
  • 19. Umezawa Y, Bühlmann P, Umezawa K, Tohda K, Amemiya AS. Potentiometric selectivity coefficention of ion-selective electrodes, Part I. Inorganic Cations. Pure Appl. Chem. 2000; 72: 1851–2082. .
  • 20. Golcs Á, Horváth V, Huszthy P, Tóth T. Fast potentiometric analysis of lead in aqueous medium under competitive conditions using an acridono-crown ether neutral ionophore. Sensors 2018; 18(5): 1407. .
  • 21. Elmosallamy MA, Fathy AM, Ghoneim AK. Lead (II) potentiometric sensor based on 1,4,8,11‐tetrathiacyclotetradecane neutral carrier and lipophilic additives. Electroanal. 2008; 20: 1241–1245. .
  • 22. Song W, Wu C, Yin H, Liu X, Sa P, Hu J. Preparation of PbS nanoparticles by phase-transfer method and application to Pb2+-selective electrode based on PVC membrane. Anal. Lett. 2008; 41: 2844–2859. .
  • 23. Zhang WJ, Li CY, Zhang XB, Jin Z. Synthesis of an amide‐linked diporphyrin xanthene as a neutral carrier for a lead(II)‐sensitive electrode. Anal. Lett. 2007; 40: 1023–1035. .
  • 24. Huang MR, Rao XW, Li XG, Ding YB. Lead ion-selective electrodes based on polyphenylenediamine as unique solid ionophores. Talanta, 2011; 85: 1575–1584. .
  • 25. Yuan X-J, Wang R-Y, Mao C-B, Wu L, Chu, C-Q, Yao R, Gao Z-Y, Wu B-L, Zhang H-Y. New Pb(II)-selective membrane electrode based on a new Schiff base complex. Inorg. Chem. Commun. 2012; 15: 29–32. .
Year 2022, Volume: 9 Issue: 3, 651 - 662, 31.08.2022
https://doi.org/10.18596/jotcsa.1060973

