Research Article
BibTex RIS Cite
Year 2023, Volume: 10 Issue: 3, 745 - 756, 30.08.2023
https://doi.org/10.18596/jotcsa.1294230

Abstract

References

  • 1. Lohan R, Kumar A, Sahu MK, Mor A, Kumar V, Deopa N, Rao AS. Structural, thermal, and luminescence kinetics of Sr4Nb2O9 phosphor doped with Dy3+ ions for cool w-LED applications. J. Mater. Sci: Mater. Electron 2023;34:694.
  • 2. Kanmani GV, Ponnusamy V, Rajkumar G, Kennedy SMM. A new Eu3+-activated milarite-type potassium magnesium zinc silicate red-emitting phosphor for forensic applications. J. Mater Sci: Mater Electron 2023;34:765.
  • 3. Swathi BN, Krushna BRR, Manjunatha K, Wu SY, Subramanian B, Prasad BD, Nagabhushana H. Single phased vivid red-emitting CaLa2ZnO5:Eu3+ nanophosphor: WLEDs, visualization of latent fingerprints and anti-counterfeiting applications, Mater. Res. Bull. 2023;165:112279.
  • 4. Ekmekçi MK, İlhan M, Başak AS, Deniz S. Structural and luminescence properties of Sm3+ doped TTB-type BaTa2O6 ceramic phosphors. J. Fluoresc. 2015;25:1757–1762.
  • 5. Güleryüz LF. Effect of Nd3+ doping on structural, near-Infrared, and cathodoluminescent properties for cadmium tantalate phosphors. JOTCSA. 2023;10:77–88.
  • 6. Hajlaoui T, Pinsard M, Kalhori H, Légaré F, Pignolet A. Second harmonic generation in ferroelectric Ba2EuFeNb4O15-based epitaxial thin films. Opt. Mater. Express  2020;10: 1323–1334.
  • 7. İlhan M, Keskin İÇ. Evaluation of the Structural, near-infrared luminescence, and radioluminescence properties of Nd3+ activated TTB-lead metatantalate phosphors. JOTCSA. 2023;10:453–66.
  • 8. Sheikh S, Hussain F. Structural, Dielectric, and Magnetic Properties of Ba2Bi9-xFe5 +xTi8O39 tetragonal tungsten bronze ceramics. Mater. Res. Express 2023;10:036103.
  • 9. İlhan M, Güleryüz LF. Cathodoluminescence and photoluminescence of BaTa2O6:Sm3+ phosphor depending on the sintering temperature. Chem. Pap. 2022;76:6963-6974.
  • 10. Shrivastava R, Khaparde S. Luminescence studies of diopside doped with various concentrations of Dysprosium (III). Res. Chem. Intermed. 2022;48:969-982.
  • 11. Li J, Wang X, Cui R, Deng C. Synthesis and photoluminescence studies of novel double-perovskite phosphors, Ba2GdTaO6: Eu3+ for WLEDs. Optik 2020;201:163536.
  • 12. İlhan M, Güleryüz LF. Boron doping effect on the structural, spectral properties and charge transfer mechanism of orthorhombic tungsten bronze β-SrTa2O6:Eu3+ phosphor. RSC. Adv. 2023;13:12375.
  • 13. Binnemans K. Interpretation of europium(III) spectra, Coord. Chem. Rev. 2015;295: 1–45.
  • 14. Walrand CG, Binnemans K. Handbook on the physics and chemistry of rare earths, Elsevier, Belgium, 1998, pp.101–264.
  • 15. Ekmekçi MK, İlhan M, Ege A, Ayvacıklı M. Microstructural and radioluminescence characteristics of Nd3+ doped columbite-type SrNb2O6 phosphor. J. Fluoresc. 2017;27:973–979.
  • 16. Pullar RC. The Synthesis, Properties, and Applications of Columbite Niobates (M2+Nb2O6): A Critical Review. J. Am. Ceram. Soc., 92;2009:563–577.
  • 17. İlhan M, Ekmekçi MK, Oraltay RG, Başak AS. Structural and near-infrared properties of Nd3+ activated Lu3NbO7 Phosphor. J. Fluoresc. 2017;27:199–203.
  • 18. İlhan M, Ekmekçi MK, Keskin İÇ. Judd–Ofelt parameters and X-ray irradiation results of MNb2O6:Eu3+ (M = Sr, Cd, Ni) phosphors synthesized via a molten salt method. RSC Adv. 2021;11:10451.
  • 19. Scharf W, Weitzel H, Yaeger I, Maartense I,  Wanklyn BM. Magnetic structures of CoNb2O6. J. Magn. Magn. Mater. 1979;13:121-124.
  • 20. Sarvezuk PWC, Kinast EJ, Colin CV, Gusmao MA, Cunha JBM da, Isnard O. New investigation of the magnetic structure of CoNb2O6 columbite. J. Appl. Phys. 2011;109: 07E160.
  • 21. Xu Y, Wang LS, Huang YY, Ni JM, Zhao CC, Dai YF, Pan BY, Hong XC, Chauhan P, Koohpayeh SM, Armitage NP, and Li SY. Quantum critical magnetic excitations in spin-1/2 and Spin-1 chain systems. Physical Review X 2022;12:021020.
  • 22. Lei S, Wang C, Guo D, Gao X, Cheng D, Zhou J, Cheng B, Xiao Y. Synthesis and magnetic properties of MNb2O6 (M = Fe, Co, Ni) nanoparticles. RSC Adv. 2014;4:52740.
  • 23. Ringler JA, Kolesnikov AI, Ross KA. Single-ion properties of the transverse-field Ising model material CoNb2O6. Phys. Rev. B 2022;105:224421.
