Structural, Optical, and Morphological Characterization of Silica Nanoparticles Prepared by Sol-Gel Process
Year 2022,
Volume: 9 Issue: 4, 1323 - 1334, 30.11.2022
Most. Nilufa Yeasmin
,
Munira Sultana
Ayesha Siddika
Samia Tabassum
Saeed Mahmud Ullah
Muhammad Shahriar Bashar
Abstract
In the current years, silica nanoparticles have become more favorable in various disciplines like medicine, nano-biotechnology, the food industry, and drug delivery due to their tunable physicochemical characteristics. In this paper, the silica nanoparticles were synthesized by hydrolysis and condensation of tetra-ethyl-ortho-silicate (TEOS) in an ethanolic medium using ammonia as a stimulator in the reaction. The chemical bond structures of silica nanoparticles were analyzed by Fourier Transform Infrared Spectroscopy (FT-IR) which confirmed the existence of the Si-O bonds according to the different absorption peaks of the samples. The amorphous structure of these nanoparticles was certified by finding the board peaks in the X-Ray Diffraction (XRD) patterns. The elemental chemical composition of silica nanoparticles was investigated by Energy Dispersive X-Ray Spectroscopy (EDX) where 61.48wt % of silicon and 23.48wt% of oxygen were found. Almost round-shaped spherical and uniform silica nanoparticles with smooth surfaces were investigated by Scanning Electron Microscopy (SEM) measurement. The different particle sizes of silica nanoparticles within the range of 95±5.59 to 280±7.8 nm were found by controlling the concentration of TEOS. The optical absorption spectra and band gap calculations were also analyzed by Ultraviolet-Visible (UV-Vis) spectrophotometry for the different concentrations of TEOS. The results revealed that with increasing the concentration of TEOS, the absorption spectra of silica nanoparticles increased and their optical bandgap decreased from 3.92 eV to 3.79 eV.
Supporting Institution
Centre analytical research facility(CARF), University of Dhaka.
Thanks
The authors would like to express gratitude to the chemical synthesis laboratory at the institute of fuel research and development, BCSIR, Dhaka, Bangladesh for the research facilities.
References
- 1. Jeelani PG, Mulay P, Venkat R, Ramalingam C. Multifaceted Application of Silica Nanoparticles. A Review. Silicon. 2020;12(6):1337–54.
- 2. Karim AH, Ali A, Mezan S. Synthesis and Characterization of Silica Nanoparticle ( Sio 2 Nps ) Via Chemical Process. 2021;25(6):6211–8.
- 3. Zhang W, Tu J, Long W, Lai W, Sheng Y, Guo T. Preparation of SiO2 anti-reflection coatings by sol-gel method. Energy Procedia [Internet]. 2017;130:72–6.
- 4. Musigapong P, Briffa SM, Lynch I, Soontaranon S, Chanlek N, Valsami-Jones E. Silica nanoparticle synthesis and multi-method characterisation. Mater Sci Forum. 2019;947 MSF:82–90.
- 5. Kim KIDO, Kim HEET. Formation of Silica Nanoparticles by Hydrolysis of TEOS Using a Mixed Semi-Batch / Batch Method. 2002;183–9.
- 6. Zhao S, Xu D, Ma H, Sun Z, Guan J. Controllable preparation and formation mechanism of monodispersed silica particles with binary sizes. J Colloid Interface Sci [Internet]. 2012;388(1):40–6.
- 7. Gleiter H, Schimmel T, Hahn H. Nanostructured solids - From nano-glasses to quantum transistors. Nano Today [Internet]. 2014;9(1):17–68.
- 8. Wang XD, Shen ZX, Sang T, Cheng X Bin, Li MF, Chen LY, et al. Preparation of spherical silica particles by Stöber process with high concentration of tetra-ethyl-orthosilicate. J Colloid Interface Sci [Internet]. 2010;341(1):23–9.
