Research Article
BibTex RIS Cite

Sorption Behaviors of Amorphous Titanium Phosphate Towards Neodymium and Dysprosium

Year 2024, Volume: 11 Issue: 1, 113 - 124, 04.02.2024
https://doi.org/10.18596/jotcsa.1337768

Abstract

Due to the limited supply of critical metals, their recovery from alternative sources has become a very important issue. In particular, end-of-life magnets contain significant amounts of neodymium (Nd) and dysprosium (Dy) ions and are considered secondary sources. The present study focused on the sorption and separation performance of titanium phosphate for Nd and Dy ions in an aqueous solution. In this regard, amorphous titanium phosphate (am‐TiP) was prepared via one‐step precipitation. XRD, SEM‐EDS, FTIR, and BET analysis were utilized to enlighten the morphological, structural, and surface properties of am‐TiP. The uptake of Nd3+ and Dy3+ ions was examined individually and in multiple element solutions depending on solution pH, contact time, metal concentration, and the presence of Co2+ ions. The maximum uptake capacity was 40.16 mg/g at pH 6 for Nd3+ and 26.95 mg/g at pH 4 for Dy3+. Am‐TiP has been observed to exhibit selectivity towards Nd3+ and Dy3+ ions in solutions containing Co2+ ions. The highest desorption yields obtained for Nd3+ and Dy3+ using 1.0 mol/L HCl were 95.2% and 97.4%, respectively.

Supporting Institution

Ege University Scientific Research Projects Coordination Unit

Project Number

FGA‐2021‐22389

References

  • 1. Gupta CK, Krishnamurthy N (Nagaiyar). Extractive metallurgy of rare earths. CRC Press; 2005. 484 p.
  • 2. Maden Tetkik ve Arama Genel Müdürlüğü MTA Doğal Kaynaklar ve Ekonomi Bülteni Yıl: 2012 Sayı: 13 Ocak-Haziran.
  • 3. Riaño S, Binnemans K. Extraction and separation of neodymium and dysprosium from used NdFeB magnets: An application of ionic liquids in solvent extraction towards the recycling of magnets. Green Chem. 2015 May 1;17(5):2931–42. <DOI>
  • 4. Bogart JA, Lippincott CA, Carroll PJ, Schelter EJ. An Operationally Simple Method for Separating the Rare‐Earth Elements Neodymium and Dysprosium. Angewandte Chemie. 2015 Jul 6;127(28):8340–3. <DOI>
  • 5. Binnemans K, Jones PT, Blanpain B, Van Gerven T, Yang Y, Walton A, et al. Recycling of rare earths: A critical review. J Clean Prod 2013;51:1-22. <DOI>
  • 6. Yang Y, Walton A, Sheridan R, Guth K, Gauß R, Gutfleisch O, Buchert M, Steenari BM, Gerven TV, Jones PT, Binnemans K. REE recovery from end-of-life NdFeB permanent magnet scrap: A critical review. J. Sustain. Metall. 2017;3:122-149. <DOI>
  • 7. Tu YJ, Lo SC, You CF. Selective and fast recovery of neodymium from seawater by magnetic iron oxide Fe3O4. Chem Eng J. 2015 Feb 5;262:966–72. <DOI>
  • 8. Durán SV, Lapo B, Meneses M, Sastre AM. Recovery of neodymium (III) from aqueous phase by chitosan-manganese-ferrite magnetic beads. Nanomaterials. 2020 Jun 1;10(6):1–12. <DOI>
  • 9. Gok C. Neodymium and samarium recovery by magnetic nano-hydroxyapatite. J Radioanal Nucl Chem. 2014;301(3):641–51. <DOI>
  • 10. Saha D, Akkoyunlu SD, Thorpe R, Hensley DK, Chen J. Adsorptive recovery of neodymium and dysprosium in phosphorous functionalized nanoporous carbon. J Environ Chem Eng. 2017 Oct 1;5(5):4684–92. <DOI>
