Research Article
BibTex RIS Cite

Biosynthetic Gold Nanoparticles as Sensitive and Selective Colorimetric Method for Mercury Ions

Year 2023, Volume: 10 Issue: 4, 877 - 886, 11.11.2023
https://doi.org/10.18596/jotcsa.1300270

Abstract

Gold nanoparticles (AuNPs) are widely studied materials that have intense applications in various fields. Different methods use to synthesize the AuNPs, one of them is eco-friendly biological method, known as "green synthesis" a simple and inexpensive method. The Synthesis of AuNPs, using ginger extract is described here. The components found in ginger work as a stabilizing and reducing agent. Hydrogen tetrachloroaurate (HAuCl4) are mixed with the ginger extract to produce AuNPs. The Surface Plasmon Resonance (SPR) measured at λmax = 540 nm. UV-Vis, FTIR and Zeta potential are used to identify AuNPs, as well as AFM and SEM. Data indicate that AuNPs has a spherical structure. The results demonstrate that AuNPs stabilized by ascorbic acid were used as a colorimetric probe for Hg2+ ions, based on the production of (Au-Hg) amalgamate which made changes in their absorbance, due to its ability to reduce Hg2+ to Hg0, to enhance amalgamation. Practically, this procedure has successfully worked to detect Hg2+ in tap water as a sensitive and selective probe with upper limit of detection equal to 120 µM as well as the limit of detection (LOD) equal to 0.65 µM, so the method proved to be sensitive and selective probe.

Supporting Institution

Mustansiriyah University, Alkarkh University of Science

Thanks

The authors would like to thank Mustansiriyah University (www.uomustansiriyah.edu.iq) Baghdad-Iraq for its support in the present work.