  • 24. Zhang Y, Liu S, Zhang Y, Xiang M. Microwave dielectric properties of low-fired CoNb2O6 ceramics with B2O3 addition. J Mater Sci: Mater Electron 2016;27:11293–11298.
  • 25. Erdem R, İlhan M, Ekmekçi MK, Erdem Ö. Electrospinning, preparation and photoluminescence properties of CoNb2O6:Dy3+ incorporated polyamide 6 composite fibers. Appl. Surf. Sci. 2017;421:240-246.
  • 26. Ekmekçi MK, İlhan M, Güleryüz LF, Mergen A. Study on molten salt synthesis, microstructural determination and white light emitting properties of CoNb2O6:Dy3+ phosphor. Optik. 2017;128:26–33.
  • 27. Ekmekçi MK, Erdem M, Başak AS, Mergen A. Molten salt synthesis, visible and near-IR region spectral properties of europium or neodymium doped CoNb2O6 columbite niobate. Dalton Trans. 2015;44:5379.
  • 28. Balamurugan C, Maheswari AH, Lee DW. Structural, optical and selective ethanol sensing properties of p-type semiconducting CoNb2O6 nano powder. Sens. Actuators B Chem. 2014;205:289-297.
  • 29. Liu F, Wang B, Yang X, Guan Y, Sun R, Wang Q, Liang X, Sun P, Lu G. High-temperature stabilized zirconia-based sensors utilizing MNb2O6 (M: Co, Ni and Zn) sensing electrodes for detection of NO2. Sens. Actuators B Chem. 2016;232:523–530.
  • 30. Hanawa T, Shinkawa K, Ishikawa M, Miyatani K, Saito K, Kohn K. Anisotropic spesific heat of CoNb2O6 in magnetic fields. J. Phys. Soc. Japan 1994;63:2706-2715.
  • 31. Liang T, Koohpayeh SM, Krizan JW, McQueen TM, Cava RJ, Ong NP. Heat capacity peak at the quantum critical point of the transverse Ising magnet CoNb2O6. Nat. Commun. 2015;6:7611.
  • 32. Mulla IS, Natarajan N, Gaikwad AB, Samuel V, Guptha UN, Ravi V. A coprecipitation technique to prepare CoTa2O6 and CoNb2O6. Mater. Lett. 2007;61:2127–2129.
  • 33. Felten EJ, Sprang PG, Rosen S. Phase Relations in the System CoNb2O6-CoTa2O6. J. Am. Ceram. 1966;49:273-276.
  • 34. İlhan M, Keskin İÇ, Gültekin S. Assessing of photoluminescence and thermoluminescence properties of Dy3+ doped white light emitter TTB-lead metatantalate phosphor. J. Electron. Mater. 2020;49:2436-2449.
  • 35. Saraf R, Shivakumara C, Behera S, Nagabhushana H, Dhananjaya N. Photoluminescence, photocatalysis and Judd-Ofelt analysis of Eu3+-activated layered BiOCl phosphors. RSC Adv. 2015;5:4109–4120.
  • 36. Blasse G. Energy transfer between inequivalent Eu2+ ions. Solid State Chem. 1986;62:207–211.
  • 37. Blasse G. Energy transfer in oxidic phosphors. Philips Res. Rep. 1969;24:131-144.
  • 38. Van Uitert LG. Characterization of energy transfer interactions between rare earth ions. J. Electrochem. Soc. 1967;114:1048–1053.
  • 39. Judd BR. Optical Absorption Intensities of Rare-Earth Ions. Phys Rev. 1962;127:750.
  • 40. Ofelt GS. Intensities of crystal spectra of rare‐earth ions. J. Chem. Phys. 1962;37: 511.
  • 41. İlhan M, Keskin İÇ. Analysis of Judd–Ofelt parameters and radioluminescence results of SrNb2O6:Dy3+ phosphors synthesized via molten saltudd BR. Optical absorption intensities of rare-earth ions. Phys. Rev. 1962;127:750. method. Phys. Chem. Chem. Phys. 2020;22:19769.
  • 42. Batsanov SS. Structurnaya refractometria, Moscow ‘‘Visshaya Shkola’’, 1976.
  • 43. Shannon RD, Fischer RX. Empirical electronic polarizabilities in oxides, hydroxides, oxyfluorides, and oxychlorides. Phys. Rev. B. 2006;73:235111.
  • 44. Bokii GB, Koshits MAP. X-ray Structure Analysis, MSU, Moscow, 1964.
  • 45. Korotkov AS, Atuchin VV. Prediction of refractive index of inorganic compound by chemical formula. Opt. Commun. 2008;281:2132–2138.
  • 46. İlhan M, Keskin İÇ. Evaluation of structural behaviour, radioluminescence, Judd-Ofelt analysis and thermoluminescence kinetic parameters of Eu3+ doped TTB–type lead metaniobate phosphor. Phys. B: Condens. Matter 2020;585:412106.
  • 47. İlhan M, Güleryüz LF, Keskin İÇ, Katı Mİ. A comparison of spectroscopic properties of Dy3+-doped tetragonal tungsten bronze MTa2O6 (M = Sr, Ba, Pb) phosphors based on Judd–Ofelt parameters. Mater. Sci: Mater. Electron 2022;33:16606–16620.
  • 48. Werts MHV, Jukes RTF, Verhoeven JW. The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes. Phys. Chem. Chem. Phys., 2002;4:1542–1548.

