Research Article
BibTex RIS Cite

Molecular docking studies and biological activities of benzenesulfonamide-based thiourea and thiazolidinone derivatives targeting cholinesterases, α-glucosidase, and α-amylase enzymes

Year 2023, Volume: 10 Issue: 2, 385 - 424, 31.05.2023
https://doi.org/10.18596/jotcsa.1111172

Abstract

Alzheimer's disease (AD) and diabetes mellitus (DM) are related to abnormal changes in enzyme activity. While acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are the primary targets in the treatment of Alzheimer's disease (AD), α-glucosidase (α-Gly) and α-amylase (α-Amy) enzymes are known for diabetes mellitus (DM). Here, benzenesulfonamide-based thiourea and thiazolidinone derivatives such as AChE, BChE, α-Gly, and α-Amy inhibitors were reported. The results revealed that compounds 1d and 2c showed promising AChE and BChE inhibition effects. Compound 2a was the most potent inhibitor against α-glycosidase and α-amylase, respectively. Molecular docking studies indicated that the lead compounds' binding energy values and molecular interactions were better than that of tacrine and acarbose. The most bioactive compounds may be considered potent leads for further studies.

Supporting Institution

Atatürk Üniversitesi

Project Number

Project Number: TAB-8919

Thanks

The authors would like to thank Ataturk University for financial support (Project Number: TAB-8919) and C. Kazaz (Prof. Dr., Ataturk University), B. Anil (Ph.D., Ataturk University), Serkan Levent (M.Sc. Anadolu University) and Mustafa Gul (Prof. Dr. Ataturk University) for their supports