- 9. Xu J, Ren D, Chen N, Li X, Ye Z, Ma S, et al. A facile cooling strategy for the preparation of silica nanoparticles with rough surface utilizing a modified Stöber system. Colloids Surfaces A Physicochem Eng Asp [Internet]. 2021;625(January):126845.
- 10. Rahman IA, Padavettan V. Synthesis of Silica Nanoparticles by Sol-Gel : Size-Dependent Properties , Surface Modification , and Applications in Silica-Polymer Nanocomposites — A Review. 2012;2012.
- 11. Huang Y, Pemberton JE. Synthesis of uniform, spherical sub-100nm silica particles using a conceptual modification of the classic LaMer model. Colloids Surfaces A Physicochem Eng Asp [Internet]. 2010;360(1–3):175–83.
- 12. Rahman IA, Vejayakumaran P, Sipaut CS, Ismail J, Chee CK. Size-dependent physicochemical and optical properties of silica nanoparticles. Mater Chem Phys. 2009;114(1):328–32.
- 13. Pe J, Liz-marza LM. Recent Progress on Silica Coating of Nanoparticles and Related Nanomaterials. 2010;36310:1182–95.
- 14. Hyde EDER, Seyfaee A, Neville F, Moreno-atanasio R. Colloidal Silica Particle Synthesis and Future Industrial Manufacturing Pathways : A Review. 2016;
- 15. Stanley R, Nesaraj a S. Effect of Surfactants on the Wet Chemical Synthesis of Silica Nanoparticles. 2014;(October 2013):9–21.
- 16. Finnie KS, Bartlett JR, Barbé CJA, Kong L. Formation of silica nanoparticles in microemulsions. Langmuir. 2007;23(6):3017–24.
- 17. Ren D, Xu J, Chen N, Ye Z, Li X, Chen Q, et al. Controlled synthesis of mesoporous silica nanoparticles with tunable architectures via oil-water microemulsion assembly process. Colloids Surfaces A Physicochem Eng Asp [Internet]. 2021;611(August):125773.
- 18. Deng TS, Zhang QF, Zhang JY, Shen X, Zhu KT, Wu JL. One-step synthesis of highly monodisperse hybrid silica spheres in aqueous solution. J Colloid Interface Sci [Internet]. 2009;329(2):292–9.
- 19. Dubey RS, Rajesh YBRD, More MA. Synthesis and Characterization of SiO2 Nanoparticles via Sol-gel Method for Industrial Applications. Mater Today Proc [Internet]. 2015;2(4–5):3575–9.
- 20. Prabha S, Durgalakshmi D, Rajendran S, Lichtfouse E. Plant-derived silica nanoparticles and composites for biosensors, bioimaging, drug delivery and supercapacitors: a review. Environ Chem Lett [Internet]. 2021;19(2):1667–91.
- 21. Zaky RR, Hessien MM, El-Midany AA, Khedr MH, Abdel-Aal EA, El-Barawy KA. Preparation of silica nanoparticles from semi-burned rice straw ash. Powder Technol. 2008;185(1):31–5.
- 22. Stober WERNER. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range 1. 1968;69:62–9.
- 23. Bogush GH, Zukoski IV CF. Studies of the kinetics of the precipitation of uniform silica particles through the hydrolysis and condensation of silicon alkoxides. J Colloid Interface Sci. 1991;142(1):1–18.
- 24. Qasim M, Ananthaiah J, Dhara S, Paik P, Das D. Synthesis and Characterization of Ultra-Fine Colloidal Silica Nanoparticles. Adv Sci Eng Med. 2014;6(9):965–73.
- 25. Meier M, Ungerer J, Klinge M, Nirschl H. Synthesis of nanometric silica particles via a modi fi ed Stöber synthesis route. Colloids Surfaces A [Internet]. 2018;538(September 2017):559–64.
