3-Hydroxypyridine and 3-(Hydroxymethyl)pyridine in the Synthesis of Salts of Aryldithiophosphonic Acids on the Basis of Monoterpenyl Alcohols
Year 2023,
Volume: 10 Issue: 4, 953 - 960, 11.11.2023
Ilyas Nizamov
,
Andrey Yakovlev
,
Ilnar Nizamov
,
Marina Shulaeva
Abstract
3-Hydroxypyridinium and 3-(hydroxymethyl)pyridinium O-terpenyl aryldithiophosphonates were obtained by the reactions of 3-hydroxypyridine and 3-(hydroxymethyl)pyridine with O-terpenyl aryldithiophosphonic acids on the basis of (1R,2S,5R)-(−)-menthol, (1S)-endo-(–)-borneol, racemic isoborneol, and carvacrol. The obtained salts possess high antimicrobial activity against Bacillus cereus and Candida albicans.
Thanks
This paper has been supported by the Kazan Federal University Strategic Academic Leadership Program (“PRIORITY-2030”), and the Russian Foundation for Basic Research (grants no. 18-415-160012-р_Volga Region_а). The authors are grateful to the staff of Distributed Spectral-Analytical Center of Shared Facilities for Study of Structure, Composition and Properties of Substances and Materials of Federal Research Center of Kazan Scientific Center of the Russian Academy of Sciences for their research and assistance in discussing the results. The researchers are thankful to Professor Oscar K. Pozdeev, Kazan State Medical Academy, Department of Microbiology, for biological evaluation.
References
- 1. Encyclopedia of Endocrine Diseases. I Huhtaniemi, L Martini Eds. 2th ed. Academic Press; 2018. Vol. 15. ISBN 978-0-12-812200-6
- 2. Volchegorskii IA, Rassokhina LM, Miroshnichenko IIu. Antihypoxic effect of 3-hydroxypyridine and succinic acid derivatives and their nootropic action in alloxan diabetes. Eksp Klin Farmakol. 2011;74(12):27–32.
- 3. Yasnetsov VV, Skachilova SYa, Sernov LN, Voronina TA. Synthesis and pharmacological properties of a new 3-hydroxypyridine derivative. Pharm Chem J. 2012;46:199–202. Available from: <URL>.
- 4. Volchegorskii IA, Miroshnichenko IY, Rassokhina LM, Faizullin RM, Malkin MP, Pryakhina KE, Kalugina AV. Comparative analysis of the anxiolytic effects of 3-hydroxypyridine and succinic acid derivatives. Bull Exp Biology Med. 2015;158(6)756–61. Available from: <URL>.
- 5. Vazhnichaya YeM, Mokliak YeV, Kurapov YuA, Zabozlaev AA. Role of mexidol (2-ethyl-6-methyl-3-hydroxypyridine succinate) in the obtaining of stabilized magnetite nanoparticles for biomedical application. Biomeditsinskaya Khimiya. 2015;61(3)384–88. Available from: <URL>.
- 6. Kolesnichenko PD, Scheblykina OV, Nesterova NI, Scheblykin DV, Nesterov AV, Pokrovskiy MV, Zhuchenko MA, Tverskoy AV, Reznikov KM. Additive neuroprotective effect of 3-hydroxypyridine derivatives and human erythropoetin analogue on a hemorrhagic stroke model in rats. Pharmacy & Pharmacology. 2020;8(3):169–180. Available from: <URL>.
- 7. Shcheblykina OV, Shcheblykin DV, Trunov KS, Danilenko AP, Lipatov VS. Experimental study of new derivatives of 3-hydroxypyridine as pharmacological agents for the correction of ischemic brain injury after intracerebral hemorrhage. Research Results in Pharmacology. 2022;8(1):71–83. Available from: <URL>.
