Research Article
BibTex RIS Cite

DFT Calculations of Trilayer Heterostructures from MoSe2, PtS2 Monolayers in Different Orders with Promising Optoelectronic Properties

Year 2024, Volume: 11 Issue: 2, 405 - 414, 15.05.2024
https://doi.org/10.18596/jotcsa.1295960

Abstract

vVan der Waals (vdW) heterostructures have taken the dominant place in commercialization of the optoelectronic devices. MoSe2 and PtS2 are two-dimensional semiconductors, Using first-principles computations, the optical and electronic characteristics of trilayer van der Waals (vdW) heterostructures with four distinct orders were investigated. We demonstrate that all innovative heterostructures investigated are semiconductors. In addition, it should be emphasized that the indirect band gaps of the ABA, BAA, ABB, and BAB orders (where A is MoSe2 and B is PtS2) are approximately 0.875, 0.68, 0.595, and 0.594 eV, respectively. Positively, the optical characteristics reveal that the trilayer heterostructures strongly absorb light with energies ranging from infrared to ultraviolet. Therefore, these heterostructures can be utilized in optoelectronic devices in these regions.

References

  • 1. Nandi P, Rawat A, Ahammed R, Jena N, De Sarkar A. Group-IV (A) Janus dichalcogenide monolayers and their interfaces straddle gigantic shear and in-plane piezoelectricity. Nanoscale. 2021;13(10):5460-78. Available from: <URL>.
  • 2. Nguyen HT, Vu TV, Binh NT, Hoat D, Hieu NV, Anh NT, et al. Strain-tunable electronic and optical properties of monolayer GeSe: promising for photocatalytic water splitting applications. Chemical Physics. 2020;529:110543. Available from: <URL>.
  • 3. Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. 25th anniversary article: MXenes: a new family of two‐dimensional materials. Advanced materials. 2014;26(7):992-1005. Available from: <URL>.
  • 4. Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio MC, et al. Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Physical review letters. 2012;108(15):155501. Available from: <URL>.
  • 5. Zhang Y, Ye H, Yu Z, Liu Y, Li Y. First-principles study of square phase MX2 and Janus MXY (M= Mo, W; X, Y= S, Se, Te) transition metal dichalcogenide monolayers under biaxial strain. Physica E: Low-dimensional Systems and Nanostructures. 2019;110:134-9. Available from: <URL>.
  • 6. Liu C-C, Feng W, Yao Y. Quantum spin Hall effect in silicene and two-dimensional germanium. Physical review letters. 2011;107(7):076802. Available from: <URL>.
  • 7. Li P, Appelbaum I. Symmetry, distorted band structure, and spin-orbit coupling of group-III metal-monochalcogenide monolayers. Physical Review B. 2015;92(19):195129. Available from: <URL>.
  • 8. Ren C, Wang S, Tian H, Luo Y, Yu J, Xu Y, et al. First-principles investigation on electronic properties and band alignment of group III monochalcogenides. Scientific Reports. 2019;9(1):1-6. Available from: <URL>.
  • 9. Koenig SP, Doganov RA, Schmidt H, Castro Neto A, Özyilmaz B. Electric field effect in ultrathin black phosphorus. Applied Physics Letters. 2014;104(10):103106. Available from: <URL>.
  • 10. Zhu F-f, Chen W-j, Xu Y, Gao C-l, Guan D-d, Liu C-h, et al. Epitaxial growth of two-dimensional stanene. Nature materials. 2015;14(10):1020-5. Available from: <URL>.
  • 11. Bassman L, Rajak P, Kalia RK, Nakano A, Sha F, Aykol M, et al. Efficient discovery of optimal N-layered TMDC hetero-structures. Mrs Advances. 2018;3(6-7):397-402. Available from: <URL>.
  • 12. Flöry N, Jain A, Bharadwaj P, Parzefall M, Taniguchi T, Watanabe K, et al. A WSe2/MoSe2 heterostructure photovoltaic device. Applied Physics Letters. 2015;107(12):123106. Available from: <URL>.
  • 13. Bastonero L, Cicero G, Palummo M, Re Fiorentin M. Boosted Solar Light Absorbance in PdS2/PtS2 Vertical Heterostructures for Ultrathin Photovoltaic Devices. ACS applied materials & interfaces. 2021;13(36):43615-21. Available from: <URL>.