References

  • 1. Sadashiva CT, Narendra Sharath Chandra JN, Kavitha CV, Thimmegowda A, Subhash MN, Rangappa KS. Synthesis and pharmacological evaluation of novel N-alkyl/aryl substituted thiazolidinone arecoline analogues as muscarinic receptor 1 agonist in Alzheimer’s dementia models. Eur J Med Chem [Internet]. 2009 Dec 1;44(12):4848–54.
  • 2. Genc Bilgicli H, Taslimi P, Akyuz B, Tuzun B, Gulcin İ. Synthesis, characterization, biological evaluation, and molecular docking studies of some piperonyl‐based 4‐thiazolidinone derivatives. Arch Pharm (Weinheim) [Internet]. 2020 Jan 28;353(1):1900304.
  • 3. Zhu J, Wang L-N, Cai R, Geng S-Q, Dong Y-F, Liu Y-M. Design, synthesis, evaluation and molecular modeling study of 4-N-phenylaminoquinolines for Alzheimer disease treatment. Bioorg Med Chem Lett [Internet]. 2019 Jun 1;29(11):1325–9.
  • 4. Wilkinson DG, Francis PT, Schwam E, Payne-Parrish J. Cholinesterase Inhibitors Used in the Treatment of Alzheimer’s Disease. Drugs Aging [Internet]. 2004 Aug 31;21(7):453–78.
  • 5. Avogaro A, Fadini GP. The Effects of Dipeptidyl Peptidase-4 Inhibition on Microvascular Diabetes Complications. Diabetes Care [Internet]. 2014 Oct 1;37(10):2884–94.
  • 6. Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants. Lancet [Internet]. 2011 Jul 2;378(9785):31–40.
  • 7. Poovitha S, Parani M. In vitro and in vivo α-amylase and α-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.). BMC Complement Altern Med [Internet]. 2016 Jul 18;16(S1):185.
  • 8. Min SW, Han JS. Polyopes lancifolia Extract, a Potent α-Glucosidase Inhibitor, Alleviates Postprandial Hyperglycemia in Diabetic Mice. Prev Nutr Food Sci [Internet]. 2014 Mar 31;19(1):5–9.
  • 9. Jo S-H, Cho C-Y, Lee J-Y, Ha K-S, Kwon Y-I, Apostolidis E. In vitro and in vivo reduction of post-prandial blood glucose levels by ethyl alcohol and water Zingiber mioga extracts through the inhibition of carbohydrate hydrolyzing enzymes. BMC Complement Altern Med [Internet]. 2016 Dec 31;16(1):111.
  • 10. Zhang B, Xing Y, Wen C, Yu X, Sun W, Xiu Z, et al. Pentacyclic triterpenes as α-glucosidase and α-amylase inhibitors: Structure-activity relationships and the synergism with acarbose. Bioorg Med Chem Lett [Internet]. 2017 Nov 15;27(22):5065–70.
  • 11. Cheng AYY. Oral antihyperglycemic therapy for type 2 diabetes mellitus. Can Med Assoc J [Internet]. 2005 Jan 18;172(2):213–26.
  • 12. Levetan C. Oral antidiabetic agents in type 2 diabetes. Curr Med Res Opin [Internet]. 2007 Apr 1;23(4):945–52.
  • 13. Oz Gul O, Cinkilic N, Gul CB, Cander S, Vatan O, Ersoy C, et al. Comparative genotoxic and cytotoxic effects of the oral antidiabetic drugs sitagliptin, rosiglitazone, and pioglitazone in patients with type-2 diabetes: A cross-sectional, observational pilot study. Mutat Res Toxicol Environ Mutagen [Internet]. 2013 Sep 18;757(1):31–5.
  • 14. Wang S-L, Dong W-B, Dong X-L, Zhu W-M, Wang F-F, Han F, et al. Comparison of twelve single-drug regimens for the treatment of type 2 diabetes mellitus. Oncotarget [Internet]. 2017 Sep 22;8(42):72700–13.
  • 15. Brands AMA, Biessels GJ, de Haan EHF, Kappelle LJ, Kessels RPC. The Effects of Type 1 Diabetes on Cognitive Performance. Diabetes Care [Internet]. 2005 Mar 1;28(3):726–35.
  • 16. Butterfield DA, Di Domenico F, Barone E. Elevated risk of type 2 diabetes for development of Alzheimer disease: A key role for oxidative stress in brain. Biochim Biophys Acta - Mol Basis Dis [Internet]. 2014 Sep;1842(9):1693–706.