- 8. Nesterova NI, Shcheblykina OV, Kolesnichenko PD, Nesterov AV, Shcheblykin DV, Popova IA, Yakovlev DV. Neuroprotective effects of taurine and 3-hydroxypyridine derivatives in the intracerebral hemorrhage model in rats. Research Results in Pharmacology. 2019;5(3):87–94. Available from: <URL>.
- 9. Agarkova АА, Pokrovsky MV, Kolesnichenko PD, Nesterov AV. The effect of new derivatives of 3-hydroxypyridine on the development of brain edema in bacterial purulent meningitis in experimental conditions. Siberian Sci Med J. 2021;41(3):32−37. Available from: <DOI>.
- 10. Mariño L, Pauwels K, Casasnovas R, Sanchis P, Vilanova B, Muñoz F, Donoso J, Adrover M. Ortho-methylated 3-hydroxypyridines hinder hen egg-white lysozyme fibrillogenesis. Sci Rep. 2015;(5):12052. Available from: <URL>.
- 11. Massoud A, SaadAllah M, Dahran NA, Nasr NE, El-Fkharany I, Ahmed MS, Alsharif KF, Elmahallawy EK, Derbalah A. Toxicological effects of malathion at low dose on wister male rats with respect to biochemical and histopathological alterations. Front. Environ. Sci. 2022;10:860359. Available from: <URL>.
- 12. Razzaque MSh. Phosphate toxicity: new insights into an old problem. Clin. Sci. (Lond.) 2011;120(3):91−7. Available from: <URL>.
- 13. Nizamov IS, Salikhov RZ, Timushev ID, Nikitin YeN, Nizamov ID, Yakimov VYu, Shulaeva MP, Pozdeev OK, Batyeva ES, Cherkasov RA, Ponomareva AS. Pyridinium salts of dithiophosphoric acids on the basis of nicotinic acids and their isomers, 3-hydroxypyridine, and 3-pyridinemethanol. Phosphorus, Sulfur, and Silicon, and the Related Elements. 2020;193(3): 226−230. Available from: <URL>.
- 14. Nizamov IS, Belov TG, Nizamov ID, Mavrov EA, Davletshin RR, Cherkasov RA. Reactions of bis-dithiophosphonic acids with 3-hydroxypyridine and 3-(hydroxymethyl)pyridine. Russ. J. Gen. Chem. 2022;92(7):1–8. Available from: <URL>.
- 15. Sofronov AV, Almetkina LA, Nikitin EN, Nizamov IS, Cherkasov RA. Optically active aryldithiophosphonic acids and their salts based on L-(−)-menthol and D-(+)-menthol. Russ. J. Org. Chem. 2010;46(2):300–301. Available from: <URL>.
- 16. Lecher HZ, Greenwood RA, Whitehouse KC, Chao TH. The phosphonation of aromatic compounds with phosphorus pentasulfide. J. Amer. Chem. Soc. 1956;78:5018–5022. Available from: <URL>.
- 17. Nizamov IS, Gabdullina GT, Al’metkina LA, Shamilov RR, Batyeva ES, Cherkasov RA. (1S)-endo-(−)-Borneol in the synthesis of optically active phosphorus dithioacids. Russ. J. Gen. Chem. 2012;82(10):1751–1752. Available from: <URL>.
- 18. Nizamov IS, Gabdullina GT, Al’metkina LA, Shamilov RR, Cherkasov RA. Thiophosphorylation of thymol with phosphorus sulfides. Russ J. Gen. Chem. 2013;49(1):145−146. Available from: <URL>.
- 19. Katritzky AR, Ramsden ChA, Joule JA, Zhdankin VV. Handbook of Heterocyclic Chemistry. 3d ed. Elsevier; 2010. Available from: <URL>.
- 20. Crutchfield MM, Dungan CH, Letcher JH, Mark V, Van Wazer JR. Topics in Phosphorus Chemistry. Vol. 5 (M Grayson, EJ Griffith Eds.). New York: John Wiley & Sons. 1967. 492 p.