References

  • 1. Kaehler TJCc. Nanotechnology: basic concepts and definitions. 1994;40(9):1797-9.
  • 2.Shamkhy ET, Oda AMJIjc. Gold Nanoparticle Capped Citrate as a Ligand for Chromium(III) Ion:Optimization and Its Application in Contaminated Tap Water. 2022; 22(4): 1025-34.
  • 3. Ketan B Narendra BP Sushmita VP Vaishnavi KP Pratik CSJAJoPT. Metal based Nanomaterial’s (Silver and Gold): Synthesis and Biomedical application. 2020; 10(2):97-6.
  • 4. Farhan SA Dadoosh RM Jassim AMN JEJoC. Evaluation of phytochemical, total phenolic and antioxidant activity of carica papaya seed for its use in biosynthesis of gold nanoparticles. 2021;64(8):4301-10.
  • 5. Nallagouni CSR, Gangapuram BR, Karnati PRJRJoP, Technology. Green synthesis of Gold Nanoparticles using leaf extract of Caesalpinia bonducella and its biological Applications. 2021;14(2):1037-40.
  • 6. Sivasankari G, Boobalan S, Deepa DJAJoP, Technology. Dopamine sensor by Gold Nanoparticles Absorbed Redox behaving metal Complex. 2018;8(2):83-7.
  • 7. Renugadevi K, Kumar N, Nachiyar CVJRJoP, Technology. Phytosynthesis of Silver Nanoparticle using Ginger extract as a Reducing agent by Microwave Irradiation method and invitro Evaluation of its Antibacterial activity and Cytotoxicity. 2017;10(12):4142-6.
  • 8. Prathyusha P, Sundararajan RJRJoP, Technology. UV spectrophotometric method for determination of Bilastine in bulk and pharmaceutical formulation. 2020;13(2):933-8.
  • 9. Senthilnathan B, Vivekanandan K, Bhavya E, Priya BSJRJoP, Technology. Impact of Nanoparticulate Drug Delivery System of Herbal Drug in Control of Diabetes Mellitus. 2019;12(4):1688-94.
  • 10. Ghosh NS, Pandey E, Giilhotra RM, Singh RJRJoP, Technology. Biosynthesis of gold nanoparticles using leaf extract of Desmodium gangeticum and their antioxidant activity. 2020;13(6):2685-9.
  • 11. Daniel M-C, Astruc DJCr. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. 2004;104(1):293-346.
  • 12. Rao C, Cheetham AJJoMC. Science and technology of nanomaterials: current status and future prospects. 2001;11(12):2887-94.
  • 13. Selin NEJAroe, resources. Global biogeochemical cycling of mercury: a review. 2009;34:43-63.
  • 14. Balali-Mood M Naseri K Tahergorabi Z Khazdair MR Sadeghi M JFP Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. 2021; 12:643972.
  • 15. Xu D, Yu S, Yin Y, Wang S, Lin Q, Yuan ZJFiC. Sensitive colorimetric Hg2+ detection via amalgamation-mediated shape transition of gold nanostars. 2018;6:566.
  • 16. Li Q, Zhang Z, Wang ZJACA. Determination of Hg2+ by on-line separation and pre-concentration with atmospheric-pressure solution-cathode glow discharge atomic emission spectrometry. 2014;845:7-14.
  • 17. Wang X, Liu F, Shao Q, Yin Z, Wang L, Fu ZJAM. A novel chemiluminescent immunochromatographic assay strip for rapid detection of mercury ions. 2017;9(16):2401-6.
  • 18. Sharma VV, Tonelli D, Guadagnini L, Gazzano MJS, Chemical AB. Copper-cobalt hexacyanoferrate modified glassy carbon electrode for an indirect electrochemical determination of mercury. 2017;238:9-15.
  • 19. Li D, Li C-Y, Li Y-F, Li Z, Xu FJACA. Rhodamine-based chemodosimeter for fluorescent determination of Hg2+ in 100% aqueous solution and in living cells. 2016;934:218-25.
  • 20. Zhao Y, Gui L, Chen ZJS, Chemical AB. Colorimetric detection of Hg2+ based on target-mediated growth of gold nanoparticles. 2017;241:262-7.
  • 21. Rasheed T, Bilal M, Nabeel F, Iqbal HM, Li C, Zhou YJSotTE. Fluorescent sensor based models for the detection of environmentally-related toxic heavy metals. 2018;615:476-85.
  • 22. Hatch WR, Ott WLJAC. Determination of submicrogram quantities of mercury by atomic absorption spectrophotometry. 1968;40(14):2085-7.
  • 23. Wu X, Yang W, Liu M, Hou X, Zheng CJJoAAS. Vapor generation in dielectric barrier discharge for sensitive detection of mercury by inductively coupled plasma optical emission spectrometry. 2011;26(6):1204-9.
  • 24. Bendl RF, Madden JT, Regan AL, Fitzgerald NJT. Mercury determination by cold vapor atomic absorption spectrometry utilizing UV photoreduction. 2006;68(4):1366-70.
  • 25. Du J, Jiang L, Shao Q, Liu X, Marks RS, Ma J, et al. Colorimetric detection of mercury ions based on plasmonic nanoparticles. 2013;9(9‐10):1467-81.
  • 26. Chansuvarn W, Tuntulani T, Imyim AJTTiAC. Colorimetric detection of mercury (II) based on gold nanoparticles, fluorescent gold nanoclusters and other gold-based nanomaterials. 2015;65:83-96.
  • 27. Chen G, Guo Z, Zeng G, Tang LJA. Fluorescent and colorimetric sensors for environmental mercury detection. 2015;140(16):5400-43.