  • 17. Zhang J, Chen C, Hua S, Liao H, Wang M, Xiong Y, et al. An updated meta-analysis of cohort studies: Diabetes and risk of Alzheimer’s disease. Diabetes Res Clin Pract [Internet]. 2017 Feb 1;124:41–7.
  • 18. Roriz-Filho JS, Sá-Roriz TM, Rosset I, Camozzato AL, Santos AC, Chaves MLF, et al. (Pre)diabetes, brain aging, and cognition. Biochim Biophys Acta - Mol Basis Dis [Internet]. 2009 May 1;1792(5):432–43.
  • 19. Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P. Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol [Internet]. 2006 Jan 1;5(1):64–74.
  • 20. Li Z, Zhang W, Sima AAF. Alzheimer-Like Changes in Rat Models of Spontaneous Diabetes. Diabetes [Internet]. 2007 Jul 1;56(7):1817–24.
  • 21. Arab L, Sadeghi R, G. Walker D, Lue L-F, N. Sabbagh M. Consequences of aberrant insulin regulation in the brain: Can treating diabetes be effective for alzheimers disease. Curr Neuropharmacol [Internet]. 2011 Dec 1;9(4):693–705.
  • 22. Maher PA, Schubert DR. Metabolic links between diabetes and Alzheimer’s disease. Expert Rev Neurother [Internet]. 2009 May 9;9(5):617–30.
  • 23. Jolivalt CG, Hurford R, Lee CA, Dumaop W, Rockenstein E, Masliah E. Type 1 diabetes exaggerates features of Alzheimer’s disease in APP transgenic mice. Exp Neurol [Internet]. 2010 Jun 1;223(2):422–31.
  • 24. Li Y-S, Hu D-K, Zhao D-S, Liu X-Y, Jin H-W, Song G-P, et al. Design, synthesis and biological evaluation of 2,4-disubstituted oxazole derivatives as potential PDE4 inhibitors. Bioorg Med Chem [Internet]. 2017 Mar 15;25(6):1852–9.
  • 25. Rouf A, Tanyeli C. Bioactive thiazole and benzothiazole derivatives. Eur J Med Chem [Internet]. 2015 Jun 5;97(1):911–27.
  • 26. Jain AK, Vaidya A, Ravichandran V, Kashaw SK, Agrawal RK. Recent developments and biological activities of thiazolidinone derivatives: A review. Bioorg Med Chem [Internet]. 2012 Jun 1;20(11):3378–95.
  • 27. Hemaida AY, Hassan GS, Maarouf AR, Joubert J, El-Emam AA. Synthesis and biological evaluation of thiazole-based derivatives as potential acetylcholinesterase inhibitors. ACS Omega [Internet]. 2021 Jul 27;6(29):19202–11.
  • 28. Markowicz-Piasecka M, Huttunen KM, Sikora J. Metformin and its sulphonamide derivative simultaneously potentiateanti-cholinesterase activity of donepezil and inhibit beta-amyloid aggregation. J Enzyme Inhib Med Chem [Internet]. 2018 Jan 1;33(1):1309–22.
  • 29. Yamali C, Gul HI, Kazaz C, Levent S, Gulcin I. Synthesis, structure elucidation, and in vitro pharmacological evaluation of novel polyfluoro substituted pyrazoline type sulfonamides as multi-target agents for inhibition of acetylcholinesterase and carbonic anhydrase I and II enzymes. Bioorg Chem [Internet]. 2020 Mar 1;96:103627.
  • 30. Yamali C, Gul HI, Ece A, Taslimi P, Gulcin I. Synthesis, molecular modeling, and biological evaluation of 4-[5-aryl-3-(thiophen-2-yl)-4,5-dihydro-1 H -pyrazol-1-yl] benzenesulfonamides toward acetylcholinesterase, carbonic anhydrase I and II enzymes. Chem Biol Drug Des [Internet]. 2018 Apr 1;91(4):854–66.
  • 31. Tugrak M, Gul HI, Demir Y, Gulcin I. Synthesis of benzamide derivatives with thiourea‐substituted benzenesulfonamides as carbonic anhydrase inhibitors. Arch Pharm (Weinheim) [Internet]. 2021 Feb 12;354(2):e2000230.
  • 32. Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol [Internet]. 1961 Jul 1;7(2):88–95.
  • 33. Cetin Cakmak K, Gülçin İ. Anticholinergic and antioxidant activities of usnic acid-an activity-structure insight. Toxicol Reports [Internet]. 2019 Jan 1;6:1273–80.