- 26. Sreenivasa K, El-hami K, Kodaki T, Matsushige K. A novel method for synthesis of silica nanoparticles. 2005;289:125–31.
- 27. Guo Q, Huang D, Kou X, Cao W, Li L, Ge L, et al. Synthesis of disperse amorphous SiO2 nanoparticles via sol–gel process. Ceram Int. 2017;43(1):192–6.
- 28. Rahman IA, Vejayakumaran P, Sipaut CS, Ismail J, Bakar MA, Adnan R, et al. An optimized sol-gel synthesis of stable primary equivalent silica particles. Colloids Surfaces A Physicochem Eng Asp. 2007;294(1–3):102–10.
- 29. Sung JY, Lee BRD. Structure and transmittance behavior of sol – gel silica nanoparticles synthesized using pH-stable alkanolamines. 2017;1–9.
- 30. Gao GM, Zou HF, Liu DR, Miao LN, Ji GJ, Gan SC. Influence of surfactant surface coverage and aging time on physical properties of silica nanoparticles. Colloids Surfaces A Physicochem Eng Asp. 2009;350(1–3):33–7.
- 31. Devi P, Vishal, Singla ML. Effect of surfactant concentration, solvents and particle size on Π-A isotherm of silica nanoparticles. Mater Lett [Internet]. 2013;107:107–10.
- 32. Kim S, Kim H, Geon S, Kim W. Effect of electrolyte additives on sol-precipitated nano silica particles. 2004;30:171–5.
- 33. Guo Q, Yang G, Huang D, Cao W, Ge L, Li L. Synthesis and characterization of spherical silica nanoparticles by modified Stöber process assisted by slow-hydrolysis catalyst. Colloid Polym Sci. 2018;296(2):379–84.
- 34. Das S, Banerjee C, Kundu A, Dey P. Silica nanoparticles on front glass for efficiency enhancement in superstrate-type amorphous silicon solar cells. 415102.
- 35. Jiang X, Tang X, Tang L, Zhang B, Mao H. Synthesis and formation mechanism of amorphous silica particles via sol–gel process with tetraethylorthosilicate. Ceram Int [Internet]. 2019;45(6):7673–80.
- 36. Yang G, Guo Q, Yang D, Peng P, Li J. Disperse ultrafine amorphous SiO 2 nanoparticles synthesized via precipitation and calcination. Colloids Surfaces A Physicochem Eng Asp [Internet]. 2019;568:445–54.
- 37. Yang D, Yang G, Liang G, Guo Q, Li Y, Li J. High-surface-area disperse silica nanoparticles prepared via sol-gel method using L-lysine catalyst and methanol/water co-solvent. Colloids Surfaces A Physicochem Eng Asp [Internet]. 2021;610(July 2020):125700.
- 38. Kim TG, An GS, Han JS, Hur JU, Park BG, Choi SC. Synthesis of size controlled spherical silica nanoparticles via sol-gel process within hydrophilic solvent. J Korean Ceram Soc. 2017;54(1):49–54.
- 39. Ibrahim I a. M, Zikry a. a. F, Sharaf M a. Preparation of spherical silica nanoparticles: Stober silica. J Am Sci. 2010;6(11):985–9.
- 40. H GHB, Y MAT, IV CFZ. Preparation of Monodisperse Silica Particles: Control of Size and Mass Fraction. J Non Cryst Solids. 1988;104:95–106.
- 41. Chou K Sen, Chen CC. Preparation of monodispersed silica colloids using sol-gel method: COSOLVENT effect. Ceram Trans. 2005;166:57–67.
- 42. Giesche H. Synthesis of Monodispersed Silica Powders I . Particle Properties and Reaction Kinetics. 1994;14:189–204.
- 43. Jamali N. Effect of Tetraethyl-Orthosilicate , 3-Aminopropyltriethoxysilane and Polyvinylpyrrolidone for synthesis of SiO 2 @ Ag core-shell nanoparticles prepared by chemical reduction method. 2021;1:31–8.