  • 28. Xu X, Li Y-F, Zhao J, Li Y, Lin J, Li B, et al. Nanomaterial-based approaches for the detection and speciation of mercury. 2015;140(23):7841-53.
  • 29. Ding Y, Wang S, Li J, Chen LJTTiAC. Nanomaterial-based optical sensors for mercury ions. 2016;82:175-90.
  • 30. Lee JS, Han MS, Mirkin CAJACIE. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA‐functionalized gold nanoparticles. 2007;46(22):4093-6.
  • 31. Priyaa GH, Satyan KBJJEN. Biological synthesis of silver nanoparticles using ginger (Zingiber officinale) extract. 2014;3(4):32-40.
  • 32. Xin Lee K, Shameli K, Miyake M, Kuwano N, Bt Ahmad Khairudin NB, Bt Mohamad SE, et al. Green Synthesis of Gold Nanoparticles Using Aqueous Extract ofGarcinia mangostanaFruit Peels. 2016;2016:1-7.
  • 33. Kumar SS, Venkateswarlu P, Rao VR, Rao GNJINL. Synthesis, characterization and optical properties of zinc oxide nanoparticles. 2013;3:1-6.
  • 34. Weiss M, Fan J, Claudel M, Sonntag T, Didier P, Ronzani C, et al. Density of surface charge is a more predictive factor of the toxicity of cationic carbon nanoparticles than zeta potential. 2021;19:1-19.
  • 35. Nirmala S, Ravichandiran V, Vijayalakshmi A, Nadanasabapathi PJRJoP, Technology. Protective effect of Gymnemic acid isolated from Gymnema sylvestre leaves coated Chitosan reduced gold nanoparticles in hyperlipedimia and Diabetes Induced vascular tissue damage in Rats. 2018;11(3):1193-206.
  • 36. Luo L-B, Yu S-H, Qian H-S, Zhou TJJotACS. Large-scale fabrication of flexible silver/cross-linked poly (vinyl alcohol) coaxial nanocables by a facile solution approach. 2005;127(9):2822-3.
  • 37. Ahmed MA, Jassim A, AL-Ameri SAJPA. Selective Colorimetric Mercury Ions Sensing in Different Samples Using Silver Nanoparticles Prepared from Ginger Extract. 2020;20(2):5505-15.
  • 38. Jassim AMN, Mohammed MT, Farhan SA, Dadoosh RM, Majeed ZN, Abdula AMJJoPS, et al. Green synthesis of silver nanoparticles using Carica papaya juice and study of their biochemical application. 2019;11(3):1025-34.
  • 39. Mukundan D, Mohankumar R, Vasanthakumari RJMTP. Green synthesis of silver nanoparticles using leaves extract of Bauhinia tomentosa linn and its invitro anticancer potential. 2015;2(9):4309-16.
  • 40. Lal SS, Nayak PJIjosi, discoveries. Green synthesis of gold nanoparticles using various extract of plants and spices. 2012;2(23):325-50.
  • 41. Hadi MY, Hameed IHJRJoP, Technology. Uses of gas chromatography-mass spectrometry (GC-MS) technique for analysis of bioactive chemical compounds of lepidium sativum: a review. 2017;10(11):4039-42.
  • 42. Hussein HJ, Hameed IH, Hadi MYJRJoP, Technology. Using gas chromatography-mass spectrometry (GC-MS) technique for analysis of bioactive compounds of methanolic leaves extract of Lepidium sativum. 2017;10(11):3981-9.
  • 43. Balakumaran M, Ramachandran R, Balashanmugam P, Mukeshkumar D, Kalaichelvan PJMr. Mycosynthesis of silver and gold nanoparticles: optimization, characterization and antimicrobial activity against human pathogens. 2016;182:8-20.
  • 44. Iravani SJGC. Green synthesis of metal nanoparticles using plants. 2011;13(10):2638-50.
  • 45. Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan PJSAPAM, Spectroscopy B. Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. 2012;93:95-9.
  • 46. Jagtap UB, Bapat VAJIc, products. Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. 2013;46:132-7.
  • 47. Awad MA, Hendi AA, Ortashi KM, Elradi DF, Eisa NE, Al-lahieb LA, et al. Silver nanoparticles biogenic synthesized using an orange peel extract and their use as an anti-bacterial agent. 2014;9(3):34-40.
  • 48. Sadeghi B, Gholamhoseinpoor FJSAPAM, Spectroscopy B. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. 2015;134:310-5.
  • 49. Nirmalraj PN, Lutz T, Kumar S, Duesberg GS, Boland JJJNl. Nanoscale mapping of electrical resistivity and connectivity in graphene strips and networks. 2011;11(1):16-22.
  • 50. Mathaweesansurn A, Vittayakorn N, Detsri EJM. Highly Sensitive and Selective Colorimetric Sensor of Mercury (II) Based on Layer–by–Layer Deposition of Gold/Silver Bimetallic Nanoparticles.2020; 25(19):4443.
  • 51. Yanli Z,Hui D,Lantao L,Miaomiao L,Kaixia X,Maotian XJSaABC,. Selective and sensitive colorimetric sensor of mercury (II) based on gold nanoparticles and 4-mercaptophenylboronic acid.2014; 196, 106-11.
  • 52. Deshpande K, Thekkedath AJoWaEN. Selective determination of mercury (II) in coastal water using bio- functionalized gold nanoparticles. 2022; 7(4): 370-79
Year 2023, Volume: 10 Issue: 4, 877 - 886, 11.11.2023
https://doi.org/10.18596/jotcsa.1300270