Structural Properties, Photoluminescence, and Judd-Ofelt Parameters of Eu3+- Doped CoNb2O6 Phosphor

Year 2023, Volume: 10 Issue: 3, 745 - 756, 30.08.2023
https://doi.org/10.18596/jotcsa.1294230

Abstract

Trivalent Eu-activated CoNb2O6 phosphors were fabricated using the molten salt method, which provides enhanced homogeneity and low sintering temperature. The ceramic samples were examined by spectral and structural analyses. In X-ray diffractions, the single phase of orthorhombic columbite type CoNb2O6 structure was obtained for 0.5-10 mol% Eu3+ doping concentrations, while a two theta peak shift towards the smaller angles occurred. SEM examinations show an irregular morphology and sub-micron grain sizes. In photoluminescence (PL) spectra, the phosphors showed typical Eu3+ emissions with the 5F0 → 7FJ (J=0, 1, 2, 3, 4) transitions, and high emission peaks were observed at the 5D0 → 7F2 transition. The photoluminescence of CoNb2O6:Eu3+ decreased over 5 mol% because of the concentration quenching. The energy transfer mechanism and critical distance of the phosphor are the dipole-dipole (d–d) interaction, and 15.70 Å, respectively. The spectral features of the phosphors were assessed by calculating the Judd-Ofelt intensity parameters (Ω2, Ω4) from the PL emission spectrum. The low Ω2 parameter values or/and the Ω4>Ω2 trend for CoNb2O6:Eu3+ phosphors were related to the less covalent or more ionic character of the Eu3+–O2˗ bond and the high local symmetry of the Eu3+ sites, while the high Ω4 parameter values may be ascribed to the decrease in the electron density in the ligands.

