A Systematic Review of Synthesis MgO Nanoparticles and Their Applications
Year 2024,
Volume: 11 Issue: 2, 731 - 750, 15.05.2024
Hadia Hemmami
,
Ilham Ben Amor
,
Soumeia Zeghoud
,
Salah Eddine Laouini
,
Emmanel Nleonu
,
Pawel Pohl
,
Jesus Simal-gandara
Abstract
Recently, nanoscale biotechnology has emerged as an essential field of contemporary science and a new era in the study of materials. It draws the attention of many scientists from all over the world due to its versatility in various fields. Many physical, chemical, and biological processes are used to create biomaterials. Among the materials of interest is magnesium oxide (MgO), which can be widely used in medical and biotechnological applications due to its non-toxicity and environmental friendliness. This review article discusses various methods for the synthesis of magnesium oxide nanoparticles (MgONPs), with particular emphasis on recent developments and applications of these nanomaterials.
References
- 1. Silva GA. Introduction to nanotechnology and its applications to medicine. Surg Neurol [Internet]. 2004 Mar 1;61(3):216–20. Available from: <URL>.
- 2. Zeghoud S, Hemmami H, Ben Seghir B, Ben Amor I, Kouadri I, Rebiai A, et al. A review on biogenic green synthesis of ZnO nanoparticles by plant biomass and their applications. Mater Today Commun [Internet]. 2022 Dec 1;33:104747. Available from: <URL>.
- 3. Yang W, Peters JI, Williams RO. Inhaled nanoparticles—A current review. Int J Pharm [Internet]. 2008 May 22;356(1–2):239–47. Available from: <URL>.
- 4. Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases [Internet]. 2007 Dec 1;2(4):MR17–71. Available from: <URL>.
- 5. Imani MM, Safaei M. Optimized Synthesis of Magnesium Oxide Nanoparticles as Bactericidal Agents. J Nanotechnol [Internet]. 2019 Apr 1;2019:6063832. Available from: <URL>.
- 6. Ben Amor I, Emran TB, Hemmami H, Zeghoud S, Laouini SE. Nanomaterials based on chitosan for skin regeneration: an update. Int J Surg [Internet]. 2023 Mar 1;109(3):594–6. Available from: <URL>.
- 7. Tang ZX, Lv BF. MgO nanoparticles as antibacterial agent: preparation and activity. Brazilian J Chem Eng [Internet]. 2014 Sep 1;31(3):591–601. Available from: <URL>.
- 8. Sirota V, Selemenev V, Kovaleva M, Pavlenko I, Mamunin K, Dokalov V, et al. Synthesis of Magnesium Oxide Nanopowder by Thermal Plasma Using Magnesium Nitrate Hexahydrate. Phys Res Int [Internet]. 2016 Feb 17;2016:6853405. Available from: <URL>.
- 9. Krishnamoorthy K, Moon JY, Hyun HB, Cho SK, Kim SJ. Mechanistic investigation on the toxicity of MgO nanoparticles toward cancer cells. J Mater Chem [Internet]. 2012 Nov 13;22(47):24610–7. Available from: <URL>.
- 10. Anu Mary Ealia S, Saravanakumar MP. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Ser Mater Sci Eng [Internet]. 2017 Nov 1;263(3):032019. Available from: <URL>.
- 11. Haldorai Y, Shim JJ. An efficient removal of methyl orange dye from aqueous solution by adsorption onto chitosan/MgO composite: A novel reusable adsorbent. Appl Surf Sci [Internet]. 2014 Feb 15;292:447–53. Available from: <URL>.
- 12. Ngô C, Van de Voorde M. Nanotechnology in a Nutshell [Internet]. Paris: Atlantis Press; 2014. Available from: <URL>.
- 13. Feng SH, Li GH. Hydrothermal and Solvothermal Syntheses. In: Ruren X, Yan X, editors. Modern Inorganic Synthetic Chemistry [Internet]. Elsevier; 2017. p. 73–104. Available from: <URL>.
- 14. Sakka S. Handbook of Sol-gel Science and Technology, Processing Characterization and Applications. Volume 1 Sol-Gel Processing. Dordrecht, Netherlands: Kluwer Academic Publishers; 2005.
- 15. Rane AV, Kanny K, Abitha VK, Thomas S. Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites. In: Synthesis of Inorganic Nanomaterials [Internet]. Elsevier; 2018. p. 121–39. Available from: <URL>.
- 16. Sereni JGR. Reference module in materials science and materials engineering. 2016;
- 17. Pal G, Rai P, Pandey A. Green synthesis of nanoparticles: A greener approach for a cleaner future. In: Kumar Shukla A, Iravani S, editors. Green Synthesis, Characterization and Applications of Nanoparticles [Internet]. Elsevier; 2019. p. 1–26. Available from: <URL>.
- 18. Escudero A, Carrillo-Carrión C, Romero-Ben E, Franco A, Rosales-Barrios C, Castillejos MC, et al. Molecular Bottom-Up Approaches for the Synthesis of Inorganic and Hybrid Nanostructures. Inorganics [Internet]. 2021 Jul 17;9(7):58. Available from: <URL>.
- 19. Soytaş SH, Oğuz O, Menceloğlu YZ. Polymer Nanocomposites With Decorated Metal Oxides. In: Pielichowski K, Majka TM, editors. Polymer Composites with Functionalized Nanoparticles [Internet]. Elsevier; 2019. p. 287–323. Available from: <URL>.
- 20. Danks AE, Hall SR, Schnepp Z. The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Mater Horizons [Internet]. 2016 Feb 29;3(2):91–112. Available from: <URL>.
- 21. Mastuli MS, Ansari NS, Nawawi MA, Mahat AM. Effects of Cationic Surfactant in Sol-gel Synthesis of Nano Sized Magnesium Oxide. APCBEE Procedia [Internet]. 2012 Jan 1;3:93–8. Available from: <URL>.
- 22. Sutapa IW, Wahid Wahab A, Taba P, Nafie NL. Dislocation, crystallite size distribution and lattice strain of magnesium oxide nanoparticles. J Phys Conf Ser [Internet]. 2018 Mar 1;979(1):012021. Available from: <URL>.
- 23. Wahab R, Ansari SG, Dar MA, Kim YS, Shin HS. Synthesis of Magnesium Oxide Nanoparticles by Sol-Gel Process. Mater Sci Forum [Internet]. 2007 Oct;558–559:983–6. Available from: <URL>.
- 24. Boddu VM, Viswanath DS, Maloney SW. Synthesis and Characterization of Coralline Magnesium Oxide Nanoparticles. J Am Ceram Soc [Internet]. 2008 May 6;91(5):1718–20. Available from: <URL>.
- 25. Dercz G, Prusik K, Pająk L, Pielaszek R, Malinowski JJ, Pudło W. Structure studies on nanocrystalline powder of MgO xerogel prepared by sol-gel method. Mater Sci [Internet]. 2009;27(1):201–7. Available from: <URL>.
- 26. Rani N, Chahal S, Chauhan AS, Kumar P, Shukla R, Singh SK. X-ray Analysis of MgO Nanoparticles by Modified Scherer’s Williamson-Hall and Size-Strain Method. Mater Today Proc [Internet]. 2019 Jan 1;12(3):543–8. Available from: <URL>.
- 27. Nassar MY, Mohamed TY, Ahmed IS, Samir I. MgO nanostructure via a sol-gel combustion synthesis method using different fuels: An efficient nano-adsorbent for the removal of some anionic textile dyes. J Mol Liq [Internet]. 2017 Jan 1;225:730–40. Available from: <URL>.
- 28. Mantzaris N V. Liquid-phase synthesis of nanoparticles: Particle size distribution dynamics and control. Chem Eng Sci [Internet]. 2005 Sep 1;60(17):4749–70. Available from: <URL>.
- 29. Swihart MT. Vapor-phase synthesis of nanoparticles. Curr Opin Colloid Interface Sci [Internet]. 2003 Mar 1;8(1):127–33. Available from: <URL>.
- 30. Benrabaa R, Boukhlouf H, Bordes-Richard E, Vannier RN, Barama A. Nanosized nickel ferrite catalysts for CO2 reforming of methane at low temperature: effect of preparation method and acid-base properties. In: Studies in Surface Science and Catalysis [Internet]. Elsevier; 2010. p. 301–4. Available from: <URL>.
- 31. Huang G, Lu CH, Yang HH. Magnetic Nanomaterials for Magnetic Bioanalysis. In: Wang X, Chen X, editors. Novel Nanomaterials for Biomedical, Environmental and Energy Applications [Internet]. Elsevier; 2019. p. 89–109. Available from: <URL>.
- 32. Hornak J. Synthesis, Properties, and Selected Technical Applications of Magnesium Oxide Nanoparticles: A Review. Int J Mol Sci [Internet]. 2021 Nov 25;22(23):12752. Available from: <URL>.
- 33. Tartaj P, Morales M a del P, Veintemillas-Verdaguer S, Gonz lez-Carre o T, Serna CJ. The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys [Internet]. 2003 Jul 7;36(13):R182–97. Available from: <URL>.
- 34. Alaei M, Jalali M, Alimorad A. Simple and Economical Method for the Preparation of MgO Nanostructures with Suitable Surface Area. J Chem Chem Eng [Internet]. 2014;33(1):21–8. Available from: <URL>.
- 35. Kumar R, Sharma A, Kishore N. Preparation and Characterization of MgO Nanoparticles by Co-Precipitation Method Precipitation Method.
- 36. Karthikeyan V, Dhanapandian S, Manoharan C. Characterization and Antibacterial Behavior of MgO-PEG Nanoparticles Synthesized via Co-Precipitation Method. Int Lett Chem Phys Astron [Internet]. 2016 Sep;70:33–41. Available from: <URL>.
- 37. Frantina YI, Fajaroh F, Nazriati, Yahmin, Sumari. Synthesis of MgO/CoFe2O4 nanoparticles with coprecipitation method and its characterization. In: AIP Conference Proceedings [Internet]. American Institute of Physics Inc.; 2021. p. 070003. Available from: <URL>.
- 38. Kushwaha A, Bagchi T. MgO NPs synthesis, capping and enhanced free radical effect on the bacteria and its cell morphology. In: AIP Conference Proceedings [Internet]. American Institute of Physics Inc.; 2018. p. 030010. Available from: <URL>.
- 39. Varma A, Mukasyan AS, Rogachev AS, Manukyan K V. Solution Combustion Synthesis of Nanoscale Materials. Chem Rev [Internet]. 2016 Dec 14;116(23):14493–586. Available from: <URL>.
- 40. Mukasyan AS, Manukyan KV. One- and Two-Dimensional Nanostructures Prepared by Combustion Synthesis. In: Pottathara YB, editor. Nanomaterials Synthesis [Internet]. Elsevier; 2019. p. 85–120. Available from: <URL>.
- 41. Stojanovic BD, Dzunuzovic AS, Ilic NI. Review of methods for the preparation of magnetic metal oxides. In: Stojanovic BD, editor. Magnetic, Ferroelectric, and Multiferroic Metal Oxides [Internet]. Elsevier; 2018. p. 333–59. Available from: <URL>.
- 42. Mukasyan AS, Dinka P. Novel approaches to solution-combustion synthesis of nanomaterials. Int J Self-Propagating High-Temperature Synth [Internet]. 2007 Mar;16(1):23–35. Available from: <URL>.
- 43. Balakrishnan G, Velavan R, Mujasam Batoo K, Raslan EH. Microstructure, optical and photocatalytic properties of MgO nanoparticles. Results Phys [Internet]. 2020 Mar 1;16:103013. Available from: <URL>.
- 44. Rao KV, Sunandana CS. Structure and microstructure of combustion synthesized MgO nanoparticles and nanocrystalline MgO thin films synthesized by solution growth route. J Mater Sci [Internet]. 2008 Jan 29;43(1):146–54. Available from: <URL>.
- 45. Ranjan A, Dawn SS, Jayaprabakar J, Nirmala N, Saikiran K, Sai Sriram S. Experimental investigation on effect of MgO nanoparticles on cold flow properties, performance, emission and combustion characteristics of waste cooking oil biodiesel. Fuel [Internet]. 2018 May 15;220:780–91. Available from: <URL>.
- 46. Tharani K, Jegatha Christy A, Sagadevan S, Nehru LC. Fabrication of Magnesium oxide nanoparticles using combustion method for a biological and environmental cause. Chem Phys Lett [Internet]. 2021 Jan 16;763:138216. Available from: <URL>.