  • 11. Komnitsas K, Zaharaki D, Bartzas G, Alevizos G. Adsorption of scandium and neodymium on biochar derived after low-temperature pyrolysis of sawdust. Minerals. 2017 Oct 26;7(10). <DOI>
  • 12. Devi AP, Mishra PM. Biosorption of dysprosium (III) using raw and surface-modified bark powder of Mangifera indica: isotherm, kinetic and thermodynamic studies. Environ Sci Pollut Res. 2019 Mar 8;26(7):6545–56. <DOI>
  • 13. Aghayan H, Mahjoub AR, Khanchi AR. Samarium and dysprosium removal using 11-molybdo-vanadophosphoric acid supported on Zr modified mesoporous silica SBA-15. Chem Eng J. 2013 Jun 1;225:509–19. <DOI>
  • 14. Avdibegović D, Zhang W, Xu J, Regadío M, Koivula R, Binnemans K. Selective ion-exchange separation of scandium(III) over iron(III) by crystalline Α-zirconium phosphate platelets under acidic conditions. Sep Purif Technol. 2019 May 15;215:81–90. <DOI>
  • 15. Xu J, Wiikinkoski E, Koivula R, Zhang W, Ebin B, Harjula R. HF-Free Synthesis of α-Zirconium Phosphate and Its Use as Ion Exchanger for Separation of Nd(III) and Dy(III) from a Ternary Co–Nd–Dy System. J Sustain Metall 2017 Sep 1;3(3):646–58. <DOI>
  • 16. Xu J, Koivula R, Zhang W, Wiikinkoski E, Hietala S, Harjula R. Separation of cobalt, neodymium and dysprosium using amorphous zirconium phosphate. Hydrometallurgy. 2018 Jan 1;175:170–8. <DOI> 17. Şentürk M, İnan S. Sorption and separation studies of Nd(III) and Dy(III) using amorphous tin(IV) phosphate. Chem Pap. 2023 Jul 1;77(7):3835–45. <DOI>
  • 18. Dutta A, Gupta D, Patra AK, Saha B, Bhaumik A. Synthesis of 5-hydroxymethylfurural from carbohydrates using large-pore mesoporous tin phosphate. ChemSusChem. 2014 Mar;7(3):925–33. <DOI>
  • 19. de Vargas Briaõ G, da Silva MGC, Vieira MGA. Efficient and selective adsorption of neodymium on expanded vermiculite. Ind Eng Chem Res. 2021;60(13):4962–74. <DOI>
  • 20. Lewis A, Guéguen C. Using chemometric models to predict the biosorption of low levels of dysprosium by Euglena gracilis. Environ Sci Pollut Res 2022 Aug 1;29(39):58936–49. <DOI>
  • 21. Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 1918;40(9):1361-1403. <DOI>
  • 22. Freundlich H. Über die Adsorption in Lösungen. Z Phys Chem 1907;57U(1):385-470. <DOI>
  • 23. Park HJ, Tavlarides LL. Adsorption of neodymium(III) from aqueous solutions using a phosphorus functionalized adsorbent. Ind Eng Chem Res. 2010 Dec 15;49(24):12567–75. <DOI>
  • 24. Zheng X, Liu E, Zhang F, Yan Y, Pan J. Efficient adsorption and separation of dysprosium from NdFeB magnets in an acidic system by ion imprinted mesoporous silica sealed in a dialysis bag. Green Chem. 2016;18(18):5031–40. <DOI>
  • 25. Koochaki-Mohammadpour SMA, Torab-Mostaedi M, Talebizadeh-Rafsanjani A, Naderi-Behdani F. Adsorption Isotherm, Kinetic, Thermodynamic, and Desorption Studies of Lanthanum and Dysprosium on Oxidized Multiwalled Carbon Nanotubes. J Dispers Sci Technol. 2014 Feb;35(2):244–54. <DOI>
  • 26. Kwon TN, Jeon C. Desorption and regeneration characteristics for previously adsorbed indium ions to phosphorylated sawdust. Environ Eng Res 2012;17(2):65–7. <DOI>
Year 2024, Volume: 11 Issue: 1, 113 - 124, 04.02.2024
https://doi.org/10.18596/jotcsa.1337768