References

  • 1. Lohan R, Kumar A, Sahu MK, Mor A, Kumar V, Deopa N, Rao AS. Structural, thermal, and luminescence kinetics of Sr4Nb2O9 phosphor doped with Dy3+ ions for cool w-LED applications. J. Mater. Sci: Mater. Electron 2023;34:694.
  • 2. Kanmani GV, Ponnusamy V, Rajkumar G, Kennedy SMM. A new Eu3+-activated milarite-type potassium magnesium zinc silicate red-emitting phosphor for forensic applications. J. Mater Sci: Mater Electron 2023;34:765.
  • 3. Swathi BN, Krushna BRR, Manjunatha K, Wu SY, Subramanian B, Prasad BD, Nagabhushana H. Single phased vivid red-emitting CaLa2ZnO5:Eu3+ nanophosphor: WLEDs, visualization of latent fingerprints and anti-counterfeiting applications, Mater. Res. Bull. 2023;165:112279.
  • 4. Ekmekçi MK, İlhan M, Başak AS, Deniz S. Structural and luminescence properties of Sm3+ doped TTB-type BaTa2O6 ceramic phosphors. J. Fluoresc. 2015;25:1757–1762.
  • 5. Güleryüz LF. Effect of Nd3+ doping on structural, near-Infrared, and cathodoluminescent properties for cadmium tantalate phosphors. JOTCSA. 2023;10:77–88.
  • 6. Hajlaoui T, Pinsard M, Kalhori H, Légaré F, Pignolet A. Second harmonic generation in ferroelectric Ba2EuFeNb4O15-based epitaxial thin films. Opt. Mater. Express  2020;10: 1323–1334.
  • 7. İlhan M, Keskin İÇ. Evaluation of the Structural, near-infrared luminescence, and radioluminescence properties of Nd3+ activated TTB-lead metatantalate phosphors. JOTCSA. 2023;10:453–66.
  • 8. Sheikh S, Hussain F. Structural, Dielectric, and Magnetic Properties of Ba2Bi9-xFe5 +xTi8O39 tetragonal tungsten bronze ceramics. Mater. Res. Express 2023;10:036103.
  • 9. İlhan M, Güleryüz LF. Cathodoluminescence and photoluminescence of BaTa2O6:Sm3+ phosphor depending on the sintering temperature. Chem. Pap. 2022;76:6963-6974.
  • 10. Shrivastava R, Khaparde S. Luminescence studies of diopside doped with various concentrations of Dysprosium (III). Res. Chem. Intermed. 2022;48:969-982.
  • 11. Li J, Wang X, Cui R, Deng C. Synthesis and photoluminescence studies of novel double-perovskite phosphors, Ba2GdTaO6: Eu3+ for WLEDs. Optik 2020;201:163536.
  • 12. İlhan M, Güleryüz LF. Boron doping effect on the structural, spectral properties and charge transfer mechanism of orthorhombic tungsten bronze β-SrTa2O6:Eu3+ phosphor. RSC. Adv. 2023;13:12375.
  • 13. Binnemans K. Interpretation of europium(III) spectra, Coord. Chem. Rev. 2015;295: 1–45.
  • 14. Walrand CG, Binnemans K. Handbook on the physics and chemistry of rare earths, Elsevier, Belgium, 1998, pp.101–264.
  • 15. Ekmekçi MK, İlhan M, Ege A, Ayvacıklı M. Microstructural and radioluminescence characteristics of Nd3+ doped columbite-type SrNb2O6 phosphor. J. Fluoresc. 2017;27:973–979.
  • 16. Pullar RC. The Synthesis, Properties, and Applications of Columbite Niobates (M2+Nb2O6): A Critical Review. J. Am. Ceram. Soc., 92;2009:563–577.