- 47. Kumar D, Yadav LSR, Lingaraju K, Manjunath K, Suresh D, Prasad D, et al. Combustion synthesis of MgO nanoparticles using plant extract: Structural characterization and photoluminescence studies. In: AIP Conference Proceedings [Internet]. American Institute of Physics Inc.; 2015. p. 050145. Available from: <URL>.
- 48. Ng JJ, Leong KH, Sim LC, Oh WD, Dai C, Saravanan P. Environmental remediation using nano-photocatalyst under visible light irradiation: the case of bismuth phosphate. In: Nanomaterials for Air Remediation [Internet]. Elsevier; 2020. p. 193–207. Available from: <URL>.
- 49. Williams MJ, Corr SA. Magnetic Nanoparticles for Targeted Cancer Diagnosis and Therapy. In: Summers H, editor. Nanomedicine [Internet]. Amsterdam, Netherlands: Elsevier; 2013. Available from: <URL>.
- 50. Chircov C, Grumezescu AM, Holban AM. Magnetic Particles for Advanced Molecular Diagnosis. Materials (Basel) [Internet]. 2019 Jul 5;12(13):2158. Available from: <URL>.
- 51. Devaraja PB, Avadhani DN, Prashantha SC, Nagabhushana H, Sharma SC, Nagabhushana BM, et al. Synthesis, structural and luminescence studies of magnesium oxide nanopowder. Spectrochim Acta Part A Mol Biomol Spectrosc [Internet]. 2014 Jan 24;118:847–51. Available from: <URL>.
- 52. Al-Hazmi F, Alnowaiser F, Al-Ghamdi AA, Al-Ghamdi AA, Aly MM, Al-Tuwirqi RM, et al. A new large – Scale synthesis of magnesium oxide nanowires: Structural and antibacterial properties. Superlattices Microstruct [Internet]. 2012 Aug 1;52(2):200–9. Available from: <URL>.
- 53. Ding Y, Zhang G, Wu H, Hai B, Wang L, Qian Y. Nanoscale Magnesium Hydroxide and Magnesium Oxide Powders: Control over Size, Shape, and Structure via Hydrothermal Synthesis. Chem Mater [Internet]. 2001 Feb 1;13(2):435–40. Available from: <URL>.
- 54. Rukh S, Sofi AH, Shah MA, Yousuf S. Antibacterial activity of magnesium oxide nanostructures prepared by hydrothermal method. Asian J Nanosci Mater [Internet]. 1999 Nov 30;2(4):425–30. Available from: <URL>.
- 55. Jeevanandam J, Chan YS, Danquah MK. Biosynthesis and characterization of MgO nanoparticles from plant extracts via induced molecular nucleation. New J Chem [Internet]. 2017 Mar 27;41(7):2800–14. Available from: <URL>.
- 56. Das RK, Pachapur VL, Lonappan L, Naghdi M, Pulicharla R, Maiti S, et al. Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects. Nanotechnol Environ Eng [Internet]. 2017 Dec 9;2(1):18. Available from: <URL>.
- 57. Ali MI, Sharma G, Kumar M, Dut Jasuja N. Biological approach of magnesium oxide nanoparticles synthesize by Spirulina platensis. World J Pharm Res [Internet]. 2015;4(7):1234–41. Available from: <URL>.
- 58. Awwad AM, Ahmad AL. Biosynthesis, characterization, and optical properties of magnesium hydroxide and oxide nanoflakes using Citrus limon leaf extract. Arab J Phys Chem. 2014;1(2):66.
- 59. Bandeira M, Giovanela M, Roesch-Ely M, Devine DM, da Silva Crespo J. Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustain Chem Pharm [Internet]. 2020 Mar 1;15:100223. Available from: <URL>.
- 60. Das B, Moumita S, Ghosh S, Khan MI, Indira D, Jayabalan R, et al. Biosynthesis of magnesium oxide (MgO) nanoflakes by using leaf extract of Bauhinia purpurea and evaluation of its antibacterial property against Staphylococcus aureus. Mater Sci Eng C [Internet]. 2018 Oct 1;91:436–44. Available from: <URL>.
- 61. Jadhav AH, Lim AC, Thorat GM, Jadhav HS, Seo JG. Green solvent ionic liquids: structural directing pioneers for microwave-assisted synthesis of controlled MgO nanostructures. RSC Adv [Internet]. 2016 Mar 29;6(38):31675–86. Available from: <URL>.
- 62. Singh A, Joshi NC, Ramola M. Magnesium oxide Nanoparticles (MgONPs): Green Synthesis, Characterizations and Antimicrobial activity. Res J Pharm Technol [Internet]. 2019 Oct 1;12(10):4644–6. Available from: <URL>.
- 63. Cai L, Liu M, Liu Z, Yang H, Sun X, Chen J, et al. MgONPs Can Boost Plant Growth: Evidence from Increased Seedling Growth, Morpho-Physiological Activities, and Mg Uptake in Tobacco (Nicotiana tabacum L.). Molecules [Internet]. 2018 Dec 19;23(12):3375. Available from: <URL>.
- 64. Wrigglesworth EG, Johnston JH. Mie theory and the dichroic effect for spherical gold nanoparticles: an experimental approach. Nanoscale Adv [Internet]. 2021 Jun 15;3(12):3530–6. Available from: <URL>.
- 65. El-Seedi HR, El-Shabasy RM, Khalifa SAM, Saeed A, Shah A, Shah R, et al. Metal nanoparticles fabricated by green chemistry using natural extracts: biosynthesis, mechanisms, and applications. RSC Adv [Internet]. 2019 Aug 8;9(42):24539–59. Available from: <URL>.
- 66. Khan MI, Akhtar MN, Ashraf N, Najeeb J, Munir H, Awan TI, et al. Green synthesis of magnesium oxide nanoparticles using Dalbergia sissoo extract for photocatalytic activity and antibacterial efficacy. Appl Nanosci [Internet]. 2020 Jul 25;10(7):2351–64. Available from: <URL>.
- 67. Duong THY, Nguyen TN, Oanh HT, Dang Thi TA, Giang LNT, Phuong HT, et al. Synthesis of Magnesium Oxide Nanoplates and Their Application in Nitrogen Dioxide and Sulfur Dioxide Adsorption. J Chem [Internet]. 2019 May 26;2019:4376429. Available from: <URL>.
- 68. Yuvakkumar R, Hong SI. Green Synthesis of Spinel Magnetite Iron Oxide Nanoparticles. Adv Mater Res [Internet]. 2014 Oct 27;1051:39–42. Available from: <URL>.
- 69. Vergheese M, Vishal Sk, Mary Vergheese C. Green synthesis of magnesium oxide nanoparticles using Trigonella foenum-graecum leaf extract and its antibacterial activity. J Pharmacogn Phytochem [Internet]. 2018;7(3):1193–200. Available from: <URL>.
- 70. Younis IY, El-Hawary SS, Eldahshan OA, Abdel-Aziz MM, Ali ZY. Green synthesis of magnesium nanoparticles mediated from Rosa floribunda charisma extract and its antioxidant, antiaging and antibiofilm activities. Sci Rep [Internet]. 2021 Aug 19;11(1):16868. Available from: <URL>.
- 71. Abdallah Y, Ogunyemi SO, Abdelazez A, Zhang M, Hong X, Ibrahim E, et al. The Green Synthesis of MgO Nano-Flowers Using Rosmarinus officinalis L. (Rosemary) and the Antibacterial Activities against Xanthomonas oryzae pv. oryzae. Biomed Res Int [Internet]. 2019 Feb 17;2019:5620989. Available from: <URL>.
- 72. Amina M, Al Musayeib NM, Alarfaj NA, El-Tohamy MF, Oraby HF, Al Hamoud GA, et al. Biogenic green synthesis of MgO nanoparticles using Saussurea costus biomasses for a comprehensive detection of their antimicrobial, cytotoxicity against MCF-7 breast cancer cells and photocatalysis potentials. Mishra YK, editor. PLoS One [Internet]. 2020 Aug 14;15(8):e0237567. Available from: <URL>.
- 73. Sharma G, Soni R, Jasuja ND. Phytoassisted synthesis of magnesium oxide nanoparticles with Swertia chirayaita. J Taibah Univ Sci [Internet]. 2017 May 16;11(3):471–7. Available from: <URL>.
- 74. Fatiqin A, Amrulloh H, Simanjuntak W. Green synthesis of MgO nanoparticles using Moringa oleifera leaf aqueous extract for antibacterial activity. Bull Chem Soc Ethiop [Internet]. 2021 May 7;35(1):161–70. Available from: <URL>.
- 75. Nguyen DTC, Dang HH, Vo DVN, Bach LG, Nguyen TD, Tran T Van. Biogenic synthesis of MgO nanoparticles from different extracts (flower, bark, leaf) of Tecoma stans (L.) and their utilization in selected organic dyes treatment. J Hazard Mater [Internet]. 2021 Feb 15;404:124146. Available from: <URL>.
- 76. Suresh J, Yuvakkumar R, Sundrarajan M, Hong SI. Green Synthesis of Magnesium Oxide Nanoparticles. Adv Mater Res [Internet]. 2014 May;952:141–4. Available from: <URL>.
- 77. Narendhran S, Manikandan M, Shakila PB. Antibacterial, antioxidant properties of Solanum trilobatum and sodium hydroxide-mediated magnesium oxide nanoparticles: a green chemistry approach. Bull Mater Sci [Internet]. 2019 Jun 25;42(3):133. Available from: <URL>.
- 78. Rahmani-Nezhad S, Dianat S, Saeedi M, Hadjiakhoondi A. Characterization and Catalytic Activity of Plant-Mediated MgO Nanoparticles Using Mucuna Pruriens L. Seed Extract and Their Biological Evaluation. J Nanoanalysis [Internet]. 2017;4(4):290–8. Available from: <URL>.
- 79. Prasanth R, Kumar SD, Jayalakshmi A, Singaravelu G, Govindaraju K, Kumar VG. Green synthesis of magnesium oxide nanoparticles and their antibacterial activity. IJMS Vol48(08) [August 2019] [Internet]. 2019;48(08):1210–5. Available from: <URL>.
- 80. Anantharaman A, Sathyabhama S, George M. Green synthesis of magnesium oxide nanoparticles using Aloe Vera and its applications. IJSRD—International J Sci Res Dev. 2016;4(9):20.
- 81. Abinaya S, Kavitha HP, Prakash M. Sustainable Chemistry and Pharmacy.
- 82. Jhansi K, Jayarambabu N, Reddy KP, Reddy NM, Suvarna RP, Rao KV, et al. Biosynthesis of MgO nanoparticles using mushroom extract: effect on peanut (Arachis hypogaea L.) seed germination. 3Biotech [Internet]. 2017 Aug 25;7(4):263. Available from: <URL>.
- 83. Raliya R, Tarafdar JC, Choudhary K, Mal P, Raturi A, Gautam R, et al. Synthesis of MgO Nanoparticles Using Aspergillus Tubingensis TFR-3. J Bionanoscience [Internet]. 2014 Feb 1;8(1):34–8. Available from: <URL>.
- 84. Ibrahem E, Thalij K, Badawy A. Antibacterial Potential of Magnesium Oxide Nanoparticles Synthesized by Aspergillus niger. Biotechnol J Int [Internet]. 2017 Jan 10;18(1):1–7. Available from: <URL>.
- 85. Mohanasrinivasan V, Subathra Devi C, Mehra A, Prakash S, Agarwal A, Selvarajan E, et al. Biosynthesis of MgO Nanoparticles Using Lactobacillus Sp. and its Activity Against Human Leukemia Cell Lines HL-60. Bionanoscience [Internet]. 2018 Mar 5;8(1):249–53. Available from: <URL>.
- 86. Kaul RK, Kumar P, Burman U, Joshi P, Agrawal A, Raliya R, et al. Magnesium and iron nanoparticles production using microorganisms and various salts. Mater Sci [Internet]. 2012 Sep 14;30(3):254–8. Available from: <URL>.
- 87. Essien ER, Atasie VN, Okeafor AO, Nwude DO. Biogenic synthesis of magnesium oxide nanoparticles using Manihot esculenta (Crantz) leaf extract. Int Nano Lett [Internet]. 2020 Mar 23;10(1):43–8. Available from: <URL>.
- 88. Pugazhendhi A, Prabhu R, Muruganantham K, Shanmuganathan R, Natarajan S. Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. J Photochem Photobiol B Biol [Internet]. 2019 Jan 1;190:86–97. Available from: <URL>.
- 89. Dobrucka R. Synthesis of MgO Nanoparticles Using Artemisia abrotanum Herba Extract and Their Antioxidant and Photocatalytic Properties. Iran J Sci Technol Trans A Sci [Internet]. 2018 Jun 2;42(2):547–55. Available from: <URL>.