  • 34. Buldurun K, Turan N, Bursal E, Aras A, Mantarcı A, Çolak N, et al. Synthesis, characterization, powder X-ray diffraction analysis, thermal stability, antioxidant properties and enzyme inhibitions of M(II)-Schiff base ligand complexes. J Biomol Struct Dyn [Internet]. 2021 Nov 22;39(17):6480–7.
  • 35. Behçet A, Çağlılar T, Barut Celepci D, Aktaş A, Taslimi P, Gök Y, et al. Synthesis, characterization and crystal structure of 2-(4-hydroxyphenyl)ethyl and 2-(4-nitrophenyl)ethyl Substituted Benzimidazole Bromide Salts: Their inhibitory properties against carbonic anhydrase and acetylcholinesterase. J Mol Struct [Internet]. 2018 Oct 15;1170:160–9.
  • 36. Tao Y, Zhang Y, Cheng Y, Wang Y. Rapid screening and identification of α -glucosidase inhibitors from mulberry leaves using enzyme-immobilized magnetic beads coupled with HPLC/MS and NMR. Biomed Chromatogr [Internet]. 2013 Feb;27(2):148–55.
  • 37. Bal S, Demirci Ö, Şen B, Taşkın Tok T, Taslimi P, Aktaş A, et al. Silver N ‐heterocyclic carbene complexes bearing fluorinated benzyl group: Synthesis, characterization, crystal structure, computational studies, and inhibitory properties against some metabolic enzymes. Appl Organomet Chem [Internet]. 2021 Sep 20;35(9):e6312.
  • 38. Xiao Z, Storms R, Tsang A. A quantitative starch–iodine method for measuring alpha-amylase and glucoamylase activities. Anal Biochem [Internet]. 2006 Apr 1;351(1):146–8.
  • 39. Gaussian 09, revision E.01, MJ Frisch, WW Trucks, HB Schlegel, GE Scuseria, MA Robb, JR Cheeseman, G Scalmani, V. Barone, B. Mennucci, G.A.e.a. Petersson, Gaussian, Inc,. Wallingford CT; 2009. p. S162-173.
  • 40. Bank RPD RCSB PDB:Homepage. BRRP [Internet]. 2021 [cited 2021 May 24].
  • 41. Accelrys Software Inc. Discovery studio modeling environment, Release 3.5 Accelrys Software Inc. San Diego; 2013.
  • 42. Mugaranja KP, Kulal A. Alpha glucosidase inhibition activity of phenolic fraction from Simarouba glauca: An in-vitro, in-silico and kinetic study. Heliyon [Internet]. 2020 Jul 1;6(7):e04392.
  • 43. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem [Internet]. 1983 Jun 1;4(2):187–217.
  • 44. Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem [Internet]. 2009 Jan 1;31(2):455–61.
  • 45. Huseynova M, Medjidov A, Taslimi P, Aliyeva M. Synthesis, characterization, crystal structure of the coordination polymer Zn(II) with thiosemicarbazone of glyoxalic acid and their inhibitory properties against some metabolic enzymes. Bioorg Chem [Internet]. 2019 Mar 1;83:55–62.
  • 46. Biçer A, Taslimi P, Yakalı G, Gülçin I, Serdar Gültekin M, Turgut Cin G. Synthesis, characterization, crystal structure of novel bis-thiomethylcyclohexanone derivatives and their inhibitory properties against some metabolic enzymes. Bioorg Chem [Internet]. 2019 Feb 1;82:393–404.
  • 47. Demir Y, Taslimi P, Ozaslan MS, Oztaskin N, Çetinkaya Y, Gulçin İ, et al. Antidiabetic potential: In vitro inhibition effects of bromophenol and diarylmethanones derivatives on metabolic enzymes. Arch Pharm (Weinheim) [Internet]. 2018 Dec 1;351(12):e1800263.
  • 48. Gulçin İ, Taslimi P, Aygün A, Sadeghian N, Bastem E, Kufrevioglu OI, et al. Antidiabetic and antiparasitic potentials: Inhibition effects of some natural antioxidant compounds on α-glycosidase, α-amylase and human glutathione S-transferase enzymes. Int J Biol Macromol [Internet]. 2018 Nov 1;119:741–6.
Year 2023, Volume: 10 Issue: 2, 385 - 424, 31.05.2023
https://doi.org/10.18596/jotcsa.1111172