- 44. Al-bataineh QM, Alsaad AM, Ahmad AA, Telfah A. Heliyon A novel optical model of the experimental transmission spectra of nanocomposite PVC-PS hybrid thin fi lms doped with silica nanoparticles. Heliyon [Internet]. 2020;6(June):e04177.
- 45. Gupta P, Kumar K, Kumar N, Bal P, Yadav C, Hasan S. Effect of annealing temperature on a highly sensitive nickel oxide ‑ based LPG sensor operated at room temperature. Appl Phys A [Internet]. 2021;127(4):1–15.
- 46. Sankar S, Kaur N, Lee S, Kim Y.Rapid Sonochemical Synthesis of Spherical Silica Rapid Sonochemical Synthesis of Spherical Silica Nanoparticles Derived from Brown Rice Husk. Ceram Int [Internet]. 2018;
Year 2022,
Volume: 9 Issue: 4, 1323 - 1334, 30.11.2022
Most. Nilufa Yeasmin
,
Munira Sultana
Ayesha Siddika
Samia Tabassum
Saeed Mahmud Ullah
Muhammad Shahriar Bashar
References
- 1. Jeelani PG, Mulay P, Venkat R, Ramalingam C. Multifaceted Application of Silica Nanoparticles. A Review. Silicon. 2020;12(6):1337–54.
- 2. Karim AH, Ali A, Mezan S. Synthesis and Characterization of Silica Nanoparticle ( Sio 2 Nps ) Via Chemical Process. 2021;25(6):6211–8.
- 3. Zhang W, Tu J, Long W, Lai W, Sheng Y, Guo T. Preparation of SiO2 anti-reflection coatings by sol-gel method. Energy Procedia [Internet]. 2017;130:72–6.
- 4. Musigapong P, Briffa SM, Lynch I, Soontaranon S, Chanlek N, Valsami-Jones E. Silica nanoparticle synthesis and multi-method characterisation. Mater Sci Forum. 2019;947 MSF:82–90.
- 5. Kim KIDO, Kim HEET. Formation of Silica Nanoparticles by Hydrolysis of TEOS Using a Mixed Semi-Batch / Batch Method. 2002;183–9.
- 6. Zhao S, Xu D, Ma H, Sun Z, Guan J. Controllable preparation and formation mechanism of monodispersed silica particles with binary sizes. J Colloid Interface Sci [Internet]. 2012;388(1):40–6.
- 7. Gleiter H, Schimmel T, Hahn H. Nanostructured solids - From nano-glasses to quantum transistors. Nano Today [Internet]. 2014;9(1):17–68.
- 8. Wang XD, Shen ZX, Sang T, Cheng X Bin, Li MF, Chen LY, et al. Preparation of spherical silica particles by Stöber process with high concentration of tetra-ethyl-orthosilicate. J Colloid Interface Sci [Internet]. 2010;341(1):23–9.
- 9. Xu J, Ren D, Chen N, Li X, Ye Z, Ma S, et al. A facile cooling strategy for the preparation of silica nanoparticles with rough surface utilizing a modified Stöber system. Colloids Surfaces A Physicochem Eng Asp [Internet]. 2021;625(January):126845.
- 10. Rahman IA, Padavettan V. Synthesis of Silica Nanoparticles by Sol-Gel : Size-Dependent Properties , Surface Modification , and Applications in Silica-Polymer Nanocomposites — A Review. 2012;2012.
- 11. Huang Y, Pemberton JE. Synthesis of uniform, spherical sub-100nm silica particles using a conceptual modification of the classic LaMer model. Colloids Surfaces A Physicochem Eng Asp [Internet]. 2010;360(1–3):175–83.
- 12. Rahman IA, Vejayakumaran P, Sipaut CS, Ismail J, Chee CK. Size-dependent physicochemical and optical properties of silica nanoparticles. Mater Chem Phys. 2009;114(1):328–32.