- 90. Ghidan AY, Al-Antary TM, Awwad AM. Green synthesis of magnesium oxide (MgONPs) nanoparticles using Chamaemel umnobileflowers extract: Effect on Green Peach Aphid. In: The 3rd International Nanotechnology Conference and Expo Italy Madridge Journal Nanotechnology Science. 2018. p. 67.
- 91. Subhan MA, Chandra Saha P, Uddin N, Sarker P. Synthesis, Structure, Spectroscopy and Photocatalytic Studies of Nano Multi-Metal Oxide MgO∙Al2O3∙ZnO and MgO∙Al2O3∙ZnO-Curcumin Composite. Int J Nanosci Nanotechnol [Internet]. 2017 Feb 1;13(1):69–82. Available from: <URL>.
- 92. Srivastava V, Sharma YC, Sillanpää M. Green synthesis of magnesium oxide nanoflower and its application for the removal of divalent metallic species from synthetic wastewater. Ceram Int [Internet]. 2015 Jun 1;41(5):6702–9. Available from: <URL>.
- 93. Sugirtha P, Divya R, Yedhukrishnan R, Suganthi KS, Anusha N, Ponnusami V, et al. Green Synthesis of Magnesium Oxide Nanoparticles Using Brassica oleracea and Punica granatum Peels and their Anticancer and Photocatalytic Activity. Asian J Chem [Internet]. 2015 Jul 1;27(7):2513–7. Available from: <URL>.
- 94. Munjal S, Singh A, Kumar V. Synthesis and characterization of MgO nanoparticles by orange fruit waste through green method. Int J Adv Res Comput Sci. 2017;4(9):36–42.
- 95. Kumara KNS, Nagaswarupa HP, Mahesh KR V, Mylarappa M, Prashantha SC, Siddeshwara DMK, et al. Synthesis and characterization of ZnO/MgO nano particles by curry leaves through green approach and their photocatalytic applications. Int J Adv Res. 2016;4(10):1958–62.
- 96. Umaralikhan L, Jamal Mohamed Jaffar M. Green Synthesis of MgO Nanoparticles and it Antibacterial Activity. Iran J Sci Technol Trans A Sci [Internet]. 2018 Jun 7;42(2):477–85. Available from: <URL>.
- 97. Anantharama NA, Sheethal KS, Mary G. Green synthesis and its applications of magnesium oxide nanoparticles from the seeds of lepedium sativum. Int J Recent Sci Res. 2016;7:14029–32.
- 98. Ogunyemi SO, Zhang F, Abdallah Y, Zhang M, Wang Y, Sun G, et al. Biosynthesis and characterization of magnesium oxide and manganese dioxide nanoparticles using Matricaria chamomilla L. extract and its inhibitory effect on Acidovorax oryzae strain RS-2. Artif Cells, Nanomedicine, Biotechnol [Internet]. 2019 Dec 4;47(1):2230–9. Available from: <URL>.
- 99. Yildirim M, Akarsu H. Preparation of magnesium oxide (MgO) from dolomite by leach-precipitation-pyrohydrolysis process. Physicochem Probl Miner Process [Internet]. 2010;44:257–72. Available from: <URL>.
- 100. Mustafa AMK, Al-Dahan DK, Khachik T V. Laboratory wtudy of MgO preparation from Iraqi dolomite by leach-precipitation–Pyrohydrolysis process. Iraqi Bull Geol Min. 2014;10(3):83–107.
- 101. Kulikova SA, Vinokurov SE, Khamizov RK, Vlasovskikh NS, Belova KY, Dzhenloda RK, et al. The Use of MgO Obtained from Serpentinite in the Synthesis of a Magnesium Potassium Phosphate Matrix for Radioactive Waste Immobilization. Appl Sci [Internet]. 2020 Dec 28;11(1):220. Available from: <URL>.
- 102. Mantilaka MMMGPG, Pitawala HMTGA, Karunaratne DGGP, Rajapakse RMG. Nanocrystalline magnesium oxide from dolomite via poly(acrylate) stabilized magnesium hydroxide colloids. Colloids Surfaces A Physicochem Eng Asp [Internet]. 2014 Feb 20;443:201–8. Available from: <URL>.
- 103. Jassim AK, Salmtori SA, Jassam JA. Sustainable manufacturing process applied to produce magnesium oxide from sea water. IOP Conf Ser Mater Sci Eng [Internet]. 2020 Mar 1;757(1):012021. Available from: <URL>.
- 104. Sirota V, Selemenev V, Kovaleva M, Pavlenko I, Mamunin K, Dokalov V, et al. Preparation of crystalline Mg(OH)2 nanopowder from serpentinite mineral. Int J Min Sci Technol [Internet]. 2018 May 1;28(3):499–503. Available from: <URL>.
- 105. Chen Y, Yang X, Wu L, Tong L, Zhu J. Recovery of Mg from H2SO4 Leaching Solution of Serpentine to Precipitation of High-Purity Mg(OH)2 and 4MgCO3·Mg(OH)2·4H2O. Minerals [Internet]. 2023 Feb 23;13(3):318. Available from: <URL>.
- 106. Ben Amor I, Hemmami H, Laouini SE, Mahboub MS, Barhoum A. Sol-Gel Synthesis of ZnO Nanoparticles Using Different Chitosan Sources: Effects on Antibacterial Activity and Photocatalytic Degradation of AZO Dye. Catalysts [Internet]. 2022 Dec 8;12(12):1611. Available from: <URL>.
- 107. Ben Amor I, Hemmami H, Laouini SE, Abdelaziz AG, Barhoum A. Influence of chitosan source and degree of deacetylation on antibacterial activity and adsorption of AZO dye from water. Biomass Convers Biorefinery [Internet]. 2023 Jan 11;1:1–11. Available from: <URL>.
- 108. Diachenko OV, Opanasuyk AS, Kurbatov DI, Opanasuyk NM, Kononov OK, Nam D, et al. Surface Morphology, Structural and Optical Properties of MgO Films Obtained by Spray Pyrolysis Technique. Acta Phys Pol A [Internet]. 2016 Sep;130(3):805–10. Available from: <URL>.
- 109. Alexander L, Klug HP. Determination of Crystallite Size with the X-Ray Spectrometer. J Appl Phys [Internet]. 1950 Feb 1;21(2):137–42. Available from: <URL>.
- 110. Holzwarth U, Gibson N. The Scherrer equation versus the “Debye-Scherrer equation”. Nat Nanotechnol [Internet]. 2011 Aug 28;6(9):534. Available from: <URL>.
- 111. Al-Tabbakh AA, Karatepe N, Al-Zubaidi AB, Benchaabane A, Mahmood NB. Crystallite size and lattice strain of lithiated spinel material for rechargeable battery by X-ray diffraction peak-broadening analysis. Int J Energy Res [Internet]. 2019 Apr 1;43(5):1903–11. Available from: <URL>.
- 112. Kimiagar S, Abrinaei F. Effect of temperature on the structural, linear, and nonlinear optical properties of MgO-doped graphene oxide nanocomposites. Nanophotonics [Internet]. 2018 Jan 26;7(1):243–51. Available from: <URL>.
- 113. Verma R, Naik KK, Gangwar J, Srivastava AK. Morphology, mechanism and optical properties of nanometer-sized MgO synthesized via facile wet chemical method. Mater Chem Phys [Internet]. 2014 Dec 15;148(3):1064–70. Available from: <URL>.
- 114. Li J, Khalid A, Verma R, Abraham A, Qazi F, Dong X, et al. Silk Fibroin Coated Magnesium Oxide Nanospheres: A Biocompatible and Biodegradable Tool for Noninvasive Bioimaging Applications. Nanomaterials [Internet]. 2021 Mar 10;11(3):695. Available from: <URL>.
- 115. Ben Amor I, Hemmami H, Laouini SE, Temam H Ben, Zaoui H, Barhoum A. Biosynthesis MgO and ZnO nanoparticles using chitosan extracted from Pimelia Payraudi Latreille for antibacterial applications. World J Microbiol Biotechnol [Internet]. 2023 Jan 21;39(1):19. Available from: <URL>.
- 116. Yarbrough R, Davis K, Dawood S, Rathnayake H. A sol–gel synthesis to prepare size and shape-controlled mesoporous nanostructures of binary (II–VI) metal oxides. RSC Adv [Internet]. 2020 Apr 6;10(24):14134–46. Available from: <URL>.
- 117. Sainudeen SS, Asok LB, Varghese A, Nair AS, Krishnan G. Surfactant-driven direct synthesis of a hierarchical hollow MgO nanofiber–nanoparticle composite by electrospinning. RSC Adv [Internet]. 2017 Jul 13;7(56):35160–8. Available from: <URL>.
- 118. Guo Y, Hu J, Wan L. Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices. Adv Mater [Internet]. 2008 Aug 4;20(15):2878–87. Available from: <URL>.
- 119. Sayle DC, Seal S, Wang Z, Mangili BC, Price DW, Karakoti AS, et al. Mapping Nanostructure: A Systematic Enumeration of Nanomaterials by Assembling Nanobuilding Blocks at Crystallographic Positions. ACS Nano [Internet]. 2008 Jun 1;2(6):1237–51. Available from: <URL>.
- 120. Stark J V., Park DG, Lagadic I, Klabunde KJ. Nanoscale Metal Oxide Particles/Clusters as Chemical Reagents. Unique Surface Chemistry on Magnesium Oxide As Shown by Enhanced Adsorption of Acid Gases (Sulfur Dioxide and Carbon Dioxide) and Pressure Dependence. Chem Mater [Internet]. 1996 Jan 1;8(8):1904–12. Available from: <URL>.
- 121. Sutradhar N, Sinhamahapatra A, Pahari SK, Pal P, Bajaj HC, Mukhopadhyay I, et al. Controlled Synthesis of Different Morphologies of MgO and Their Use as Solid Base Catalysts. J Phys Chem C [Internet]. 2011 Jun 30;115(25):12308–16. Available from: <URL>.
- 122. Dobrucka R. Synthesis of MgO Nanoparticles Using Artemisia abrotanum Herba Extract and Their Antioxidant and Photocatalytic Properties. Iran J Sci Technol Trans A Sci [Internet]. 2018 Jun 2;42(2):547–55. Available from: <URL>.
- 123. Sheng O, Jin C, Luo J, Yuan H, Huang H, Gan Y, et al. Mg 2 B 2 O 5 Nanowire Enabled Multifunctional Solid-State Electrolytes with High Ionic Conductivity, Excellent Mechanical Properties, and Flame-Retardant Performance. Nano Lett [Internet]. 2018 May 9;18(5):3104–12. Available from: <URL>.
- 124. Shao Y, Rajput NN, Hu J, Hu M, Liu T, Wei Z, et al. Nanocomposite polymer electrolyte for rechargeable magnesium batteries. Nano Energy [Internet]. 2015 Mar 1;12:750–9. Available from: <URL>.
- 125. Sun W, Sun X, Peng Q, Wang H, Ge Y, Akhtar N, et al. Nano-MgO/AB decorated separator to suppress shuttle effect of lithium–sulfur battery. Nanoscale Adv [Internet]. 2019 Apr 9;1(4):1589–97. Available from: <URL>.
- 126. Zhang R, Tutusaus O, Mohtadi R, Ling C. Magnesium-Sodium Hybrid Battery With High Voltage, Capacity and Cyclability. Front Chem [Internet]. 2018 Dec 10;6:611. Available from: <URL>.
- 127. Saha P, Datta MK, Velikokhatnyi OI, Manivannan A, Alman D, Kumta PN. Rechargeable magnesium battery: Current status and key challenges for the future. Prog Mater Sci [Internet]. 2014 Oct 1;66:1–86. Available from: <URL>.
- 128. Wang J, Wang C, Gong S, Chen Q. Enhancing the Capacitance of Battery-Type Hybrid Capacitors by Encapsulating MgO Nanoparticles in Porous Carbon as Reservoirs for OH – Ions from Electrolytes. ACS Appl Mater Interfaces [Internet]. 2019 Jun 19;11(24):21567–77. Available from: <URL>.
- 129. Julkapli NM, Bagheri S. Magnesium oxide as a heterogeneous catalyst support. Rev Inorg Chem [Internet]. 2016 Jan 1;36(1):1–41. Available from: <URL>.
- 130. Scarsella M, de Caprariis B, Damizia M, De Filippis P. Heterogeneous catalysts for hydrothermal liquefaction of lignocellulosic biomass: A review. Biomass and Bioenergy [Internet]. 2020 Sep 1;140:105662. Available from: <URL>.