Abstract

Project Number

Project Number: TAB-8919

References

  • 1. Sadashiva CT, Narendra Sharath Chandra JN, Kavitha CV, Thimmegowda A, Subhash MN, Rangappa KS. Synthesis and pharmacological evaluation of novel N-alkyl/aryl substituted thiazolidinone arecoline analogues as muscarinic receptor 1 agonist in Alzheimer’s dementia models. Eur J Med Chem [Internet]. 2009 Dec 1;44(12):4848–54.
  • 2. Genc Bilgicli H, Taslimi P, Akyuz B, Tuzun B, Gulcin İ. Synthesis, characterization, biological evaluation, and molecular docking studies of some piperonyl‐based 4‐thiazolidinone derivatives. Arch Pharm (Weinheim) [Internet]. 2020 Jan 28;353(1):1900304.
  • 3. Zhu J, Wang L-N, Cai R, Geng S-Q, Dong Y-F, Liu Y-M. Design, synthesis, evaluation and molecular modeling study of 4-N-phenylaminoquinolines for Alzheimer disease treatment. Bioorg Med Chem Lett [Internet]. 2019 Jun 1;29(11):1325–9.
  • 4. Wilkinson DG, Francis PT, Schwam E, Payne-Parrish J. Cholinesterase Inhibitors Used in the Treatment of Alzheimer’s Disease. Drugs Aging [Internet]. 2004 Aug 31;21(7):453–78.
  • 5. Avogaro A, Fadini GP. The Effects of Dipeptidyl Peptidase-4 Inhibition on Microvascular Diabetes Complications. Diabetes Care [Internet]. 2014 Oct 1;37(10):2884–94.
  • 6. Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants. Lancet [Internet]. 2011 Jul 2;378(9785):31–40.
  • 7. Poovitha S, Parani M. In vitro and in vivo α-amylase and α-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.). BMC Complement Altern Med [Internet]. 2016 Jul 18;16(S1):185.
  • 8. Min SW, Han JS. Polyopes lancifolia Extract, a Potent α-Glucosidase Inhibitor, Alleviates Postprandial Hyperglycemia in Diabetic Mice. Prev Nutr Food Sci [Internet]. 2014 Mar 31;19(1):5–9.
  • 9. Jo S-H, Cho C-Y, Lee J-Y, Ha K-S, Kwon Y-I, Apostolidis E. In vitro and in vivo reduction of post-prandial blood glucose levels by ethyl alcohol and water Zingiber mioga extracts through the inhibition of carbohydrate hydrolyzing enzymes. BMC Complement Altern Med [Internet]. 2016 Dec 31;16(1):111.
  • 10. Zhang B, Xing Y, Wen C, Yu X, Sun W, Xiu Z, et al. Pentacyclic triterpenes as α-glucosidase and α-amylase inhibitors: Structure-activity relationships and the synergism with acarbose. Bioorg Med Chem Lett [Internet]. 2017 Nov 15;27(22):5065–70.
  • 11. Cheng AYY. Oral antihyperglycemic therapy for type 2 diabetes mellitus. Can Med Assoc J [Internet]. 2005 Jan 18;172(2):213–26.
  • 12. Levetan C. Oral antidiabetic agents in type 2 diabetes. Curr Med Res Opin [Internet]. 2007 Apr 1;23(4):945–52.
  • 13. Oz Gul O, Cinkilic N, Gul CB, Cander S, Vatan O, Ersoy C, et al. Comparative genotoxic and cytotoxic effects of the oral antidiabetic drugs sitagliptin, rosiglitazone, and pioglitazone in patients with type-2 diabetes: A cross-sectional, observational pilot study. Mutat Res Toxicol Environ Mutagen [Internet]. 2013 Sep 18;757(1):31–5.
  • 14. Wang S-L, Dong W-B, Dong X-L, Zhu W-M, Wang F-F, Han F, et al. Comparison of twelve single-drug regimens for the treatment of type 2 diabetes mellitus. Oncotarget [Internet]. 2017 Sep 22;8(42):72700–13.
  • 15. Brands AMA, Biessels GJ, de Haan EHF, Kappelle LJ, Kessels RPC. The Effects of Type 1 Diabetes on Cognitive Performance. Diabetes Care [Internet]. 2005 Mar 1;28(3):726–35.
  • 16. Butterfield DA, Di Domenico F, Barone E. Elevated risk of type 2 diabetes for development of Alzheimer disease: A key role for oxidative stress in brain. Biochim Biophys Acta - Mol Basis Dis [Internet]. 2014 Sep;1842(9):1693–706.
  • 17. Zhang J, Chen C, Hua S, Liao H, Wang M, Xiong Y, et al. An updated meta-analysis of cohort studies: Diabetes and risk of Alzheimer’s disease. Diabetes Res Clin Pract [Internet]. 2017 Feb 1;124:41–7.