Abstract

References

  • 1. Kaehler TJCc. Nanotechnology: basic concepts and definitions. 1994;40(9):1797-9.
  • 2.Shamkhy ET, Oda AMJIjc. Gold Nanoparticle Capped Citrate as a Ligand for Chromium(III) Ion:Optimization and Its Application in Contaminated Tap Water. 2022; 22(4): 1025-34.
  • 3. Ketan B Narendra BP Sushmita VP Vaishnavi KP Pratik CSJAJoPT. Metal based Nanomaterial’s (Silver and Gold): Synthesis and Biomedical application. 2020; 10(2):97-6.
  • 4. Farhan SA Dadoosh RM Jassim AMN JEJoC. Evaluation of phytochemical, total phenolic and antioxidant activity of carica papaya seed for its use in biosynthesis of gold nanoparticles. 2021;64(8):4301-10.
  • 5. Nallagouni CSR, Gangapuram BR, Karnati PRJRJoP, Technology. Green synthesis of Gold Nanoparticles using leaf extract of Caesalpinia bonducella and its biological Applications. 2021;14(2):1037-40.
  • 6. Sivasankari G, Boobalan S, Deepa DJAJoP, Technology. Dopamine sensor by Gold Nanoparticles Absorbed Redox behaving metal Complex. 2018;8(2):83-7.
  • 7. Renugadevi K, Kumar N, Nachiyar CVJRJoP, Technology. Phytosynthesis of Silver Nanoparticle using Ginger extract as a Reducing agent by Microwave Irradiation method and invitro Evaluation of its Antibacterial activity and Cytotoxicity. 2017;10(12):4142-6.
  • 8. Prathyusha P, Sundararajan RJRJoP, Technology. UV spectrophotometric method for determination of Bilastine in bulk and pharmaceutical formulation. 2020;13(2):933-8.
  • 9. Senthilnathan B, Vivekanandan K, Bhavya E, Priya BSJRJoP, Technology. Impact of Nanoparticulate Drug Delivery System of Herbal Drug in Control of Diabetes Mellitus. 2019;12(4):1688-94.
  • 10. Ghosh NS, Pandey E, Giilhotra RM, Singh RJRJoP, Technology. Biosynthesis of gold nanoparticles using leaf extract of Desmodium gangeticum and their antioxidant activity. 2020;13(6):2685-9.
  • 11. Daniel M-C, Astruc DJCr. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. 2004;104(1):293-346.
  • 12. Rao C, Cheetham AJJoMC. Science and technology of nanomaterials: current status and future prospects. 2001;11(12):2887-94.
  • 13. Selin NEJAroe, resources. Global biogeochemical cycling of mercury: a review. 2009;34:43-63.
  • 14. Balali-Mood M Naseri K Tahergorabi Z Khazdair MR Sadeghi M JFP Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. 2021; 12:643972.
  • 15. Xu D, Yu S, Yin Y, Wang S, Lin Q, Yuan ZJFiC. Sensitive colorimetric Hg2+ detection via amalgamation-mediated shape transition of gold nanostars. 2018;6:566.
  • 16. Li Q, Zhang Z, Wang ZJACA. Determination of Hg2+ by on-line separation and pre-concentration with atmospheric-pressure solution-cathode glow discharge atomic emission spectrometry. 2014;845:7-14.
  • 17. Wang X, Liu F, Shao Q, Yin Z, Wang L, Fu ZJAM. A novel chemiluminescent immunochromatographic assay strip for rapid detection of mercury ions. 2017;9(16):2401-6.
  • 18. Sharma VV, Tonelli D, Guadagnini L, Gazzano MJS, Chemical AB. Copper-cobalt hexacyanoferrate modified glassy carbon electrode for an indirect electrochemical determination of mercury. 2017;238:9-15.
  • 19. Li D, Li C-Y, Li Y-F, Li Z, Xu FJACA. Rhodamine-based chemodosimeter for fluorescent determination of Hg2+ in 100% aqueous solution and in living cells. 2016;934:218-25.