- 131. Almerindo GI, Probst LFD, Campos CEM, de Almeida RM, Meneghetti SMP, Meneghetti MR, et al. Magnesium oxide prepared via metal–chitosan complexation method: Application as catalyst for transesterification of soybean oil and catalyst deactivation studies. J Power Sources [Internet]. 2011 Oct 1;196(19):8057–63. Available from: <URL>.
- 132. Vickers NJ. Animal Communication: When I’m Calling You, Will You Answer Too? Curr Biol [Internet]. 2017 Jul 24;27(14):R713–5. Available from: <URL>.
- 133. Kantam ML, Pal U, Sreedhar B, Choudary BM. An Efficient Synthesis of Organic Carbonates using Nanocrystalline Magnesium Oxide. Adv Synth Catal [Internet]. 2007 Jul 2;349(10):1671–5. Available from: <URL>.
- 134. Yang XF, Zhang MJ, Hou XL, Dai LX. Stereocontrolled Aziridination of Imines via a Sulfonium Ylide Route and a Mechanistic Study. J Org Chem [Internet]. 2002 Nov 1;67(23):8097–103. Available from: <URL>.
- 135. Mastuli MS, Kamarulzaman N, Nawawi MA, Mahat AM, Rusdi R, Kamarudin N. Growth mechanisms of MgO nanocrystals via a sol-gel synthesis using different complexing agents. Nanoscale Res Lett [Internet]. 2014 Dec 21;9(1):134. Available from: <URL>.
- 136. Kumar D, Reddy VB, Mishra BG, Rana RK, Nadagouda MN, Varma RS. Nanosized magnesium oxide as catalyst for the rapid and green synthesis of substituted 2-amino-2-chromenes. Tetrahedron [Internet]. 2007 Apr 9;63(15):3093–7. Available from: <URL>.
- 137. Kantam ML, Chakrapani L, Ramani T. Synthesis of α-diazo-β-hydroxy esters using nanocrystalline MgO. Tetrahedron Lett [Internet]. 2007 Aug 27;48(35):6121–3. Available from: <URL>.
- 138. Chintareddy VR, Lakshmi Kantam M. Recent Developments on Catalytic Applications of Nano-Crystalline Magnesium Oxide. Catal Surv from Asia [Internet]. 2011 Jun 19;15(2):89–110. Available from: <URL>.
- 139. Singh RP. Application of Nanomaterials Toward Development of Nanobiosensors and Their Utility in Agriculture. In: Nanotechnology [Internet]. Singapore: Springer Singapore; 2017. p. 293–303. Available from: <URL>.
- 140. Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW. Applications of nanomaterials in agricultural production and crop protection: A review. Crop Prot [Internet]. 2012 May 1;35:64–70. Available from: <URL>.
- 141. Singh RP. Utility of Nanomaterials in Food Safety. In: Food Safety and Human Health [Internet]. Elsevier; 2019. p. 285–318. Available from: <URL>.
- 142. Rao Kandregula G, Rao KG, Ashok CH, Rao KV, Chakra CS. Structural properties of MgO Nanoparticles: Synthesized by Co-Precipitation Technique. Int J Sci Res ISSN [Internet]. 2014;3(12):43–6. Available from: <URL>.
- 143. Al-Noaman A, Rawlinson SCF, Hill RG. The role of MgO on thermal properties, structure and bioactivity of bioactive glass coating for dental implants. J Non Cryst Solids [Internet]. 2012 Nov 1;358(22):3019–27. Available from: <URL>.
- 144. Boys AJ, McCorry MC, Rodeo S, Bonassar LJ, Estroff LA. Next generation tissue engineering of orthopedic soft tissue-to-bone interfaces. MRS Commun [Internet]. 2017 Sep 3;7(3):289–308. Available from: <URL>.
- 145. Fahmy HM, El-Hakim MH, Nady DS, Elkaramany Y, Mohamed FA, Yasien AM, et al. Review on MgO nanoparticles nultifunctional role in the biomedical field: Properties and applications. Nanomedicine J [Internet]. 2022 Jan 1;9(1):1–14. Available from: <URL>.
- 146. He Y, Ingudam S, Reed S, Gehring A, Strobaugh TP, Irwin P. Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. J Nanobiotechnology [Internet]. 2016 Dec 27;14(1):54. Available from: <URL>.
- 147. Cai L, Chen J, Liu Z, Wang H, Yang H, Ding W. Magnesium Oxide Nanoparticles: Effective Agricultural Antibacterial Agent Against Ralstonia solanacearum. Front Microbiol [Internet]. 2018 Apr 25;9:335574. Available from: <URL>.
- 148. Ibrahim E, Fouad H, Zhang M, Zhang Y, Qiu W, Yan C, et al. Biosynthesis of silver nanoparticles using endophytic bacteria and their role in inhibition of rice pathogenic bacteria and plant growth promotion. RSC Adv [Internet]. 2019 Sep 17;9(50):29293–9. Available from: <URL>.
- 149. Abdallah ESH, Mahmoud MM, Abdel‐Rahim IR. Trichosporon jirovecii infection of red swamp crayfish ( Procambarus clarkii ). J Fish Dis [Internet]. 2018 Nov 26;41(11):1719–32. Available from: <URL>.
- 150. Huber DM, Jones JB. The role of magnesium in plant disease. Plant Soil [Internet]. 2013 Jul 11;368(1–2):73–85. Available from: <URL>.
- 151. Wang WN, Tarafdar JC, Biswas P. Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J Nanoparticle Res [Internet]. 2013 Jan 10;15(1):1417. Available from: <URL>.
- 152. Chen J, Peng H, Wang X, Shao F, Yuan Z, Han H. Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale [Internet]. 2014 Jan 16;6(3):1879–89. Available from: <URL>.
- 153. Kumar K, Sridhar J, Choudhary VK, Singh HK, Parameshwari B, Senthil Kumar KM, et al. New Innovations and Approaches for Biotic Stress Management of Crops. In: Ghost PK, Kumar P, Chakraborty D, Mandal D, Sivalingam PN, editors. Innovations in Agriculture for a Self-Reliant India [Internet]. London: CRC Press; 2021. p. 265–92. Available from: <URL>.
- 154. Rao W, Zhan Y, Chen S, Xu Z, Huang T, Hong X, et al. Flowerlike Mg(OH)2 Cross-Nanosheets for Controlling Cry1Ac Protein Loss: Evaluation of Insecticidal Activity and Biosecurity. J Agric Food Chem [Internet]. 2018 Apr 11;66(14):3651–7. Available from: <URL>.
- 155. Imada K, Sakai S, Kajihara H, Tanaka S, Ito S. Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathol [Internet]. 2016 May 18;65(4):551–60. Available from: <URL>.
- 156. Radzig MA, Nadtochenko VA, Koksharova OA, Kiwi J, Lipasova VA, Khmel IA. Antibacterial effects of silver nanoparticles on gram-negative bacteria: Influence on the growth and biofilms formation, mechanisms of action. Colloids Surfaces B Biointerfaces [Internet]. 2013 Feb 1;102:300–6. Available from: <URL>.
- 157. Wang T, Liu X, Zhao D, Jiang Z. The unusual electrochemical characteristics of a novel three-dimensional ordered bicontinuous mesoporous carbon. Chem Phys Lett [Internet]. 2004 May 11;389(4–6):327–31. Available from: <URL>.
- 158. Camtakan Z, Erenturk S (Akyil), Yusan S (Doyurum). Magnesium oxide nanoparticles: Preparation, characterization, and uranium sorption properties. Environ Prog Sustain Energy [Internet]. 2012 Dec 15;31(4):536–43. Available from: <URL>.
- 159. Park JY, Lee YJ, Jun KW, Baeg JO, Yim DJ. Chemical Synthesis and Characterization of Highly Oil Dispersed MgO Nanoparticles. J Ind Eng Chem [Internet]. 2006;12(6):882–7. Available from: <URL>.
- 160. Štengl V, Bakardjieva S, Mařı́ková M, Bezdička P, Šubrt J. Magnesium oxide nanoparticles prepared by ultrasound enhanced hydrolysis of Mg-alkoxides. Mater Lett [Internet]. 2003 Aug 1;57(24–25):3998–4003. Available from: <URL>.
- 161. Mohammadi L, Bazrafshan E, Noroozifar M, Ansari-Moghaddam A, Barahuie F, Balarak D. Removing 2,4-dichlorophenol from aqueous environments by heterogeneous catalytic ozonation using synthesized MgO nanoparticles. Water Sci Technol [Internet]. 2017 Dec 6;76(11):3054–68. Available from: <URL>.
- 162. Tara N, Siddiqui SI, Rathi G, Chaudhry SA, Inamuddin, Asiri AM. Nano-engineered Adsorbent for the Removal of Dyes from Water: A Review. Curr Anal Chem [Internet]. 2020 Jan 8;16(1):14–40. Available from: <URL>.
- 163. Bagheri GH A, Sabbaghan M, Mirgani Z. A comparative study on properties of synthesized MgO with different templates. Spectrochim Acta Part A Mol Biomol Spectrosc [Internet]. 2015 Feb 25;137:1286–91. Available from: <URL>.
- 164. Wu D, Bai Y, Wang W, Xia H, Tan F, Zhang S, et al. Highly pure MgO2 nanoparticles as robust solid oxidant for enhanced Fenton-like degradation of organic contaminants. J Hazard Mater [Internet]. 2019 Jul 15;374:319–28. Available from: <URL>.
- 165. Askari P, Faraji A, Khayatian G, Mohebbi S. Effective ultrasound-assisted removal of heavy metal ions As(III), Hg(II), and Pb(II) from aqueous solution by new MgO/CuO and MgO/MnO2 nanocomposites. J Iran Chem Soc [Internet]. 2017 Mar 2;14(3):613–21. Available from: <URL>.
- 166. Khayatian G, Jodan M, Hassanpoor S, Mohebbi S. Determination of trace amounts of cadmium, copper and nickel in environmental water and food samples using GO/MgO nanocomposite as a new sorbent. J Iran Chem Soc [Internet]. 2016 May 21;13(5):831–9. Available from: <URL>.
- 167. Štengl V, Maříková M, Bakardjieva S, Šubrt J, Opluštil F, Olšanská M. Reaction of sulfur mustard gas, soman and agent VX with nanosized anatase TiO 2 and ferrihydrite. J Chem Technol Biotechnol [Internet]. 2005 Jul 14;80(7):754–8. Available from: <URL>.
- 168. Ali S, Farrukh MA, Khaleeq-ur-Rahman M. Photodegradation of 2,4,6-trinitrophenol catalyzed by Zn/MgO nanoparticles prepared in aqueous-organic medium. Korean J Chem Eng [Internet]. 2013 Nov 6;30(11):2100–7. Available from: <URL>.
- 169. Lange LE, Obendorf SK. Effect of Plasma Etching on Destructive Adsorption Properties of Polypropylene Fibers Containing Magnesium Oxide Nanoparticles. Arch Environ Contam Toxicol [Internet]. 2012 Feb 18;62(2):185–94. Available from: <URL>.
- 170. Behnam R, Morshed M, Tavanai H, Ghiaci M. Destructive Adsorption of Diazinon Pesticide by Activated Carbon Nanofibers Containing Al2O3 and MgO Nanoparticles. Bull Environ Contam Toxicol [Internet]. 2013 Oct 4;91(4):475–80. Available from: <URL>.
- 171. Singh RP, Tiwari A, Pandey AC. Silver/Polyaniline Nanocomposite for the Electrocatalytic Hydrazine Oxidation. J Inorg Organomet Polym Mater [Internet]. 2011 Dec 13;21(4):788–92. Available from: <URL>.
- 172. Lu L, Zhang L, Zhang X, Wu Z, Huan S, Shen G, et al. A MgO Nanoparticles Composite Matrix‐Based Electrochemical Biosensor for Hydrogen Peroxide with High Sensitivity. Electroanalysis [Internet]. 2010 Feb 4;22(4):471–7. Available from: <URL>.
- 173. Dong X xiu, Li M ying, Feng N nan, Sun Y ming, Yang C, Xu Z lin. A nanoporous MgO based nonenzymatic electrochemical sensor for rapid screening of hydrogen peroxide in milk. RSC Adv [Internet]. 2015 Oct 13;5(105):86485–9. Available from: <URL>.
- 174. An Y, Zhang K, Wang F, Lin L, Guo H. Removal of organic matters and bacteria by nano-MgO/GAC system. Desalination [Internet]. 2011 Oct 17;281(1):30–4. Available from: <URL>.