- 13. Pe J, Liz-marza LM. Recent Progress on Silica Coating of Nanoparticles and Related Nanomaterials. 2010;36310:1182–95.
- 14. Hyde EDER, Seyfaee A, Neville F, Moreno-atanasio R. Colloidal Silica Particle Synthesis and Future Industrial Manufacturing Pathways : A Review. 2016;
- 15. Stanley R, Nesaraj a S. Effect of Surfactants on the Wet Chemical Synthesis of Silica Nanoparticles. 2014;(October 2013):9–21.
- 16. Finnie KS, Bartlett JR, Barbé CJA, Kong L. Formation of silica nanoparticles in microemulsions. Langmuir. 2007;23(6):3017–24.
- 17. Ren D, Xu J, Chen N, Ye Z, Li X, Chen Q, et al. Controlled synthesis of mesoporous silica nanoparticles with tunable architectures via oil-water microemulsion assembly process. Colloids Surfaces A Physicochem Eng Asp [Internet]. 2021;611(August):125773.
- 18. Deng TS, Zhang QF, Zhang JY, Shen X, Zhu KT, Wu JL. One-step synthesis of highly monodisperse hybrid silica spheres in aqueous solution. J Colloid Interface Sci [Internet]. 2009;329(2):292–9.
- 19. Dubey RS, Rajesh YBRD, More MA. Synthesis and Characterization of SiO2 Nanoparticles via Sol-gel Method for Industrial Applications. Mater Today Proc [Internet]. 2015;2(4–5):3575–9.
- 20. Prabha S, Durgalakshmi D, Rajendran S, Lichtfouse E. Plant-derived silica nanoparticles and composites for biosensors, bioimaging, drug delivery and supercapacitors: a review. Environ Chem Lett [Internet]. 2021;19(2):1667–91.
- 21. Zaky RR, Hessien MM, El-Midany AA, Khedr MH, Abdel-Aal EA, El-Barawy KA. Preparation of silica nanoparticles from semi-burned rice straw ash. Powder Technol. 2008;185(1):31–5.
- 22. Stober WERNER. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range 1. 1968;69:62–9.
- 23. Bogush GH, Zukoski IV CF. Studies of the kinetics of the precipitation of uniform silica particles through the hydrolysis and condensation of silicon alkoxides. J Colloid Interface Sci. 1991;142(1):1–18.
- 24. Qasim M, Ananthaiah J, Dhara S, Paik P, Das D. Synthesis and Characterization of Ultra-Fine Colloidal Silica Nanoparticles. Adv Sci Eng Med. 2014;6(9):965–73.
- 25. Meier M, Ungerer J, Klinge M, Nirschl H. Synthesis of nanometric silica particles via a modi fi ed Stöber synthesis route. Colloids Surfaces A [Internet]. 2018;538(September 2017):559–64.
- 26. Sreenivasa K, El-hami K, Kodaki T, Matsushige K. A novel method for synthesis of silica nanoparticles. 2005;289:125–31.
- 27. Guo Q, Huang D, Kou X, Cao W, Li L, Ge L, et al. Synthesis of disperse amorphous SiO2 nanoparticles via sol–gel process. Ceram Int. 2017;43(1):192–6.
- 28. Rahman IA, Vejayakumaran P, Sipaut CS, Ismail J, Bakar MA, Adnan R, et al. An optimized sol-gel synthesis of stable primary equivalent silica particles. Colloids Surfaces A Physicochem Eng Asp. 2007;294(1–3):102–10.
- 29. Sung JY, Lee BRD. Structure and transmittance behavior of sol – gel silica nanoparticles synthesized using pH-stable alkanolamines. 2017;1–9.