  • 20. Zhao Y, Gui L, Chen ZJS, Chemical AB. Colorimetric detection of Hg2+ based on target-mediated growth of gold nanoparticles. 2017;241:262-7.
  • 21. Rasheed T, Bilal M, Nabeel F, Iqbal HM, Li C, Zhou YJSotTE. Fluorescent sensor based models for the detection of environmentally-related toxic heavy metals. 2018;615:476-85.
  • 22. Hatch WR, Ott WLJAC. Determination of submicrogram quantities of mercury by atomic absorption spectrophotometry. 1968;40(14):2085-7.
  • 23. Wu X, Yang W, Liu M, Hou X, Zheng CJJoAAS. Vapor generation in dielectric barrier discharge for sensitive detection of mercury by inductively coupled plasma optical emission spectrometry. 2011;26(6):1204-9.
  • 24. Bendl RF, Madden JT, Regan AL, Fitzgerald NJT. Mercury determination by cold vapor atomic absorption spectrometry utilizing UV photoreduction. 2006;68(4):1366-70.
  • 25. Du J, Jiang L, Shao Q, Liu X, Marks RS, Ma J, et al. Colorimetric detection of mercury ions based on plasmonic nanoparticles. 2013;9(9‐10):1467-81.
  • 26. Chansuvarn W, Tuntulani T, Imyim AJTTiAC. Colorimetric detection of mercury (II) based on gold nanoparticles, fluorescent gold nanoclusters and other gold-based nanomaterials. 2015;65:83-96.
  • 27. Chen G, Guo Z, Zeng G, Tang LJA. Fluorescent and colorimetric sensors for environmental mercury detection. 2015;140(16):5400-43.
  • 28. Xu X, Li Y-F, Zhao J, Li Y, Lin J, Li B, et al. Nanomaterial-based approaches for the detection and speciation of mercury. 2015;140(23):7841-53.
  • 29. Ding Y, Wang S, Li J, Chen LJTTiAC. Nanomaterial-based optical sensors for mercury ions. 2016;82:175-90.
  • 30. Lee JS, Han MS, Mirkin CAJACIE. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA‐functionalized gold nanoparticles. 2007;46(22):4093-6.
  • 31. Priyaa GH, Satyan KBJJEN. Biological synthesis of silver nanoparticles using ginger (Zingiber officinale) extract. 2014;3(4):32-40.
  • 32. Xin Lee K, Shameli K, Miyake M, Kuwano N, Bt Ahmad Khairudin NB, Bt Mohamad SE, et al. Green Synthesis of Gold Nanoparticles Using Aqueous Extract ofGarcinia mangostanaFruit Peels. 2016;2016:1-7.
  • 33. Kumar SS, Venkateswarlu P, Rao VR, Rao GNJINL. Synthesis, characterization and optical properties of zinc oxide nanoparticles. 2013;3:1-6.
  • 34. Weiss M, Fan J, Claudel M, Sonntag T, Didier P, Ronzani C, et al. Density of surface charge is a more predictive factor of the toxicity of cationic carbon nanoparticles than zeta potential. 2021;19:1-19.
  • 35. Nirmala S, Ravichandiran V, Vijayalakshmi A, Nadanasabapathi PJRJoP, Technology. Protective effect of Gymnemic acid isolated from Gymnema sylvestre leaves coated Chitosan reduced gold nanoparticles in hyperlipedimia and Diabetes Induced vascular tissue damage in Rats. 2018;11(3):1193-206.
  • 36. Luo L-B, Yu S-H, Qian H-S, Zhou TJJotACS. Large-scale fabrication of flexible silver/cross-linked poly (vinyl alcohol) coaxial nanocables by a facile solution approach. 2005;127(9):2822-3.
  • 37. Ahmed MA, Jassim A, AL-Ameri SAJPA. Selective Colorimetric Mercury Ions Sensing in Different Samples Using Silver Nanoparticles Prepared from Ginger Extract. 2020;20(2):5505-15.
  • 38. Jassim AMN, Mohammed MT, Farhan SA, Dadoosh RM, Majeed ZN, Abdula AMJJoPS, et al. Green synthesis of silver nanoparticles using Carica papaya juice and study of their biochemical application. 2019;11(3):1025-34.