- 175. Ramanujam K, Sundrarajan M. Biocidal activities of monochlorotriazine-β-cyclodextrine with MgO modified cellulosic fabrics. J Text Inst [Internet]. 2015 Nov 2;106(11):1147–53. Available from: <URL>.
Year 2024,
Volume: 11 Issue: 2, 731 - 750, 15.05.2024
Hadia Hemmami
,
Ilham Ben Amor
,
Soumeia Zeghoud
,
Salah Eddine Laouini
,
Emmanel Nleonu
,
Pawel Pohl
,
Jesus Simal-gandara
References
- 1. Silva GA. Introduction to nanotechnology and its applications to medicine. Surg Neurol [Internet]. 2004 Mar 1;61(3):216–20. Available from: <URL>.
- 2. Zeghoud S, Hemmami H, Ben Seghir B, Ben Amor I, Kouadri I, Rebiai A, et al. A review on biogenic green synthesis of ZnO nanoparticles by plant biomass and their applications. Mater Today Commun [Internet]. 2022 Dec 1;33:104747. Available from: <URL>.
- 3. Yang W, Peters JI, Williams RO. Inhaled nanoparticles—A current review. Int J Pharm [Internet]. 2008 May 22;356(1–2):239–47. Available from: <URL>.
- 4. Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases [Internet]. 2007 Dec 1;2(4):MR17–71. Available from: <URL>.
- 5. Imani MM, Safaei M. Optimized Synthesis of Magnesium Oxide Nanoparticles as Bactericidal Agents. J Nanotechnol [Internet]. 2019 Apr 1;2019:6063832. Available from: <URL>.
- 6. Ben Amor I, Emran TB, Hemmami H, Zeghoud S, Laouini SE. Nanomaterials based on chitosan for skin regeneration: an update. Int J Surg [Internet]. 2023 Mar 1;109(3):594–6. Available from: <URL>.
- 7. Tang ZX, Lv BF. MgO nanoparticles as antibacterial agent: preparation and activity. Brazilian J Chem Eng [Internet]. 2014 Sep 1;31(3):591–601. Available from: <URL>.
- 8. Sirota V, Selemenev V, Kovaleva M, Pavlenko I, Mamunin K, Dokalov V, et al. Synthesis of Magnesium Oxide Nanopowder by Thermal Plasma Using Magnesium Nitrate Hexahydrate. Phys Res Int [Internet]. 2016 Feb 17;2016:6853405. Available from: <URL>.
- 9. Krishnamoorthy K, Moon JY, Hyun HB, Cho SK, Kim SJ. Mechanistic investigation on the toxicity of MgO nanoparticles toward cancer cells. J Mater Chem [Internet]. 2012 Nov 13;22(47):24610–7. Available from: <URL>.
- 10. Anu Mary Ealia S, Saravanakumar MP. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Ser Mater Sci Eng [Internet]. 2017 Nov 1;263(3):032019. Available from: <URL>.
- 11. Haldorai Y, Shim JJ. An efficient removal of methyl orange dye from aqueous solution by adsorption onto chitosan/MgO composite: A novel reusable adsorbent. Appl Surf Sci [Internet]. 2014 Feb 15;292:447–53. Available from: <URL>.
- 12. Ngô C, Van de Voorde M. Nanotechnology in a Nutshell [Internet]. Paris: Atlantis Press; 2014. Available from: <URL>.
- 13. Feng SH, Li GH. Hydrothermal and Solvothermal Syntheses. In: Ruren X, Yan X, editors. Modern Inorganic Synthetic Chemistry [Internet]. Elsevier; 2017. p. 73–104. Available from: <URL>.
- 14. Sakka S. Handbook of Sol-gel Science and Technology, Processing Characterization and Applications. Volume 1 Sol-Gel Processing. Dordrecht, Netherlands: Kluwer Academic Publishers; 2005.
- 15. Rane AV, Kanny K, Abitha VK, Thomas S. Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites. In: Synthesis of Inorganic Nanomaterials [Internet]. Elsevier; 2018. p. 121–39. Available from: <URL>.
- 16. Sereni JGR. Reference module in materials science and materials engineering. 2016;
- 17. Pal G, Rai P, Pandey A. Green synthesis of nanoparticles: A greener approach for a cleaner future. In: Kumar Shukla A, Iravani S, editors. Green Synthesis, Characterization and Applications of Nanoparticles [Internet]. Elsevier; 2019. p. 1–26. Available from: <URL>.
- 18. Escudero A, Carrillo-Carrión C, Romero-Ben E, Franco A, Rosales-Barrios C, Castillejos MC, et al. Molecular Bottom-Up Approaches for the Synthesis of Inorganic and Hybrid Nanostructures. Inorganics [Internet]. 2021 Jul 17;9(7):58. Available from: <URL>.
- 19. Soytaş SH, Oğuz O, Menceloğlu YZ. Polymer Nanocomposites With Decorated Metal Oxides. In: Pielichowski K, Majka TM, editors. Polymer Composites with Functionalized Nanoparticles [Internet]. Elsevier; 2019. p. 287–323. Available from: <URL>.
- 20. Danks AE, Hall SR, Schnepp Z. The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Mater Horizons [Internet]. 2016 Feb 29;3(2):91–112. Available from: <URL>.
- 21. Mastuli MS, Ansari NS, Nawawi MA, Mahat AM. Effects of Cationic Surfactant in Sol-gel Synthesis of Nano Sized Magnesium Oxide. APCBEE Procedia [Internet]. 2012 Jan 1;3:93–8. Available from: <URL>.
- 22. Sutapa IW, Wahid Wahab A, Taba P, Nafie NL. Dislocation, crystallite size distribution and lattice strain of magnesium oxide nanoparticles. J Phys Conf Ser [Internet]. 2018 Mar 1;979(1):012021. Available from: <URL>.
- 23. Wahab R, Ansari SG, Dar MA, Kim YS, Shin HS. Synthesis of Magnesium Oxide Nanoparticles by Sol-Gel Process. Mater Sci Forum [Internet]. 2007 Oct;558–559:983–6. Available from: <URL>.
- 24. Boddu VM, Viswanath DS, Maloney SW. Synthesis and Characterization of Coralline Magnesium Oxide Nanoparticles. J Am Ceram Soc [Internet]. 2008 May 6;91(5):1718–20. Available from: <URL>.
- 25. Dercz G, Prusik K, Pająk L, Pielaszek R, Malinowski JJ, Pudło W. Structure studies on nanocrystalline powder of MgO xerogel prepared by sol-gel method. Mater Sci [Internet]. 2009;27(1):201–7. Available from: <URL>.
- 26. Rani N, Chahal S, Chauhan AS, Kumar P, Shukla R, Singh SK. X-ray Analysis of MgO Nanoparticles by Modified Scherer’s Williamson-Hall and Size-Strain Method. Mater Today Proc [Internet]. 2019 Jan 1;12(3):543–8. Available from: <URL>.
- 27. Nassar MY, Mohamed TY, Ahmed IS, Samir I. MgO nanostructure via a sol-gel combustion synthesis method using different fuels: An efficient nano-adsorbent for the removal of some anionic textile dyes. J Mol Liq [Internet]. 2017 Jan 1;225:730–40. Available from: <URL>.
- 28. Mantzaris N V. Liquid-phase synthesis of nanoparticles: Particle size distribution dynamics and control. Chem Eng Sci [Internet]. 2005 Sep 1;60(17):4749–70. Available from: <URL>.
- 29. Swihart MT. Vapor-phase synthesis of nanoparticles. Curr Opin Colloid Interface Sci [Internet]. 2003 Mar 1;8(1):127–33. Available from: <URL>.
- 30. Benrabaa R, Boukhlouf H, Bordes-Richard E, Vannier RN, Barama A. Nanosized nickel ferrite catalysts for CO2 reforming of methane at low temperature: effect of preparation method and acid-base properties. In: Studies in Surface Science and Catalysis [Internet]. Elsevier; 2010. p. 301–4. Available from: <URL>.
- 31. Huang G, Lu CH, Yang HH. Magnetic Nanomaterials for Magnetic Bioanalysis. In: Wang X, Chen X, editors. Novel Nanomaterials for Biomedical, Environmental and Energy Applications [Internet]. Elsevier; 2019. p. 89–109. Available from: <URL>.
- 32. Hornak J. Synthesis, Properties, and Selected Technical Applications of Magnesium Oxide Nanoparticles: A Review. Int J Mol Sci [Internet]. 2021 Nov 25;22(23):12752. Available from: <URL>.
- 33. Tartaj P, Morales M a del P, Veintemillas-Verdaguer S, Gonz lez-Carre o T, Serna CJ. The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys [Internet]. 2003 Jul 7;36(13):R182–97. Available from: <URL>.
- 34. Alaei M, Jalali M, Alimorad A. Simple and Economical Method for the Preparation of MgO Nanostructures with Suitable Surface Area. J Chem Chem Eng [Internet]. 2014;33(1):21–8. Available from: <URL>.
- 35. Kumar R, Sharma A, Kishore N. Preparation and Characterization of MgO Nanoparticles by Co-Precipitation Method Precipitation Method.
- 36. Karthikeyan V, Dhanapandian S, Manoharan C. Characterization and Antibacterial Behavior of MgO-PEG Nanoparticles Synthesized via Co-Precipitation Method. Int Lett Chem Phys Astron [Internet]. 2016 Sep;70:33–41. Available from: <URL>.
- 37. Frantina YI, Fajaroh F, Nazriati, Yahmin, Sumari. Synthesis of MgO/CoFe2O4 nanoparticles with coprecipitation method and its characterization. In: AIP Conference Proceedings [Internet]. American Institute of Physics Inc.; 2021. p. 070003. Available from: <URL>.
- 38. Kushwaha A, Bagchi T. MgO NPs synthesis, capping and enhanced free radical effect on the bacteria and its cell morphology. In: AIP Conference Proceedings [Internet]. American Institute of Physics Inc.; 2018. p. 030010. Available from: <URL>.
- 39. Varma A, Mukasyan AS, Rogachev AS, Manukyan K V. Solution Combustion Synthesis of Nanoscale Materials. Chem Rev [Internet]. 2016 Dec 14;116(23):14493–586. Available from: <URL>.
- 40. Mukasyan AS, Manukyan KV. One- and Two-Dimensional Nanostructures Prepared by Combustion Synthesis. In: Pottathara YB, editor. Nanomaterials Synthesis [Internet]. Elsevier; 2019. p. 85–120. Available from: <URL>.
- 41. Stojanovic BD, Dzunuzovic AS, Ilic NI. Review of methods for the preparation of magnetic metal oxides. In: Stojanovic BD, editor. Magnetic, Ferroelectric, and Multiferroic Metal Oxides [Internet]. Elsevier; 2018. p. 333–59. Available from: <URL>.
- 42. Mukasyan AS, Dinka P. Novel approaches to solution-combustion synthesis of nanomaterials. Int J Self-Propagating High-Temperature Synth [Internet]. 2007 Mar;16(1):23–35. Available from: <URL>.
- 43. Balakrishnan G, Velavan R, Mujasam Batoo K, Raslan EH. Microstructure, optical and photocatalytic properties of MgO nanoparticles. Results Phys [Internet]. 2020 Mar 1;16:103013. Available from: <URL>.
- 44. Rao KV, Sunandana CS. Structure and microstructure of combustion synthesized MgO nanoparticles and nanocrystalline MgO thin films synthesized by solution growth route. J Mater Sci [Internet]. 2008 Jan 29;43(1):146–54. Available from: <URL>.
- 45. Ranjan A, Dawn SS, Jayaprabakar J, Nirmala N, Saikiran K, Sai Sriram S. Experimental investigation on effect of MgO nanoparticles on cold flow properties, performance, emission and combustion characteristics of waste cooking oil biodiesel. Fuel [Internet]. 2018 May 15;220:780–91. Available from: <URL>.
- 46. Tharani K, Jegatha Christy A, Sagadevan S, Nehru LC. Fabrication of Magnesium oxide nanoparticles using combustion method for a biological and environmental cause. Chem Phys Lett [Internet]. 2021 Jan 16;763:138216. Available from: <URL>.
- 47. Kumar D, Yadav LSR, Lingaraju K, Manjunath K, Suresh D, Prasad D, et al. Combustion synthesis of MgO nanoparticles using plant extract: Structural characterization and photoluminescence studies. In: AIP Conference Proceedings [Internet]. American Institute of Physics Inc.; 2015. p. 050145. Available from: <URL>.