Abstract

Project Number

FGA‐2021‐22389

References

  • 1. Gupta CK, Krishnamurthy N (Nagaiyar). Extractive metallurgy of rare earths. CRC Press; 2005. 484 p.
  • 2. Maden Tetkik ve Arama Genel Müdürlüğü MTA Doğal Kaynaklar ve Ekonomi Bülteni Yıl: 2012 Sayı: 13 Ocak-Haziran.
  • 3. Riaño S, Binnemans K. Extraction and separation of neodymium and dysprosium from used NdFeB magnets: An application of ionic liquids in solvent extraction towards the recycling of magnets. Green Chem. 2015 May 1;17(5):2931–42. <DOI>
  • 4. Bogart JA, Lippincott CA, Carroll PJ, Schelter EJ. An Operationally Simple Method for Separating the Rare‐Earth Elements Neodymium and Dysprosium. Angewandte Chemie. 2015 Jul 6;127(28):8340–3. <DOI>
  • 5. Binnemans K, Jones PT, Blanpain B, Van Gerven T, Yang Y, Walton A, et al. Recycling of rare earths: A critical review. J Clean Prod 2013;51:1-22. <DOI>
  • 6. Yang Y, Walton A, Sheridan R, Guth K, Gauß R, Gutfleisch O, Buchert M, Steenari BM, Gerven TV, Jones PT, Binnemans K. REE recovery from end-of-life NdFeB permanent magnet scrap: A critical review. J. Sustain. Metall. 2017;3:122-149. <DOI>
  • 7. Tu YJ, Lo SC, You CF. Selective and fast recovery of neodymium from seawater by magnetic iron oxide Fe3O4. Chem Eng J. 2015 Feb 5;262:966–72. <DOI>
  • 8. Durán SV, Lapo B, Meneses M, Sastre AM. Recovery of neodymium (III) from aqueous phase by chitosan-manganese-ferrite magnetic beads. Nanomaterials. 2020 Jun 1;10(6):1–12. <DOI>
  • 9. Gok C. Neodymium and samarium recovery by magnetic nano-hydroxyapatite. J Radioanal Nucl Chem. 2014;301(3):641–51. <DOI>
  • 10. Saha D, Akkoyunlu SD, Thorpe R, Hensley DK, Chen J. Adsorptive recovery of neodymium and dysprosium in phosphorous functionalized nanoporous carbon. J Environ Chem Eng. 2017 Oct 1;5(5):4684–92. <DOI>
  • 11. Komnitsas K, Zaharaki D, Bartzas G, Alevizos G. Adsorption of scandium and neodymium on biochar derived after low-temperature pyrolysis of sawdust. Minerals. 2017 Oct 26;7(10). <DOI>
  • 12. Devi AP, Mishra PM. Biosorption of dysprosium (III) using raw and surface-modified bark powder of Mangifera indica: isotherm, kinetic and thermodynamic studies. Environ Sci Pollut Res. 2019 Mar 8;26(7):6545–56. <DOI>
  • 13. Aghayan H, Mahjoub AR, Khanchi AR. Samarium and dysprosium removal using 11-molybdo-vanadophosphoric acid supported on Zr modified mesoporous silica SBA-15. Chem Eng J. 2013 Jun 1;225:509–19. <DOI>
  • 14. Avdibegović D, Zhang W, Xu J, Regadío M, Koivula R, Binnemans K. Selective ion-exchange separation of scandium(III) over iron(III) by crystalline Α-zirconium phosphate platelets under acidic conditions. Sep Purif Technol. 2019 May 15;215:81–90. <DOI>
  • 15. Xu J, Wiikinkoski E, Koivula R, Zhang W, Ebin B, Harjula R. HF-Free Synthesis of α-Zirconium Phosphate and Its Use as Ion Exchanger for Separation of Nd(III) and Dy(III) from a Ternary Co–Nd–Dy System. J Sustain Metall 2017 Sep 1;3(3):646–58. <DOI>
  • 16. Xu J, Koivula R, Zhang W, Wiikinkoski E, Hietala S, Harjula R. Separation of cobalt, neodymium and dysprosium using amorphous zirconium phosphate. Hydrometallurgy. 2018 Jan 1;175:170–8. <DOI> 17. Şentürk M, İnan S. Sorption and separation studies of Nd(III) and Dy(III) using amorphous tin(IV) phosphate. Chem Pap. 2023 Jul 1;77(7):3835–45. <DOI>
  • 18. Dutta A, Gupta D, Patra AK, Saha B, Bhaumik A. Synthesis of 5-hydroxymethylfurural from carbohydrates using large-pore mesoporous tin phosphate. ChemSusChem. 2014 Mar;7(3):925–33. <DOI>
  • 19. de Vargas Briaõ G, da Silva MGC, Vieira MGA. Efficient and selective adsorption of neodymium on expanded vermiculite. Ind Eng Chem Res. 2021;60(13):4962–74. <DOI>
  • 20. Lewis A, Guéguen C. Using chemometric models to predict the biosorption of low levels of dysprosium by Euglena gracilis. Environ Sci Pollut Res 2022 Aug 1;29(39):58936–49. <DOI>
  • 21. Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 1918;40(9):1361-1403. <DOI>
  • 22. Freundlich H. Über die Adsorption in Lösungen. Z Phys Chem 1907;57U(1):385-470. <DOI>
  • 23. Park HJ, Tavlarides LL. Adsorption of neodymium(III) from aqueous solutions using a phosphorus functionalized adsorbent. Ind Eng Chem Res. 2010 Dec 15;49(24):12567–75. <DOI>
  • 24. Zheng X, Liu E, Zhang F, Yan Y, Pan J. Efficient adsorption and separation of dysprosium from NdFeB magnets in an acidic system by ion imprinted mesoporous silica sealed in a dialysis bag. Green Chem. 2016;18(18):5031–40. <DOI>
  • 25. Koochaki-Mohammadpour SMA, Torab-Mostaedi M, Talebizadeh-Rafsanjani A, Naderi-Behdani F. Adsorption Isotherm, Kinetic, Thermodynamic, and Desorption Studies of Lanthanum and Dysprosium on Oxidized Multiwalled Carbon Nanotubes. J Dispers Sci Technol. 2014 Feb;35(2):244–54. <DOI>
  • 26. Kwon TN, Jeon C. Desorption and regeneration characteristics for previously adsorbed indium ions to phosphorylated sawdust. Environ Eng Res 2012;17(2):65–7. <DOI>
There are 25 citations in total.

Details

Primary Language English
Subjects Separation Science, Inorganic Chemistry (Other)
Journal Section RESEARCH ARTICLES
Authors

Süleyman İnan 0000-0003-4185-0979

Project Number FGA‐2021‐22389
Publication Date February 4, 2024
Submission Date August 7, 2023
Acceptance Date October 24, 2023
Published in Issue Year 2024 Volume: 11 Issue: 1

Cite

Vancouver İnan S. Sorption Behaviors of Amorphous Titanium Phosphate Towards Neodymium and Dysprosium. JOTCSA. 2024;11(1):113-24.