- 30. Gao GM, Zou HF, Liu DR, Miao LN, Ji GJ, Gan SC. Influence of surfactant surface coverage and aging time on physical properties of silica nanoparticles. Colloids Surfaces A Physicochem Eng Asp. 2009;350(1–3):33–7.
- 31. Devi P, Vishal, Singla ML. Effect of surfactant concentration, solvents and particle size on Π-A isotherm of silica nanoparticles. Mater Lett [Internet]. 2013;107:107–10.
- 32. Kim S, Kim H, Geon S, Kim W. Effect of electrolyte additives on sol-precipitated nano silica particles. 2004;30:171–5.
- 33. Guo Q, Yang G, Huang D, Cao W, Ge L, Li L. Synthesis and characterization of spherical silica nanoparticles by modified Stöber process assisted by slow-hydrolysis catalyst. Colloid Polym Sci. 2018;296(2):379–84.
- 34. Das S, Banerjee C, Kundu A, Dey P. Silica nanoparticles on front glass for efficiency enhancement in superstrate-type amorphous silicon solar cells. 415102.
- 35. Jiang X, Tang X, Tang L, Zhang B, Mao H. Synthesis and formation mechanism of amorphous silica particles via sol–gel process with tetraethylorthosilicate. Ceram Int [Internet]. 2019;45(6):7673–80.
- 36. Yang G, Guo Q, Yang D, Peng P, Li J. Disperse ultrafine amorphous SiO 2 nanoparticles synthesized via precipitation and calcination. Colloids Surfaces A Physicochem Eng Asp [Internet]. 2019;568:445–54.
- 37. Yang D, Yang G, Liang G, Guo Q, Li Y, Li J. High-surface-area disperse silica nanoparticles prepared via sol-gel method using L-lysine catalyst and methanol/water co-solvent. Colloids Surfaces A Physicochem Eng Asp [Internet]. 2021;610(July 2020):125700.
- 38. Kim TG, An GS, Han JS, Hur JU, Park BG, Choi SC. Synthesis of size controlled spherical silica nanoparticles via sol-gel process within hydrophilic solvent. J Korean Ceram Soc. 2017;54(1):49–54.
- 39. Ibrahim I a. M, Zikry a. a. F, Sharaf M a. Preparation of spherical silica nanoparticles: Stober silica. J Am Sci. 2010;6(11):985–9.
- 40. H GHB, Y MAT, IV CFZ. Preparation of Monodisperse Silica Particles: Control of Size and Mass Fraction. J Non Cryst Solids. 1988;104:95–106.
- 41. Chou K Sen, Chen CC. Preparation of monodispersed silica colloids using sol-gel method: COSOLVENT effect. Ceram Trans. 2005;166:57–67.
- 42. Giesche H. Synthesis of Monodispersed Silica Powders I . Particle Properties and Reaction Kinetics. 1994;14:189–204.
- 43. Jamali N. Effect of Tetraethyl-Orthosilicate , 3-Aminopropyltriethoxysilane and Polyvinylpyrrolidone for synthesis of SiO 2 @ Ag core-shell nanoparticles prepared by chemical reduction method. 2021;1:31–8.
- 44. Al-bataineh QM, Alsaad AM, Ahmad AA, Telfah A. Heliyon A novel optical model of the experimental transmission spectra of nanocomposite PVC-PS hybrid thin fi lms doped with silica nanoparticles. Heliyon [Internet]. 2020;6(June):e04177.
- 45. Gupta P, Kumar K, Kumar N, Bal P, Yadav C, Hasan S. Effect of annealing temperature on a highly sensitive nickel oxide ‑ based LPG sensor operated at room temperature. Appl Phys A [Internet]. 2021;127(4):1–15.
- 46. Sankar S, Kaur N, Lee S, Kim Y.Rapid Sonochemical Synthesis of Spherical Silica Rapid Sonochemical Synthesis of Spherical Silica Nanoparticles Derived from Brown Rice Husk. Ceram Int [Internet]. 2018;