  • 17. İlhan M, Ekmekçi MK, Oraltay RG, Başak AS. Structural and near-infrared properties of Nd3+ activated Lu3NbO7 Phosphor. J. Fluoresc. 2017;27:199–203.
  • 18. İlhan M, Ekmekçi MK, Keskin İÇ. Judd–Ofelt parameters and X-ray irradiation results of MNb2O6:Eu3+ (M = Sr, Cd, Ni) phosphors synthesized via a molten salt method. RSC Adv. 2021;11:10451.
  • 19. Scharf W, Weitzel H, Yaeger I, Maartense I,  Wanklyn BM. Magnetic structures of CoNb2O6. J. Magn. Magn. Mater. 1979;13:121-124.
  • 20. Sarvezuk PWC, Kinast EJ, Colin CV, Gusmao MA, Cunha JBM da, Isnard O. New investigation of the magnetic structure of CoNb2O6 columbite. J. Appl. Phys. 2011;109: 07E160.
  • 21. Xu Y, Wang LS, Huang YY, Ni JM, Zhao CC, Dai YF, Pan BY, Hong XC, Chauhan P, Koohpayeh SM, Armitage NP, and Li SY. Quantum critical magnetic excitations in spin-1/2 and Spin-1 chain systems. Physical Review X 2022;12:021020.
  • 22. Lei S, Wang C, Guo D, Gao X, Cheng D, Zhou J, Cheng B, Xiao Y. Synthesis and magnetic properties of MNb2O6 (M = Fe, Co, Ni) nanoparticles. RSC Adv. 2014;4:52740.
  • 23. Ringler JA, Kolesnikov AI, Ross KA. Single-ion properties of the transverse-field Ising model material CoNb2O6. Phys. Rev. B 2022;105:224421.
  • 24. Zhang Y, Liu S, Zhang Y, Xiang M. Microwave dielectric properties of low-fired CoNb2O6 ceramics with B2O3 addition. J Mater Sci: Mater Electron 2016;27:11293–11298.
  • 25. Erdem R, İlhan M, Ekmekçi MK, Erdem Ö. Electrospinning, preparation and photoluminescence properties of CoNb2O6:Dy3+ incorporated polyamide 6 composite fibers. Appl. Surf. Sci. 2017;421:240-246.
  • 26. Ekmekçi MK, İlhan M, Güleryüz LF, Mergen A. Study on molten salt synthesis, microstructural determination and white light emitting properties of CoNb2O6:Dy3+ phosphor. Optik. 2017;128:26–33.
  • 27. Ekmekçi MK, Erdem M, Başak AS, Mergen A. Molten salt synthesis, visible and near-IR region spectral properties of europium or neodymium doped CoNb2O6 columbite niobate. Dalton Trans. 2015;44:5379.
  • 28. Balamurugan C, Maheswari AH, Lee DW. Structural, optical and selective ethanol sensing properties of p-type semiconducting CoNb2O6 nano powder. Sens. Actuators B Chem. 2014;205:289-297.
  • 29. Liu F, Wang B, Yang X, Guan Y, Sun R, Wang Q, Liang X, Sun P, Lu G. High-temperature stabilized zirconia-based sensors utilizing MNb2O6 (M: Co, Ni and Zn) sensing electrodes for detection of NO2. Sens. Actuators B Chem. 2016;232:523–530.
  • 30. Hanawa T, Shinkawa K, Ishikawa M, Miyatani K, Saito K, Kohn K. Anisotropic spesific heat of CoNb2O6 in magnetic fields. J. Phys. Soc. Japan 1994;63:2706-2715.
  • 31. Liang T, Koohpayeh SM, Krizan JW, McQueen TM, Cava RJ, Ong NP. Heat capacity peak at the quantum critical point of the transverse Ising magnet CoNb2O6. Nat. Commun. 2015;6:7611.
  • 32. Mulla IS, Natarajan N, Gaikwad AB, Samuel V, Guptha UN, Ravi V. A coprecipitation technique to prepare CoTa2O6 and CoNb2O6. Mater. Lett. 2007;61:2127–2129.
  • 33. Felten EJ, Sprang PG, Rosen S. Phase Relations in the System CoNb2O6-CoTa2O6. J. Am. Ceram. 1966;49:273-276.