  • 18. Roriz-Filho JS, Sá-Roriz TM, Rosset I, Camozzato AL, Santos AC, Chaves MLF, et al. (Pre)diabetes, brain aging, and cognition. Biochim Biophys Acta - Mol Basis Dis [Internet]. 2009 May 1;1792(5):432–43.
  • 19. Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P. Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol [Internet]. 2006 Jan 1;5(1):64–74.
  • 20. Li Z, Zhang W, Sima AAF. Alzheimer-Like Changes in Rat Models of Spontaneous Diabetes. Diabetes [Internet]. 2007 Jul 1;56(7):1817–24.
  • 21. Arab L, Sadeghi R, G. Walker D, Lue L-F, N. Sabbagh M. Consequences of aberrant insulin regulation in the brain: Can treating diabetes be effective for alzheimers disease. Curr Neuropharmacol [Internet]. 2011 Dec 1;9(4):693–705.
  • 22. Maher PA, Schubert DR. Metabolic links between diabetes and Alzheimer’s disease. Expert Rev Neurother [Internet]. 2009 May 9;9(5):617–30.
  • 23. Jolivalt CG, Hurford R, Lee CA, Dumaop W, Rockenstein E, Masliah E. Type 1 diabetes exaggerates features of Alzheimer’s disease in APP transgenic mice. Exp Neurol [Internet]. 2010 Jun 1;223(2):422–31.
  • 24. Li Y-S, Hu D-K, Zhao D-S, Liu X-Y, Jin H-W, Song G-P, et al. Design, synthesis and biological evaluation of 2,4-disubstituted oxazole derivatives as potential PDE4 inhibitors. Bioorg Med Chem [Internet]. 2017 Mar 15;25(6):1852–9.
  • 25. Rouf A, Tanyeli C. Bioactive thiazole and benzothiazole derivatives. Eur J Med Chem [Internet]. 2015 Jun 5;97(1):911–27.
  • 26. Jain AK, Vaidya A, Ravichandran V, Kashaw SK, Agrawal RK. Recent developments and biological activities of thiazolidinone derivatives: A review. Bioorg Med Chem [Internet]. 2012 Jun 1;20(11):3378–95.
  • 27. Hemaida AY, Hassan GS, Maarouf AR, Joubert J, El-Emam AA. Synthesis and biological evaluation of thiazole-based derivatives as potential acetylcholinesterase inhibitors. ACS Omega [Internet]. 2021 Jul 27;6(29):19202–11.
  • 28. Markowicz-Piasecka M, Huttunen KM, Sikora J. Metformin and its sulphonamide derivative simultaneously potentiateanti-cholinesterase activity of donepezil and inhibit beta-amyloid aggregation. J Enzyme Inhib Med Chem [Internet]. 2018 Jan 1;33(1):1309–22.
  • 29. Yamali C, Gul HI, Kazaz C, Levent S, Gulcin I. Synthesis, structure elucidation, and in vitro pharmacological evaluation of novel polyfluoro substituted pyrazoline type sulfonamides as multi-target agents for inhibition of acetylcholinesterase and carbonic anhydrase I and II enzymes. Bioorg Chem [Internet]. 2020 Mar 1;96:103627.
  • 30. Yamali C, Gul HI, Ece A, Taslimi P, Gulcin I. Synthesis, molecular modeling, and biological evaluation of 4-[5-aryl-3-(thiophen-2-yl)-4,5-dihydro-1 H -pyrazol-1-yl] benzenesulfonamides toward acetylcholinesterase, carbonic anhydrase I and II enzymes. Chem Biol Drug Des [Internet]. 2018 Apr 1;91(4):854–66.
  • 31. Tugrak M, Gul HI, Demir Y, Gulcin I. Synthesis of benzamide derivatives with thiourea‐substituted benzenesulfonamides as carbonic anhydrase inhibitors. Arch Pharm (Weinheim) [Internet]. 2021 Feb 12;354(2):e2000230.
  • 32. Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol [Internet]. 1961 Jul 1;7(2):88–95.
  • 33. Cetin Cakmak K, Gülçin İ. Anticholinergic and antioxidant activities of usnic acid-an activity-structure insight. Toxicol Reports [Internet]. 2019 Jan 1;6:1273–80.
  • 34. Buldurun K, Turan N, Bursal E, Aras A, Mantarcı A, Çolak N, et al. Synthesis, characterization, powder X-ray diffraction analysis, thermal stability, antioxidant properties and enzyme inhibitions of M(II)-Schiff base ligand complexes. J Biomol Struct Dyn [Internet]. 2021 Nov 22;39(17):6480–7.