- 48. Ng JJ, Leong KH, Sim LC, Oh WD, Dai C, Saravanan P. Environmental remediation using nano-photocatalyst under visible light irradiation: the case of bismuth phosphate. In: Nanomaterials for Air Remediation [Internet]. Elsevier; 2020. p. 193–207. Available from: <URL>.
- 49. Williams MJ, Corr SA. Magnetic Nanoparticles for Targeted Cancer Diagnosis and Therapy. In: Summers H, editor. Nanomedicine [Internet]. Amsterdam, Netherlands: Elsevier; 2013. Available from: <URL>.
- 50. Chircov C, Grumezescu AM, Holban AM. Magnetic Particles for Advanced Molecular Diagnosis. Materials (Basel) [Internet]. 2019 Jul 5;12(13):2158. Available from: <URL>.
- 51. Devaraja PB, Avadhani DN, Prashantha SC, Nagabhushana H, Sharma SC, Nagabhushana BM, et al. Synthesis, structural and luminescence studies of magnesium oxide nanopowder. Spectrochim Acta Part A Mol Biomol Spectrosc [Internet]. 2014 Jan 24;118:847–51. Available from: <URL>.
- 52. Al-Hazmi F, Alnowaiser F, Al-Ghamdi AA, Al-Ghamdi AA, Aly MM, Al-Tuwirqi RM, et al. A new large – Scale synthesis of magnesium oxide nanowires: Structural and antibacterial properties. Superlattices Microstruct [Internet]. 2012 Aug 1;52(2):200–9. Available from: <URL>.
- 53. Ding Y, Zhang G, Wu H, Hai B, Wang L, Qian Y. Nanoscale Magnesium Hydroxide and Magnesium Oxide Powders: Control over Size, Shape, and Structure via Hydrothermal Synthesis. Chem Mater [Internet]. 2001 Feb 1;13(2):435–40. Available from: <URL>.
- 54. Rukh S, Sofi AH, Shah MA, Yousuf S. Antibacterial activity of magnesium oxide nanostructures prepared by hydrothermal method. Asian J Nanosci Mater [Internet]. 1999 Nov 30;2(4):425–30. Available from: <URL>.
- 55. Jeevanandam J, Chan YS, Danquah MK. Biosynthesis and characterization of MgO nanoparticles from plant extracts via induced molecular nucleation. New J Chem [Internet]. 2017 Mar 27;41(7):2800–14. Available from: <URL>.
- 56. Das RK, Pachapur VL, Lonappan L, Naghdi M, Pulicharla R, Maiti S, et al. Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects. Nanotechnol Environ Eng [Internet]. 2017 Dec 9;2(1):18. Available from: <URL>.
- 57. Ali MI, Sharma G, Kumar M, Dut Jasuja N. Biological approach of magnesium oxide nanoparticles synthesize by Spirulina platensis. World J Pharm Res [Internet]. 2015;4(7):1234–41. Available from: <URL>.
- 58. Awwad AM, Ahmad AL. Biosynthesis, characterization, and optical properties of magnesium hydroxide and oxide nanoflakes using Citrus limon leaf extract. Arab J Phys Chem. 2014;1(2):66.
- 59. Bandeira M, Giovanela M, Roesch-Ely M, Devine DM, da Silva Crespo J. Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustain Chem Pharm [Internet]. 2020 Mar 1;15:100223. Available from: <URL>.
- 60. Das B, Moumita S, Ghosh S, Khan MI, Indira D, Jayabalan R, et al. Biosynthesis of magnesium oxide (MgO) nanoflakes by using leaf extract of Bauhinia purpurea and evaluation of its antibacterial property against Staphylococcus aureus. Mater Sci Eng C [Internet]. 2018 Oct 1;91:436–44. Available from: <URL>.
- 61. Jadhav AH, Lim AC, Thorat GM, Jadhav HS, Seo JG. Green solvent ionic liquids: structural directing pioneers for microwave-assisted synthesis of controlled MgO nanostructures. RSC Adv [Internet]. 2016 Mar 29;6(38):31675–86. Available from: <URL>.
- 62. Singh A, Joshi NC, Ramola M. Magnesium oxide Nanoparticles (MgONPs): Green Synthesis, Characterizations and Antimicrobial activity. Res J Pharm Technol [Internet]. 2019 Oct 1;12(10):4644–6. Available from: <URL>.
- 63. Cai L, Liu M, Liu Z, Yang H, Sun X, Chen J, et al. MgONPs Can Boost Plant Growth: Evidence from Increased Seedling Growth, Morpho-Physiological Activities, and Mg Uptake in Tobacco (Nicotiana tabacum L.). Molecules [Internet]. 2018 Dec 19;23(12):3375. Available from: <URL>.
- 64. Wrigglesworth EG, Johnston JH. Mie theory and the dichroic effect for spherical gold nanoparticles: an experimental approach. Nanoscale Adv [Internet]. 2021 Jun 15;3(12):3530–6. Available from: <URL>.
- 65. El-Seedi HR, El-Shabasy RM, Khalifa SAM, Saeed A, Shah A, Shah R, et al. Metal nanoparticles fabricated by green chemistry using natural extracts: biosynthesis, mechanisms, and applications. RSC Adv [Internet]. 2019 Aug 8;9(42):24539–59. Available from: <URL>.
- 66. Khan MI, Akhtar MN, Ashraf N, Najeeb J, Munir H, Awan TI, et al. Green synthesis of magnesium oxide nanoparticles using Dalbergia sissoo extract for photocatalytic activity and antibacterial efficacy. Appl Nanosci [Internet]. 2020 Jul 25;10(7):2351–64. Available from: <URL>.
- 67. Duong THY, Nguyen TN, Oanh HT, Dang Thi TA, Giang LNT, Phuong HT, et al. Synthesis of Magnesium Oxide Nanoplates and Their Application in Nitrogen Dioxide and Sulfur Dioxide Adsorption. J Chem [Internet]. 2019 May 26;2019:4376429. Available from: <URL>.
- 68. Yuvakkumar R, Hong SI. Green Synthesis of Spinel Magnetite Iron Oxide Nanoparticles. Adv Mater Res [Internet]. 2014 Oct 27;1051:39–42. Available from: <URL>.
- 69. Vergheese M, Vishal Sk, Mary Vergheese C. Green synthesis of magnesium oxide nanoparticles using Trigonella foenum-graecum leaf extract and its antibacterial activity. J Pharmacogn Phytochem [Internet]. 2018;7(3):1193–200. Available from: <URL>.
- 70. Younis IY, El-Hawary SS, Eldahshan OA, Abdel-Aziz MM, Ali ZY. Green synthesis of magnesium nanoparticles mediated from Rosa floribunda charisma extract and its antioxidant, antiaging and antibiofilm activities. Sci Rep [Internet]. 2021 Aug 19;11(1):16868. Available from: <URL>.
- 71. Abdallah Y, Ogunyemi SO, Abdelazez A, Zhang M, Hong X, Ibrahim E, et al. The Green Synthesis of MgO Nano-Flowers Using Rosmarinus officinalis L. (Rosemary) and the Antibacterial Activities against Xanthomonas oryzae pv. oryzae. Biomed Res Int [Internet]. 2019 Feb 17;2019:5620989. Available from: <URL>.
- 72. Amina M, Al Musayeib NM, Alarfaj NA, El-Tohamy MF, Oraby HF, Al Hamoud GA, et al. Biogenic green synthesis of MgO nanoparticles using Saussurea costus biomasses for a comprehensive detection of their antimicrobial, cytotoxicity against MCF-7 breast cancer cells and photocatalysis potentials. Mishra YK, editor. PLoS One [Internet]. 2020 Aug 14;15(8):e0237567. Available from: <URL>.
- 73. Sharma G, Soni R, Jasuja ND. Phytoassisted synthesis of magnesium oxide nanoparticles with Swertia chirayaita. J Taibah Univ Sci [Internet]. 2017 May 16;11(3):471–7. Available from: <URL>.
- 74. Fatiqin A, Amrulloh H, Simanjuntak W. Green synthesis of MgO nanoparticles using Moringa oleifera leaf aqueous extract for antibacterial activity. Bull Chem Soc Ethiop [Internet]. 2021 May 7;35(1):161–70. Available from: <URL>.
- 75. Nguyen DTC, Dang HH, Vo DVN, Bach LG, Nguyen TD, Tran T Van. Biogenic synthesis of MgO nanoparticles from different extracts (flower, bark, leaf) of Tecoma stans (L.) and their utilization in selected organic dyes treatment. J Hazard Mater [Internet]. 2021 Feb 15;404:124146. Available from: <URL>.
- 76. Suresh J, Yuvakkumar R, Sundrarajan M, Hong SI. Green Synthesis of Magnesium Oxide Nanoparticles. Adv Mater Res [Internet]. 2014 May;952:141–4. Available from: <URL>.
- 77. Narendhran S, Manikandan M, Shakila PB. Antibacterial, antioxidant properties of Solanum trilobatum and sodium hydroxide-mediated magnesium oxide nanoparticles: a green chemistry approach. Bull Mater Sci [Internet]. 2019 Jun 25;42(3):133. Available from: <URL>.
- 78. Rahmani-Nezhad S, Dianat S, Saeedi M, Hadjiakhoondi A. Characterization and Catalytic Activity of Plant-Mediated MgO Nanoparticles Using Mucuna Pruriens L. Seed Extract and Their Biological Evaluation. J Nanoanalysis [Internet]. 2017;4(4):290–8. Available from: <URL>.
- 79. Prasanth R, Kumar SD, Jayalakshmi A, Singaravelu G, Govindaraju K, Kumar VG. Green synthesis of magnesium oxide nanoparticles and their antibacterial activity. IJMS Vol48(08) [August 2019] [Internet]. 2019;48(08):1210–5. Available from: <URL>.
- 80. Anantharaman A, Sathyabhama S, George M. Green synthesis of magnesium oxide nanoparticles using Aloe Vera and its applications. IJSRD—International J Sci Res Dev. 2016;4(9):20.
- 81. Abinaya S, Kavitha HP, Prakash M. Sustainable Chemistry and Pharmacy.
- 82. Jhansi K, Jayarambabu N, Reddy KP, Reddy NM, Suvarna RP, Rao KV, et al. Biosynthesis of MgO nanoparticles using mushroom extract: effect on peanut (Arachis hypogaea L.) seed germination. 3Biotech [Internet]. 2017 Aug 25;7(4):263. Available from: <URL>.
- 83. Raliya R, Tarafdar JC, Choudhary K, Mal P, Raturi A, Gautam R, et al. Synthesis of MgO Nanoparticles Using Aspergillus Tubingensis TFR-3. J Bionanoscience [Internet]. 2014 Feb 1;8(1):34–8. Available from: <URL>.
- 84. Ibrahem E, Thalij K, Badawy A. Antibacterial Potential of Magnesium Oxide Nanoparticles Synthesized by Aspergillus niger. Biotechnol J Int [Internet]. 2017 Jan 10;18(1):1–7. Available from: <URL>.
- 85. Mohanasrinivasan V, Subathra Devi C, Mehra A, Prakash S, Agarwal A, Selvarajan E, et al. Biosynthesis of MgO Nanoparticles Using Lactobacillus Sp. and its Activity Against Human Leukemia Cell Lines HL-60. Bionanoscience [Internet]. 2018 Mar 5;8(1):249–53. Available from: <URL>.
- 86. Kaul RK, Kumar P, Burman U, Joshi P, Agrawal A, Raliya R, et al. Magnesium and iron nanoparticles production using microorganisms and various salts. Mater Sci [Internet]. 2012 Sep 14;30(3):254–8. Available from: <URL>.
- 87. Essien ER, Atasie VN, Okeafor AO, Nwude DO. Biogenic synthesis of magnesium oxide nanoparticles using Manihot esculenta (Crantz) leaf extract. Int Nano Lett [Internet]. 2020 Mar 23;10(1):43–8. Available from: <URL>.
- 88. Pugazhendhi A, Prabhu R, Muruganantham K, Shanmuganathan R, Natarajan S. Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. J Photochem Photobiol B Biol [Internet]. 2019 Jan 1;190:86–97. Available from: <URL>.
- 89. Dobrucka R. Synthesis of MgO Nanoparticles Using Artemisia abrotanum Herba Extract and Their Antioxidant and Photocatalytic Properties. Iran J Sci Technol Trans A Sci [Internet]. 2018 Jun 2;42(2):547–55. Available from: <URL>.
- 90. Ghidan AY, Al-Antary TM, Awwad AM. Green synthesis of magnesium oxide (MgONPs) nanoparticles using Chamaemel umnobileflowers extract: Effect on Green Peach Aphid. In: The 3rd International Nanotechnology Conference and Expo Italy Madridge Journal Nanotechnology Science. 2018. p. 67.