  • 39. Mukundan D, Mohankumar R, Vasanthakumari RJMTP. Green synthesis of silver nanoparticles using leaves extract of Bauhinia tomentosa linn and its invitro anticancer potential. 2015;2(9):4309-16.
  • 40. Lal SS, Nayak PJIjosi, discoveries. Green synthesis of gold nanoparticles using various extract of plants and spices. 2012;2(23):325-50.
  • 41. Hadi MY, Hameed IHJRJoP, Technology. Uses of gas chromatography-mass spectrometry (GC-MS) technique for analysis of bioactive chemical compounds of lepidium sativum: a review. 2017;10(11):4039-42.
  • 42. Hussein HJ, Hameed IH, Hadi MYJRJoP, Technology. Using gas chromatography-mass spectrometry (GC-MS) technique for analysis of bioactive compounds of methanolic leaves extract of Lepidium sativum. 2017;10(11):3981-9.
  • 43. Balakumaran M, Ramachandran R, Balashanmugam P, Mukeshkumar D, Kalaichelvan PJMr. Mycosynthesis of silver and gold nanoparticles: optimization, characterization and antimicrobial activity against human pathogens. 2016;182:8-20.
  • 44. Iravani SJGC. Green synthesis of metal nanoparticles using plants. 2011;13(10):2638-50.
  • 45. Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan PJSAPAM, Spectroscopy B. Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. 2012;93:95-9.
  • 46. Jagtap UB, Bapat VAJIc, products. Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. 2013;46:132-7.
  • 47. Awad MA, Hendi AA, Ortashi KM, Elradi DF, Eisa NE, Al-lahieb LA, et al. Silver nanoparticles biogenic synthesized using an orange peel extract and their use as an anti-bacterial agent. 2014;9(3):34-40.
  • 48. Sadeghi B, Gholamhoseinpoor FJSAPAM, Spectroscopy B. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. 2015;134:310-5.
  • 49. Nirmalraj PN, Lutz T, Kumar S, Duesberg GS, Boland JJJNl. Nanoscale mapping of electrical resistivity and connectivity in graphene strips and networks. 2011;11(1):16-22.
  • 50. Mathaweesansurn A, Vittayakorn N, Detsri EJM. Highly Sensitive and Selective Colorimetric Sensor of Mercury (II) Based on Layer–by–Layer Deposition of Gold/Silver Bimetallic Nanoparticles.2020; 25(19):4443.
  • 51. Yanli Z,Hui D,Lantao L,Miaomiao L,Kaixia X,Maotian XJSaABC,. Selective and sensitive colorimetric sensor of mercury (II) based on gold nanoparticles and 4-mercaptophenylboronic acid.2014; 196, 106-11.
  • 52. Deshpande K, Thekkedath AJoWaEN. Selective determination of mercury (II) in coastal water using bio- functionalized gold nanoparticles. 2022; 7(4): 370-79
There are 52 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry
Journal Section RESEARCH ARTICLES
Authors

Maryam Abdulghafor Ahmed This is me 0000-0003-1399-4924

Safana Ahmed Farhan This is me 0000-0003-1599-1997

Rasha Moniem Dadoosh This is me 0000-0002-8475-0663

Abdulkadir Mohammed Noori Jassim 0000-0002-9179-2466

Publication Date November 11, 2023
Submission Date May 23, 2023
Acceptance Date July 12, 2023
Published in Issue Year 2023 Volume: 10 Issue: 4

Cite

Vancouver Abdulghafor Ahmed M, Ahmed Farhan S, Moniem Dadoosh R, Mohammed Noori Jassim A. Biosynthetic Gold Nanoparticles as Sensitive and Selective Colorimetric Method for Mercury Ions. JOTCSA. 2023;10(4):877-86.