- 21. Colthup NB, Daly LH, Wiberley SE. Introduction to Infrared and Raman Spectroscopy, New York: Academic Press, Inc. 1964. 511 p.
- 22. Suner SS, Sahiner M, Ayyala RS, Sahiner N. Degradable and non-degradable chondroitin sulfate particles with the controlled antibiotic release for bacterial infections. Pharmaceutics 2022;14:1739. Available from: <URL>.
- 23. Kohler JR, Casadevall A, Perfect J. The spectrum of fungi that infects humans. Cold Spring Harb. Perspect. Med. 2015;5:a019273. Available from: <URL>.
Year 2023,
Volume: 10 Issue: 4, 953 - 960, 11.11.2023
Ilyas Nizamov
,
Andrey Yakovlev
,
Ilnar Nizamov
,
Marina Shulaeva
References
- 1. Encyclopedia of Endocrine Diseases. I Huhtaniemi, L Martini Eds. 2th ed. Academic Press; 2018. Vol. 15. ISBN 978-0-12-812200-6
- 2. Volchegorskii IA, Rassokhina LM, Miroshnichenko IIu. Antihypoxic effect of 3-hydroxypyridine and succinic acid derivatives and their nootropic action in alloxan diabetes. Eksp Klin Farmakol. 2011;74(12):27–32.
- 3. Yasnetsov VV, Skachilova SYa, Sernov LN, Voronina TA. Synthesis and pharmacological properties of a new 3-hydroxypyridine derivative. Pharm Chem J. 2012;46:199–202. Available from: <URL>.
- 4. Volchegorskii IA, Miroshnichenko IY, Rassokhina LM, Faizullin RM, Malkin MP, Pryakhina KE, Kalugina AV. Comparative analysis of the anxiolytic effects of 3-hydroxypyridine and succinic acid derivatives. Bull Exp Biology Med. 2015;158(6)756–61. Available from: <URL>.
- 5. Vazhnichaya YeM, Mokliak YeV, Kurapov YuA, Zabozlaev AA. Role of mexidol (2-ethyl-6-methyl-3-hydroxypyridine succinate) in the obtaining of stabilized magnetite nanoparticles for biomedical application. Biomeditsinskaya Khimiya. 2015;61(3)384–88. Available from: <URL>.
- 6. Kolesnichenko PD, Scheblykina OV, Nesterova NI, Scheblykin DV, Nesterov AV, Pokrovskiy MV, Zhuchenko MA, Tverskoy AV, Reznikov KM. Additive neuroprotective effect of 3-hydroxypyridine derivatives and human erythropoetin analogue on a hemorrhagic stroke model in rats. Pharmacy & Pharmacology. 2020;8(3):169–180. Available from: <URL>.
- 7. Shcheblykina OV, Shcheblykin DV, Trunov KS, Danilenko AP, Lipatov VS. Experimental study of new derivatives of 3-hydroxypyridine as pharmacological agents for the correction of ischemic brain injury after intracerebral hemorrhage. Research Results in Pharmacology. 2022;8(1):71–83. Available from: <URL>.
- 8. Nesterova NI, Shcheblykina OV, Kolesnichenko PD, Nesterov AV, Shcheblykin DV, Popova IA, Yakovlev DV. Neuroprotective effects of taurine and 3-hydroxypyridine derivatives in the intracerebral hemorrhage model in rats. Research Results in Pharmacology. 2019;5(3):87–94. Available from: <URL>.
- 9. Agarkova АА, Pokrovsky MV, Kolesnichenko PD, Nesterov AV. The effect of new derivatives of 3-hydroxypyridine on the development of brain edema in bacterial purulent meningitis in experimental conditions. Siberian Sci Med J. 2021;41(3):32−37. Available from: <DOI>.