- 91. Subhan MA, Chandra Saha P, Uddin N, Sarker P. Synthesis, Structure, Spectroscopy and Photocatalytic Studies of Nano Multi-Metal Oxide MgO∙Al2O3∙ZnO and MgO∙Al2O3∙ZnO-Curcumin Composite. Int J Nanosci Nanotechnol [Internet]. 2017 Feb 1;13(1):69–82. Available from: <URL>.
- 92. Srivastava V, Sharma YC, Sillanpää M. Green synthesis of magnesium oxide nanoflower and its application for the removal of divalent metallic species from synthetic wastewater. Ceram Int [Internet]. 2015 Jun 1;41(5):6702–9. Available from: <URL>.
- 93. Sugirtha P, Divya R, Yedhukrishnan R, Suganthi KS, Anusha N, Ponnusami V, et al. Green Synthesis of Magnesium Oxide Nanoparticles Using Brassica oleracea and Punica granatum Peels and their Anticancer and Photocatalytic Activity. Asian J Chem [Internet]. 2015 Jul 1;27(7):2513–7. Available from: <URL>.
- 94. Munjal S, Singh A, Kumar V. Synthesis and characterization of MgO nanoparticles by orange fruit waste through green method. Int J Adv Res Comput Sci. 2017;4(9):36–42.
- 95. Kumara KNS, Nagaswarupa HP, Mahesh KR V, Mylarappa M, Prashantha SC, Siddeshwara DMK, et al. Synthesis and characterization of ZnO/MgO nano particles by curry leaves through green approach and their photocatalytic applications. Int J Adv Res. 2016;4(10):1958–62.
- 96. Umaralikhan L, Jamal Mohamed Jaffar M. Green Synthesis of MgO Nanoparticles and it Antibacterial Activity. Iran J Sci Technol Trans A Sci [Internet]. 2018 Jun 7;42(2):477–85. Available from: <URL>.
- 97. Anantharama NA, Sheethal KS, Mary G. Green synthesis and its applications of magnesium oxide nanoparticles from the seeds of lepedium sativum. Int J Recent Sci Res. 2016;7:14029–32.
- 98. Ogunyemi SO, Zhang F, Abdallah Y, Zhang M, Wang Y, Sun G, et al. Biosynthesis and characterization of magnesium oxide and manganese dioxide nanoparticles using Matricaria chamomilla L. extract and its inhibitory effect on Acidovorax oryzae strain RS-2. Artif Cells, Nanomedicine, Biotechnol [Internet]. 2019 Dec 4;47(1):2230–9. Available from: <URL>.
- 99. Yildirim M, Akarsu H. Preparation of magnesium oxide (MgO) from dolomite by leach-precipitation-pyrohydrolysis process. Physicochem Probl Miner Process [Internet]. 2010;44:257–72. Available from: <URL>.
- 100. Mustafa AMK, Al-Dahan DK, Khachik T V. Laboratory wtudy of MgO preparation from Iraqi dolomite by leach-precipitation–Pyrohydrolysis process. Iraqi Bull Geol Min. 2014;10(3):83–107.
- 101. Kulikova SA, Vinokurov SE, Khamizov RK, Vlasovskikh NS, Belova KY, Dzhenloda RK, et al. The Use of MgO Obtained from Serpentinite in the Synthesis of a Magnesium Potassium Phosphate Matrix for Radioactive Waste Immobilization. Appl Sci [Internet]. 2020 Dec 28;11(1):220. Available from: <URL>.
- 102. Mantilaka MMMGPG, Pitawala HMTGA, Karunaratne DGGP, Rajapakse RMG. Nanocrystalline magnesium oxide from dolomite via poly(acrylate) stabilized magnesium hydroxide colloids. Colloids Surfaces A Physicochem Eng Asp [Internet]. 2014 Feb 20;443:201–8. Available from: <URL>.
- 103. Jassim AK, Salmtori SA, Jassam JA. Sustainable manufacturing process applied to produce magnesium oxide from sea water. IOP Conf Ser Mater Sci Eng [Internet]. 2020 Mar 1;757(1):012021. Available from: <URL>.
- 104. Sirota V, Selemenev V, Kovaleva M, Pavlenko I, Mamunin K, Dokalov V, et al. Preparation of crystalline Mg(OH)2 nanopowder from serpentinite mineral. Int J Min Sci Technol [Internet]. 2018 May 1;28(3):499–503. Available from: <URL>.
- 105. Chen Y, Yang X, Wu L, Tong L, Zhu J. Recovery of Mg from H2SO4 Leaching Solution of Serpentine to Precipitation of High-Purity Mg(OH)2 and 4MgCO3·Mg(OH)2·4H2O. Minerals [Internet]. 2023 Feb 23;13(3):318. Available from: <URL>.
- 106. Ben Amor I, Hemmami H, Laouini SE, Mahboub MS, Barhoum A. Sol-Gel Synthesis of ZnO Nanoparticles Using Different Chitosan Sources: Effects on Antibacterial Activity and Photocatalytic Degradation of AZO Dye. Catalysts [Internet]. 2022 Dec 8;12(12):1611. Available from: <URL>.
- 107. Ben Amor I, Hemmami H, Laouini SE, Abdelaziz AG, Barhoum A. Influence of chitosan source and degree of deacetylation on antibacterial activity and adsorption of AZO dye from water. Biomass Convers Biorefinery [Internet]. 2023 Jan 11;1:1–11. Available from: <URL>.
- 108. Diachenko OV, Opanasuyk AS, Kurbatov DI, Opanasuyk NM, Kononov OK, Nam D, et al. Surface Morphology, Structural and Optical Properties of MgO Films Obtained by Spray Pyrolysis Technique. Acta Phys Pol A [Internet]. 2016 Sep;130(3):805–10. Available from: <URL>.
- 109. Alexander L, Klug HP. Determination of Crystallite Size with the X-Ray Spectrometer. J Appl Phys [Internet]. 1950 Feb 1;21(2):137–42. Available from: <URL>.
- 110. Holzwarth U, Gibson N. The Scherrer equation versus the “Debye-Scherrer equation”. Nat Nanotechnol [Internet]. 2011 Aug 28;6(9):534. Available from: <URL>.
- 111. Al-Tabbakh AA, Karatepe N, Al-Zubaidi AB, Benchaabane A, Mahmood NB. Crystallite size and lattice strain of lithiated spinel material for rechargeable battery by X-ray diffraction peak-broadening analysis. Int J Energy Res [Internet]. 2019 Apr 1;43(5):1903–11. Available from: <URL>.
- 112. Kimiagar S, Abrinaei F. Effect of temperature on the structural, linear, and nonlinear optical properties of MgO-doped graphene oxide nanocomposites. Nanophotonics [Internet]. 2018 Jan 26;7(1):243–51. Available from: <URL>.
- 113. Verma R, Naik KK, Gangwar J, Srivastava AK. Morphology, mechanism and optical properties of nanometer-sized MgO synthesized via facile wet chemical method. Mater Chem Phys [Internet]. 2014 Dec 15;148(3):1064–70. Available from: <URL>.
- 114. Li J, Khalid A, Verma R, Abraham A, Qazi F, Dong X, et al. Silk Fibroin Coated Magnesium Oxide Nanospheres: A Biocompatible and Biodegradable Tool for Noninvasive Bioimaging Applications. Nanomaterials [Internet]. 2021 Mar 10;11(3):695. Available from: <URL>.
- 115. Ben Amor I, Hemmami H, Laouini SE, Temam H Ben, Zaoui H, Barhoum A. Biosynthesis MgO and ZnO nanoparticles using chitosan extracted from Pimelia Payraudi Latreille for antibacterial applications. World J Microbiol Biotechnol [Internet]. 2023 Jan 21;39(1):19. Available from: <URL>.
- 116. Yarbrough R, Davis K, Dawood S, Rathnayake H. A sol–gel synthesis to prepare size and shape-controlled mesoporous nanostructures of binary (II–VI) metal oxides. RSC Adv [Internet]. 2020 Apr 6;10(24):14134–46. Available from: <URL>.
- 117. Sainudeen SS, Asok LB, Varghese A, Nair AS, Krishnan G. Surfactant-driven direct synthesis of a hierarchical hollow MgO nanofiber–nanoparticle composite by electrospinning. RSC Adv [Internet]. 2017 Jul 13;7(56):35160–8. Available from: <URL>.
- 118. Guo Y, Hu J, Wan L. Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices. Adv Mater [Internet]. 2008 Aug 4;20(15):2878–87. Available from: <URL>.
- 119. Sayle DC, Seal S, Wang Z, Mangili BC, Price DW, Karakoti AS, et al. Mapping Nanostructure: A Systematic Enumeration of Nanomaterials by Assembling Nanobuilding Blocks at Crystallographic Positions. ACS Nano [Internet]. 2008 Jun 1;2(6):1237–51. Available from: <URL>.
- 120. Stark J V., Park DG, Lagadic I, Klabunde KJ. Nanoscale Metal Oxide Particles/Clusters as Chemical Reagents. Unique Surface Chemistry on Magnesium Oxide As Shown by Enhanced Adsorption of Acid Gases (Sulfur Dioxide and Carbon Dioxide) and Pressure Dependence. Chem Mater [Internet]. 1996 Jan 1;8(8):1904–12. Available from: <URL>.
- 121. Sutradhar N, Sinhamahapatra A, Pahari SK, Pal P, Bajaj HC, Mukhopadhyay I, et al. Controlled Synthesis of Different Morphologies of MgO and Their Use as Solid Base Catalysts. J Phys Chem C [Internet]. 2011 Jun 30;115(25):12308–16. Available from: <URL>.
- 122. Dobrucka R. Synthesis of MgO Nanoparticles Using Artemisia abrotanum Herba Extract and Their Antioxidant and Photocatalytic Properties. Iran J Sci Technol Trans A Sci [Internet]. 2018 Jun 2;42(2):547–55. Available from: <URL>.
- 123. Sheng O, Jin C, Luo J, Yuan H, Huang H, Gan Y, et al. Mg 2 B 2 O 5 Nanowire Enabled Multifunctional Solid-State Electrolytes with High Ionic Conductivity, Excellent Mechanical Properties, and Flame-Retardant Performance. Nano Lett [Internet]. 2018 May 9;18(5):3104–12. Available from: <URL>.
- 124. Shao Y, Rajput NN, Hu J, Hu M, Liu T, Wei Z, et al. Nanocomposite polymer electrolyte for rechargeable magnesium batteries. Nano Energy [Internet]. 2015 Mar 1;12:750–9. Available from: <URL>.
- 125. Sun W, Sun X, Peng Q, Wang H, Ge Y, Akhtar N, et al. Nano-MgO/AB decorated separator to suppress shuttle effect of lithium–sulfur battery. Nanoscale Adv [Internet]. 2019 Apr 9;1(4):1589–97. Available from: <URL>.
- 126. Zhang R, Tutusaus O, Mohtadi R, Ling C. Magnesium-Sodium Hybrid Battery With High Voltage, Capacity and Cyclability. Front Chem [Internet]. 2018 Dec 10;6:611. Available from: <URL>.
- 127. Saha P, Datta MK, Velikokhatnyi OI, Manivannan A, Alman D, Kumta PN. Rechargeable magnesium battery: Current status and key challenges for the future. Prog Mater Sci [Internet]. 2014 Oct 1;66:1–86. Available from: <URL>.
- 128. Wang J, Wang C, Gong S, Chen Q. Enhancing the Capacitance of Battery-Type Hybrid Capacitors by Encapsulating MgO Nanoparticles in Porous Carbon as Reservoirs for OH – Ions from Electrolytes. ACS Appl Mater Interfaces [Internet]. 2019 Jun 19;11(24):21567–77. Available from: <URL>.
- 129. Julkapli NM, Bagheri S. Magnesium oxide as a heterogeneous catalyst support. Rev Inorg Chem [Internet]. 2016 Jan 1;36(1):1–41. Available from: <URL>.
- 130. Scarsella M, de Caprariis B, Damizia M, De Filippis P. Heterogeneous catalysts for hydrothermal liquefaction of lignocellulosic biomass: A review. Biomass and Bioenergy [Internet]. 2020 Sep 1;140:105662. Available from: <URL>.
- 131. Almerindo GI, Probst LFD, Campos CEM, de Almeida RM, Meneghetti SMP, Meneghetti MR, et al. Magnesium oxide prepared via metal–chitosan complexation method: Application as catalyst for transesterification of soybean oil and catalyst deactivation studies. J Power Sources [Internet]. 2011 Oct 1;196(19):8057–63. Available from: <URL>.