  • 34. İlhan M, Keskin İÇ, Gültekin S. Assessing of photoluminescence and thermoluminescence properties of Dy3+ doped white light emitter TTB-lead metatantalate phosphor. J. Electron. Mater. 2020;49:2436-2449.
  • 35. Saraf R, Shivakumara C, Behera S, Nagabhushana H, Dhananjaya N. Photoluminescence, photocatalysis and Judd-Ofelt analysis of Eu3+-activated layered BiOCl phosphors. RSC Adv. 2015;5:4109–4120.
  • 36. Blasse G. Energy transfer between inequivalent Eu2+ ions. Solid State Chem. 1986;62:207–211.
  • 37. Blasse G. Energy transfer in oxidic phosphors. Philips Res. Rep. 1969;24:131-144.
  • 38. Van Uitert LG. Characterization of energy transfer interactions between rare earth ions. J. Electrochem. Soc. 1967;114:1048–1053.
  • 39. Judd BR. Optical Absorption Intensities of Rare-Earth Ions. Phys Rev. 1962;127:750.
  • 40. Ofelt GS. Intensities of crystal spectra of rare‐earth ions. J. Chem. Phys. 1962;37: 511.
  • 41. İlhan M, Keskin İÇ. Analysis of Judd–Ofelt parameters and radioluminescence results of SrNb2O6:Dy3+ phosphors synthesized via molten saltudd BR. Optical absorption intensities of rare-earth ions. Phys. Rev. 1962;127:750. method. Phys. Chem. Chem. Phys. 2020;22:19769.
  • 42. Batsanov SS. Structurnaya refractometria, Moscow ‘‘Visshaya Shkola’’, 1976.
  • 43. Shannon RD, Fischer RX. Empirical electronic polarizabilities in oxides, hydroxides, oxyfluorides, and oxychlorides. Phys. Rev. B. 2006;73:235111.
  • 44. Bokii GB, Koshits MAP. X-ray Structure Analysis, MSU, Moscow, 1964.
  • 45. Korotkov AS, Atuchin VV. Prediction of refractive index of inorganic compound by chemical formula. Opt. Commun. 2008;281:2132–2138.
  • 46. İlhan M, Keskin İÇ. Evaluation of structural behaviour, radioluminescence, Judd-Ofelt analysis and thermoluminescence kinetic parameters of Eu3+ doped TTB–type lead metaniobate phosphor. Phys. B: Condens. Matter 2020;585:412106.
  • 47. İlhan M, Güleryüz LF, Keskin İÇ, Katı Mİ. A comparison of spectroscopic properties of Dy3+-doped tetragonal tungsten bronze MTa2O6 (M = Sr, Ba, Pb) phosphors based on Judd–Ofelt parameters. Mater. Sci: Mater. Electron 2022;33:16606–16620.
  • 48. Werts MHV, Jukes RTF, Verhoeven JW. The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes. Phys. Chem. Chem. Phys., 2002;4:1542–1548.
There are 48 citations in total.

Details

Primary Language English
Subjects Instrumental Methods, Inorganic Chemistry
Journal Section RESEARCH ARTICLES
Authors

Mustafa İlhan 0000-0001-7826-9614

Lütfiye Feray Güleryüz 0000-0003-0052-6187

Mete Kaan Ekmekci 0000-0003-2847-3312

Publication Date August 30, 2023
Submission Date May 8, 2023
Acceptance Date June 23, 2023
Published in Issue Year 2023 Volume: 10 Issue: 3

Cite

Vancouver İlhan M, Güleryüz LF, Ekmekci MK. Structural Properties, Photoluminescence, and Judd-Ofelt Parameters of Eu3+- Doped CoNb2O6 Phosphor. JOTCSA. 2023;10(3):745-56.