- 10. Mariño L, Pauwels K, Casasnovas R, Sanchis P, Vilanova B, Muñoz F, Donoso J, Adrover M. Ortho-methylated 3-hydroxypyridines hinder hen egg-white lysozyme fibrillogenesis. Sci Rep. 2015;(5):12052. Available from: <URL>.
- 11. Massoud A, SaadAllah M, Dahran NA, Nasr NE, El-Fkharany I, Ahmed MS, Alsharif KF, Elmahallawy EK, Derbalah A. Toxicological effects of malathion at low dose on wister male rats with respect to biochemical and histopathological alterations. Front. Environ. Sci. 2022;10:860359. Available from: <URL>.
- 12. Razzaque MSh. Phosphate toxicity: new insights into an old problem. Clin. Sci. (Lond.) 2011;120(3):91−7. Available from: <URL>.
- 13. Nizamov IS, Salikhov RZ, Timushev ID, Nikitin YeN, Nizamov ID, Yakimov VYu, Shulaeva MP, Pozdeev OK, Batyeva ES, Cherkasov RA, Ponomareva AS. Pyridinium salts of dithiophosphoric acids on the basis of nicotinic acids and their isomers, 3-hydroxypyridine, and 3-pyridinemethanol. Phosphorus, Sulfur, and Silicon, and the Related Elements. 2020;193(3): 226−230. Available from: <URL>.
- 14. Nizamov IS, Belov TG, Nizamov ID, Mavrov EA, Davletshin RR, Cherkasov RA. Reactions of bis-dithiophosphonic acids with 3-hydroxypyridine and 3-(hydroxymethyl)pyridine. Russ. J. Gen. Chem. 2022;92(7):1–8. Available from: <URL>.
- 15. Sofronov AV, Almetkina LA, Nikitin EN, Nizamov IS, Cherkasov RA. Optically active aryldithiophosphonic acids and their salts based on L-(−)-menthol and D-(+)-menthol. Russ. J. Org. Chem. 2010;46(2):300–301. Available from: <URL>.
- 16. Lecher HZ, Greenwood RA, Whitehouse KC, Chao TH. The phosphonation of aromatic compounds with phosphorus pentasulfide. J. Amer. Chem. Soc. 1956;78:5018–5022. Available from: <URL>.
- 17. Nizamov IS, Gabdullina GT, Al’metkina LA, Shamilov RR, Batyeva ES, Cherkasov RA. (1S)-endo-(−)-Borneol in the synthesis of optically active phosphorus dithioacids. Russ. J. Gen. Chem. 2012;82(10):1751–1752. Available from: <URL>.
- 18. Nizamov IS, Gabdullina GT, Al’metkina LA, Shamilov RR, Cherkasov RA. Thiophosphorylation of thymol with phosphorus sulfides. Russ J. Gen. Chem. 2013;49(1):145−146. Available from: <URL>.
- 19. Katritzky AR, Ramsden ChA, Joule JA, Zhdankin VV. Handbook of Heterocyclic Chemistry. 3d ed. Elsevier; 2010. Available from: <URL>.
- 20. Crutchfield MM, Dungan CH, Letcher JH, Mark V, Van Wazer JR. Topics in Phosphorus Chemistry. Vol. 5 (M Grayson, EJ Griffith Eds.). New York: John Wiley & Sons. 1967. 492 p.
- 21. Colthup NB, Daly LH, Wiberley SE. Introduction to Infrared and Raman Spectroscopy, New York: Academic Press, Inc. 1964. 511 p.
- 22. Suner SS, Sahiner M, Ayyala RS, Sahiner N. Degradable and non-degradable chondroitin sulfate particles with the controlled antibiotic release for bacterial infections. Pharmaceutics 2022;14:1739. Available from: <URL>.
- 23. Kohler JR, Casadevall A, Perfect J. The spectrum of fungi that infects humans. Cold Spring Harb. Perspect. Med. 2015;5:a019273. Available from: <URL>.