- 132. Vickers NJ. Animal Communication: When I’m Calling You, Will You Answer Too? Curr Biol [Internet]. 2017 Jul 24;27(14):R713–5. Available from: <URL>.
- 133. Kantam ML, Pal U, Sreedhar B, Choudary BM. An Efficient Synthesis of Organic Carbonates using Nanocrystalline Magnesium Oxide. Adv Synth Catal [Internet]. 2007 Jul 2;349(10):1671–5. Available from: <URL>.
- 134. Yang XF, Zhang MJ, Hou XL, Dai LX. Stereocontrolled Aziridination of Imines via a Sulfonium Ylide Route and a Mechanistic Study. J Org Chem [Internet]. 2002 Nov 1;67(23):8097–103. Available from: <URL>.
- 135. Mastuli MS, Kamarulzaman N, Nawawi MA, Mahat AM, Rusdi R, Kamarudin N. Growth mechanisms of MgO nanocrystals via a sol-gel synthesis using different complexing agents. Nanoscale Res Lett [Internet]. 2014 Dec 21;9(1):134. Available from: <URL>.
- 136. Kumar D, Reddy VB, Mishra BG, Rana RK, Nadagouda MN, Varma RS. Nanosized magnesium oxide as catalyst for the rapid and green synthesis of substituted 2-amino-2-chromenes. Tetrahedron [Internet]. 2007 Apr 9;63(15):3093–7. Available from: <URL>.
- 137. Kantam ML, Chakrapani L, Ramani T. Synthesis of α-diazo-β-hydroxy esters using nanocrystalline MgO. Tetrahedron Lett [Internet]. 2007 Aug 27;48(35):6121–3. Available from: <URL>.
- 138. Chintareddy VR, Lakshmi Kantam M. Recent Developments on Catalytic Applications of Nano-Crystalline Magnesium Oxide. Catal Surv from Asia [Internet]. 2011 Jun 19;15(2):89–110. Available from: <URL>.
- 139. Singh RP. Application of Nanomaterials Toward Development of Nanobiosensors and Their Utility in Agriculture. In: Nanotechnology [Internet]. Singapore: Springer Singapore; 2017. p. 293–303. Available from: <URL>.
- 140. Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW. Applications of nanomaterials in agricultural production and crop protection: A review. Crop Prot [Internet]. 2012 May 1;35:64–70. Available from: <URL>.
- 141. Singh RP. Utility of Nanomaterials in Food Safety. In: Food Safety and Human Health [Internet]. Elsevier; 2019. p. 285–318. Available from: <URL>.
- 142. Rao Kandregula G, Rao KG, Ashok CH, Rao KV, Chakra CS. Structural properties of MgO Nanoparticles: Synthesized by Co-Precipitation Technique. Int J Sci Res ISSN [Internet]. 2014;3(12):43–6. Available from: <URL>.
- 143. Al-Noaman A, Rawlinson SCF, Hill RG. The role of MgO on thermal properties, structure and bioactivity of bioactive glass coating for dental implants. J Non Cryst Solids [Internet]. 2012 Nov 1;358(22):3019–27. Available from: <URL>.
- 144. Boys AJ, McCorry MC, Rodeo S, Bonassar LJ, Estroff LA. Next generation tissue engineering of orthopedic soft tissue-to-bone interfaces. MRS Commun [Internet]. 2017 Sep 3;7(3):289–308. Available from: <URL>.
- 145. Fahmy HM, El-Hakim MH, Nady DS, Elkaramany Y, Mohamed FA, Yasien AM, et al. Review on MgO nanoparticles nultifunctional role in the biomedical field: Properties and applications. Nanomedicine J [Internet]. 2022 Jan 1;9(1):1–14. Available from: <URL>.
- 146. He Y, Ingudam S, Reed S, Gehring A, Strobaugh TP, Irwin P. Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. J Nanobiotechnology [Internet]. 2016 Dec 27;14(1):54. Available from: <URL>.
- 147. Cai L, Chen J, Liu Z, Wang H, Yang H, Ding W. Magnesium Oxide Nanoparticles: Effective Agricultural Antibacterial Agent Against Ralstonia solanacearum. Front Microbiol [Internet]. 2018 Apr 25;9:335574. Available from: <URL>.
- 148. Ibrahim E, Fouad H, Zhang M, Zhang Y, Qiu W, Yan C, et al. Biosynthesis of silver nanoparticles using endophytic bacteria and their role in inhibition of rice pathogenic bacteria and plant growth promotion. RSC Adv [Internet]. 2019 Sep 17;9(50):29293–9. Available from: <URL>.
- 149. Abdallah ESH, Mahmoud MM, Abdel‐Rahim IR. Trichosporon jirovecii infection of red swamp crayfish ( Procambarus clarkii ). J Fish Dis [Internet]. 2018 Nov 26;41(11):1719–32. Available from: <URL>.
- 150. Huber DM, Jones JB. The role of magnesium in plant disease. Plant Soil [Internet]. 2013 Jul 11;368(1–2):73–85. Available from: <URL>.
- 151. Wang WN, Tarafdar JC, Biswas P. Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J Nanoparticle Res [Internet]. 2013 Jan 10;15(1):1417. Available from: <URL>.
- 152. Chen J, Peng H, Wang X, Shao F, Yuan Z, Han H. Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale [Internet]. 2014 Jan 16;6(3):1879–89. Available from: <URL>.
- 153. Kumar K, Sridhar J, Choudhary VK, Singh HK, Parameshwari B, Senthil Kumar KM, et al. New Innovations and Approaches for Biotic Stress Management of Crops. In: Ghost PK, Kumar P, Chakraborty D, Mandal D, Sivalingam PN, editors. Innovations in Agriculture for a Self-Reliant India [Internet]. London: CRC Press; 2021. p. 265–92. Available from: <URL>.
- 154. Rao W, Zhan Y, Chen S, Xu Z, Huang T, Hong X, et al. Flowerlike Mg(OH)2 Cross-Nanosheets for Controlling Cry1Ac Protein Loss: Evaluation of Insecticidal Activity and Biosecurity. J Agric Food Chem [Internet]. 2018 Apr 11;66(14):3651–7. Available from: <URL>.
- 155. Imada K, Sakai S, Kajihara H, Tanaka S, Ito S. Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathol [Internet]. 2016 May 18;65(4):551–60. Available from: <URL>.
- 156. Radzig MA, Nadtochenko VA, Koksharova OA, Kiwi J, Lipasova VA, Khmel IA. Antibacterial effects of silver nanoparticles on gram-negative bacteria: Influence on the growth and biofilms formation, mechanisms of action. Colloids Surfaces B Biointerfaces [Internet]. 2013 Feb 1;102:300–6. Available from: <URL>.
- 157. Wang T, Liu X, Zhao D, Jiang Z. The unusual electrochemical characteristics of a novel three-dimensional ordered bicontinuous mesoporous carbon. Chem Phys Lett [Internet]. 2004 May 11;389(4–6):327–31. Available from: <URL>.
- 158. Camtakan Z, Erenturk S (Akyil), Yusan S (Doyurum). Magnesium oxide nanoparticles: Preparation, characterization, and uranium sorption properties. Environ Prog Sustain Energy [Internet]. 2012 Dec 15;31(4):536–43. Available from: <URL>.
- 159. Park JY, Lee YJ, Jun KW, Baeg JO, Yim DJ. Chemical Synthesis and Characterization of Highly Oil Dispersed MgO Nanoparticles. J Ind Eng Chem [Internet]. 2006;12(6):882–7. Available from: <URL>.
- 160. Štengl V, Bakardjieva S, Mařı́ková M, Bezdička P, Šubrt J. Magnesium oxide nanoparticles prepared by ultrasound enhanced hydrolysis of Mg-alkoxides. Mater Lett [Internet]. 2003 Aug 1;57(24–25):3998–4003. Available from: <URL>.
- 161. Mohammadi L, Bazrafshan E, Noroozifar M, Ansari-Moghaddam A, Barahuie F, Balarak D. Removing 2,4-dichlorophenol from aqueous environments by heterogeneous catalytic ozonation using synthesized MgO nanoparticles. Water Sci Technol [Internet]. 2017 Dec 6;76(11):3054–68. Available from: <URL>.
- 162. Tara N, Siddiqui SI, Rathi G, Chaudhry SA, Inamuddin, Asiri AM. Nano-engineered Adsorbent for the Removal of Dyes from Water: A Review. Curr Anal Chem [Internet]. 2020 Jan 8;16(1):14–40. Available from: <URL>.
- 163. Bagheri GH A, Sabbaghan M, Mirgani Z. A comparative study on properties of synthesized MgO with different templates. Spectrochim Acta Part A Mol Biomol Spectrosc [Internet]. 2015 Feb 25;137:1286–91. Available from: <URL>.
- 164. Wu D, Bai Y, Wang W, Xia H, Tan F, Zhang S, et al. Highly pure MgO2 nanoparticles as robust solid oxidant for enhanced Fenton-like degradation of organic contaminants. J Hazard Mater [Internet]. 2019 Jul 15;374:319–28. Available from: <URL>.
- 165. Askari P, Faraji A, Khayatian G, Mohebbi S. Effective ultrasound-assisted removal of heavy metal ions As(III), Hg(II), and Pb(II) from aqueous solution by new MgO/CuO and MgO/MnO2 nanocomposites. J Iran Chem Soc [Internet]. 2017 Mar 2;14(3):613–21. Available from: <URL>.
- 166. Khayatian G, Jodan M, Hassanpoor S, Mohebbi S. Determination of trace amounts of cadmium, copper and nickel in environmental water and food samples using GO/MgO nanocomposite as a new sorbent. J Iran Chem Soc [Internet]. 2016 May 21;13(5):831–9. Available from: <URL>.
- 167. Štengl V, Maříková M, Bakardjieva S, Šubrt J, Opluštil F, Olšanská M. Reaction of sulfur mustard gas, soman and agent VX with nanosized anatase TiO 2 and ferrihydrite. J Chem Technol Biotechnol [Internet]. 2005 Jul 14;80(7):754–8. Available from: <URL>.
- 168. Ali S, Farrukh MA, Khaleeq-ur-Rahman M. Photodegradation of 2,4,6-trinitrophenol catalyzed by Zn/MgO nanoparticles prepared in aqueous-organic medium. Korean J Chem Eng [Internet]. 2013 Nov 6;30(11):2100–7. Available from: <URL>.
- 169. Lange LE, Obendorf SK. Effect of Plasma Etching on Destructive Adsorption Properties of Polypropylene Fibers Containing Magnesium Oxide Nanoparticles. Arch Environ Contam Toxicol [Internet]. 2012 Feb 18;62(2):185–94. Available from: <URL>.
- 170. Behnam R, Morshed M, Tavanai H, Ghiaci M. Destructive Adsorption of Diazinon Pesticide by Activated Carbon Nanofibers Containing Al2O3 and MgO Nanoparticles. Bull Environ Contam Toxicol [Internet]. 2013 Oct 4;91(4):475–80. Available from: <URL>.
- 171. Singh RP, Tiwari A, Pandey AC. Silver/Polyaniline Nanocomposite for the Electrocatalytic Hydrazine Oxidation. J Inorg Organomet Polym Mater [Internet]. 2011 Dec 13;21(4):788–92. Available from: <URL>.
- 172. Lu L, Zhang L, Zhang X, Wu Z, Huan S, Shen G, et al. A MgO Nanoparticles Composite Matrix‐Based Electrochemical Biosensor for Hydrogen Peroxide with High Sensitivity. Electroanalysis [Internet]. 2010 Feb 4;22(4):471–7. Available from: <URL>.
- 173. Dong X xiu, Li M ying, Feng N nan, Sun Y ming, Yang C, Xu Z lin. A nanoporous MgO based nonenzymatic electrochemical sensor for rapid screening of hydrogen peroxide in milk. RSC Adv [Internet]. 2015 Oct 13;5(105):86485–9. Available from: <URL>.
- 174. An Y, Zhang K, Wang F, Lin L, Guo H. Removal of organic matters and bacteria by nano-MgO/GAC system. Desalination [Internet]. 2011 Oct 17;281(1):30–4. Available from: <URL>.
- 175. Ramanujam K, Sundrarajan M. Biocidal activities of monochlorotriazine-β-cyclodextrine with MgO modified cellulosic fabrics. J Text Inst [Internet]. 2015 Nov 2;106(11):1147–53. Available from: <URL>.