Abstract

References

  • 1. Esmailzadeh A, Afzali D, Fayazi M. Determination of lead (II) in environmental water samples by solid-phase extraction using a novel modified carbon hybridised sepiolite combined with flame atomic absorption spectrometry. Int. J. Environ. Anal. Chem. 2020; 1-13. .
  • 2. Wuilloud RG, Acevedo HA, Vazquez FA, Martinez LD. Determination of lead in drinking water by ICP-AES with ultrasonic nebulization and flow-injection on-line preconcentration using an amberlite XAD-16 resin. Anal. Lett. 2002; 35(10): 1649-1665. .
  • 3. Kendüzler E, Dinç MD, Trak D, Kabak B, Arslan Y. Separation/preconcentration and determination of lead (II) in drinking, spring and lake water samples. J. Anal. Chem. 2020; 75(10): 1264-1269. .
  • 4. Rapp I, Schlosser C, Rusiecka D, Gledhill M, Achterberg EP. Automated preconcentration of Fe, Zn, Cu, Ni, Cd, Pb, Co, and Mn in seawater with analysis using high-resolution sector field inductively coupled plasma mass spectrometry. Anal. Chim. Acta 2017; 976: 1–13. .
  • 5. Yang G, Hu Q, Huang Z, Yin J. Study on the determination of lead, cadmium, mercury, nickel and zinc by a rapid column high-performance liquid chromatographyatography. J. Braz. Chem. Soc. 2005; 16: 1154–1159. .
  • 6. Tinas H, Ozbek N, Akman S. Determination of lead in flour samples directly by solid sampling high resolution continuum source graphite furnace atomic absorption spectrometry. Spectrochim. Acta Part B 2018; 140: 73–75. .
  • 7. Özbek O, Isildak Ö, Isildak I. A potentiometric biosensor for the determination of valproic acid: human blood–based study of an anti–epileptic drug. Biochem. Eng. J. 2021; 176: 108181. .
  • 8. Isildak Ö, Özbek O. Silver(I)-selective PVC membrane potentiometric sensor based on 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine and potentiometric applications. J. Chem. Sci. 2020; 132: 29. .
  • 9. Isildak Ö, Özbek O. Yigit KM. Zinc(II)-selective PVC membrane potentiometric sensor for analysis of Zn2+ in drug sample and different environmental samples. Int. J. Environ. Anal. Chem. 101 (2021) 2035–2045. .
  • 10. Özbek O, Isildak Ö, Berkel C. The use of porphyrins in potentiometric sensors as ionophores. J. Incl. Phenom. Macrocycl. Chem. 2020; 98: 1–9. .
  • 11. Isildak Ö, Özbek O. Application of potentiometric sensors in real samples. Crit. Rev. Anal. Chem. 2021; 51: 218–231. .
  • 12. Özbek O, Berkel C, Isildak Ö, Isildak I. Potentiometric urea biosensors. Clin. Chim. Acta 2022; 524: 154–163. .
  • 13. Alam MS, Liu L, Lee DU. Cytotoxicity of new 5-phenyl-4, 5-dihydro-1, 3, 4-thiadiazole analogues. Chem. Pharm. Bull. 2011; 59(11): 1413-1416. .
  • 14. Özbek O, Isildak Ö. Potentiometric PVC membrane sensor for the determination of anti-epileptic drug levetiracetam in pharmaceutical formulations. ChemistrySelect, 2022; 7(3): e202103988. .
  • 15. Isildak Ö, Özbek O, Gürdere MB. Development of chromium(III)-selective potentiometric sensor by using synthesized pyrazole derivative as an ionophore in PVC matrix and its applications. J. Anal. Test. 2020; 4: 273–280. .
  • 16. Işıldak Ö, Deligönül N, Özbek O. A novel silver(I)-selective PVC membrane sensor and its potentiometric applications. Turk. J. Chem. 2019; 43: 1149–1158. .
  • 17. Topcu C. Highly selective direct determination of chlorate ions by using a newly developed potentiometric electrode based on modified smectite. Talanta 2016; 161: 623–631. .
  • 18. Buck RP, Lindner E. Recommendations for nomenclature of ion-selective electrodes. Pure Appl. Chem. 1994; 66: 2527–2536. .
  • 19. Umezawa Y, Bühlmann P, Umezawa K, Tohda K, Amemiya AS. Potentiometric selectivity coefficention of ion-selective electrodes, Part I. Inorganic Cations. Pure Appl. Chem. 2000; 72: 1851–2082. .
  • 20. Golcs Á, Horváth V, Huszthy P, Tóth T. Fast potentiometric analysis of lead in aqueous medium under competitive conditions using an acridono-crown ether neutral ionophore. Sensors 2018; 18(5): 1407. .
  • 21. Elmosallamy MA, Fathy AM, Ghoneim AK. Lead (II) potentiometric sensor based on 1,4,8,11‐tetrathiacyclotetradecane neutral carrier and lipophilic additives. Electroanal. 2008; 20: 1241–1245. .
  • 22. Song W, Wu C, Yin H, Liu X, Sa P, Hu J. Preparation of PbS nanoparticles by phase-transfer method and application to Pb2+-selective electrode based on PVC membrane. Anal. Lett. 2008; 41: 2844–2859. .
  • 23. Zhang WJ, Li CY, Zhang XB, Jin Z. Synthesis of an amide‐linked diporphyrin xanthene as a neutral carrier for a lead(II)‐sensitive electrode. Anal. Lett. 2007; 40: 1023–1035. .
  • 24. Huang MR, Rao XW, Li XG, Ding YB. Lead ion-selective electrodes based on polyphenylenediamine as unique solid ionophores. Talanta, 2011; 85: 1575–1584. .
  • 25. Yuan X-J, Wang R-Y, Mao C-B, Wu L, Chu, C-Q, Yao R, Gao Z-Y, Wu B-L, Zhang H-Y. New Pb(II)-selective membrane electrode based on a new Schiff base complex. Inorg. Chem. Commun. 2012; 15: 29–32. .
There are 25 citations in total.

Details

Primary Language English
Subjects Electrochemistry
Journal Section Articles
Authors

Oğuz Özbek 0000-0001-5185-9681

Publication Date August 31, 2022
Submission Date January 21, 2022
Acceptance Date April 8, 2022
Published in Issue Year 2022 Volume: 9 Issue: 3

Cite

Vancouver Özbek O. A novel potentiometric sensor for the determination of Pb(II) ions based on a carbothioamide derivative in PVC matrix. JOTCSA. 2022;9(3):651-62.