  • 35. Behçet A, Çağlılar T, Barut Celepci D, Aktaş A, Taslimi P, Gök Y, et al. Synthesis, characterization and crystal structure of 2-(4-hydroxyphenyl)ethyl and 2-(4-nitrophenyl)ethyl Substituted Benzimidazole Bromide Salts: Their inhibitory properties against carbonic anhydrase and acetylcholinesterase. J Mol Struct [Internet]. 2018 Oct 15;1170:160–9.
  • 36. Tao Y, Zhang Y, Cheng Y, Wang Y. Rapid screening and identification of α -glucosidase inhibitors from mulberry leaves using enzyme-immobilized magnetic beads coupled with HPLC/MS and NMR. Biomed Chromatogr [Internet]. 2013 Feb;27(2):148–55.
  • 37. Bal S, Demirci Ö, Şen B, Taşkın Tok T, Taslimi P, Aktaş A, et al. Silver N ‐heterocyclic carbene complexes bearing fluorinated benzyl group: Synthesis, characterization, crystal structure, computational studies, and inhibitory properties against some metabolic enzymes. Appl Organomet Chem [Internet]. 2021 Sep 20;35(9):e6312.
  • 38. Xiao Z, Storms R, Tsang A. A quantitative starch–iodine method for measuring alpha-amylase and glucoamylase activities. Anal Biochem [Internet]. 2006 Apr 1;351(1):146–8.
  • 39. Gaussian 09, revision E.01, MJ Frisch, WW Trucks, HB Schlegel, GE Scuseria, MA Robb, JR Cheeseman, G Scalmani, V. Barone, B. Mennucci, G.A.e.a. Petersson, Gaussian, Inc,. Wallingford CT; 2009. p. S162-173.
  • 40. Bank RPD RCSB PDB:Homepage. BRRP [Internet]. 2021 [cited 2021 May 24].
  • 41. Accelrys Software Inc. Discovery studio modeling environment, Release 3.5 Accelrys Software Inc. San Diego; 2013.
  • 42. Mugaranja KP, Kulal A. Alpha glucosidase inhibition activity of phenolic fraction from Simarouba glauca: An in-vitro, in-silico and kinetic study. Heliyon [Internet]. 2020 Jul 1;6(7):e04392.
  • 43. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem [Internet]. 1983 Jun 1;4(2):187–217.
  • 44. Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem [Internet]. 2009 Jan 1;31(2):455–61.
  • 45. Huseynova M, Medjidov A, Taslimi P, Aliyeva M. Synthesis, characterization, crystal structure of the coordination polymer Zn(II) with thiosemicarbazone of glyoxalic acid and their inhibitory properties against some metabolic enzymes. Bioorg Chem [Internet]. 2019 Mar 1;83:55–62.
  • 46. Biçer A, Taslimi P, Yakalı G, Gülçin I, Serdar Gültekin M, Turgut Cin G. Synthesis, characterization, crystal structure of novel bis-thiomethylcyclohexanone derivatives and their inhibitory properties against some metabolic enzymes. Bioorg Chem [Internet]. 2019 Feb 1;82:393–404.
  • 47. Demir Y, Taslimi P, Ozaslan MS, Oztaskin N, Çetinkaya Y, Gulçin İ, et al. Antidiabetic potential: In vitro inhibition effects of bromophenol and diarylmethanones derivatives on metabolic enzymes. Arch Pharm (Weinheim) [Internet]. 2018 Dec 1;351(12):e1800263.
  • 48. Gulçin İ, Taslimi P, Aygün A, Sadeghian N, Bastem E, Kufrevioglu OI, et al. Antidiabetic and antiparasitic potentials: Inhibition effects of some natural antioxidant compounds on α-glycosidase, α-amylase and human glutathione S-transferase enzymes. Int J Biol Macromol [Internet]. 2018 Nov 1;119:741–6.
There are 48 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other), Organic Chemistry
Journal Section RESEARCH ARTICLES
Authors

Mehtap Tuğrak Sakarya 0000-0002-6535-6580

Halise İnci Gül 0000-0001-6164-9602

Cem Yamalı 0000-0002-4833-7900

Parham Taslımı 0000-0002-3171-0633

Tugba Taskın Tok 0000-0002-0064-8400

Project Number Project Number: TAB-8919
Publication Date May 31, 2023
Submission Date May 8, 2022
Acceptance Date October 26, 2022
Published in Issue Year 2023 Volume: 10 Issue: 2

Cite

Vancouver Tuğrak Sakarya M, Gül Hİ, Yamalı C, Taslımı P, Taskın Tok T. Molecular docking studies and biological activities of benzenesulfonamide-based thiourea and thiazolidinone derivatives targeting cholinesterases, α-glucosidase, and α-amylase enzymes. JOTCSA. 2023;10(2):385-424.