  • 14. Wu D, Li W, Rai A, Wu X, Movva HC, Yogeesh MN, et al. Visualization of local conductance in MoS2/WSe2 heterostructure transistors. Nano letters. 2019;19(3):1976-81. Available from: <URL>.
  • 15. Soares DM, Mukherjee S, Singh G. TMDs beyond MoS2 for electrochemical energy storage. Chemistry–A European Journal. 2020;26(29):6320-41. Available from: <URL>.
  • 16. Prabhu P, Jose V, Lee J-M. Design strategies for development of TMD-based heterostructures in electrochemical energy systems. Matter. 2020;2(3):526-53. Available from: <URL>.
  • 17. Fan X, Li X, Zhao Z, Yue Z, Feng P, Ma X, et al. Heterostructured rGO/MoS2 nanocomposites toward enhancing lubrication function of industrial gear oils. Carbon. 2022;191:84-97. Available from: <URL>.
  • 18. Feng P, Ren Y, Li Y, He J, Zhao Z, Ma X, et al. Synergistic lubrication of few-layer Ti3C2Tx/MoS2 heterojunction as a lubricant additive. Friction. 2022:1-15. Available from: <URL>.
  • 19. Liu H, Huang Z, Wu G, Wu Y, Yuan G, He C, et al. A novel WS 2/NbSe 2 vdW heterostructure as an ultrafast charging and discharging anode material for lithium-ion batteries. Journal of Materials Chemistry A. 2018;6(35):17040-8. Available from: <URL>.
  • 20. Pham KD, Hieu NN, Bui LM, Phuc HV, Hoi BD, Tu LT, et al. Vertical strain and electric field tunable electronic properties of type-II band alignment C2N/InSe van der Waals heterostructure. Chemical Physics Letters. 2019;716:155-61. Available from: <URL>.
  • 21. Zhao X, Tang G, Li Y, Zhang M, Nie Y. Biaxial strain improving the thermoelectric performance of a two-dimensional MoS2/WS2 heterostructure. ACS Applied Electronic Materials. 2021;3(7):2995-3004. Available from: <URL>.
  • 22. Xia C, Xiong W, Du J, Wang T, Peng Y, Li J. Universality of electronic characteristics and photocatalyst applications in the two-dimensional Janus transition metal dichalcogenides. Physical Review B. 2018;98(16):165424. Available from: <URL>.
  • 23. Mak KF, Lee C, Hone J, Shan J, Heinz TF. Atomically thin MoS 2: a new direct-gap semiconductor. Physical review letters. 2010;105(13):136805. Available from: <URL>.
  • 24. Imani Yengejeh S, Wen W, Wang Y. Mechanical properties of lateral transition metal dichalcogenide heterostructures. Frontiers of Physics. 2021;16(1):1-7. Available from: <URL>.
  • 25. Dong R, Kuljanishvili I. Progress in fabrication of transition metal dichalcogenides heterostructure systems. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena. 2017;35(3):030803. Available from: <URL>.
  • 26. Datta K, Shadman A, Rahman E, Khosru QD. Trilayer TMDC heterostructures for MOSFETs and nanobiosensors. Journal of Electronic Materials. 2017;46(2):1248-60. Available from: <URL>.
  • 27. Jin C, Ma EY, Karni O, Regan EC, Wang F, Heinz TF. Ultrafast dynamics in van der Waals heterostructures. Nature nanotechnology. 2018;13(11):994-1003. Available from: <URL>.
  • 28. Naseri M. First-principles prediction of a novel cadmium disulfide monolayer (penta-CdS2): Indirect to direct band gap transition by strain engineering. Chemical Physics Letters. 2017;685:310-5. Available from: <URL>.
  • 29. Lee YH, Zhang XQ, Zhang W, Chang MT, Lin CT, Chang KD, et al. Synthesis of large‐area MoS2 atomic layers with chemical vapor deposition. Advanced materials. 2012;24(17):2320-5. Available from: <URL>.
  • 30. Wang X, Gong Y, Shi G, Chow WL, Keyshar K, Ye G, et al. Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS nano. 2014;8(5):5125-31. Available from: <URL>.
  • 31. Yumigeta K, Brayfield C, Cai H, Hajra D, Blei M, Yang S, et al. The synthesis of competing phase GeSe and GeSe 2 2D layered materials. RSC advances. 2020;10(63):38227-32. Available from: <URL>.
  • 32. Zhao D, Xie S, Wang Y, Zhu H, Chen L, Sun Q, et al. Synthesis of large-scale few-layer PtS2 films by chemical vapor deposition. AIP Advances. 2019;9(2):025225. Available from: <URL>.
  • 33. Meng L, Xu C, Li H, Wang X, Yan X. Controlled synthesis and frictional properties of 2D MoTe2 via chemical vapor deposition. Chemical Physics Letters. 2019;728:156-9. Available from: <URL>.
  • 34. Meng L, Hu S, Yan W, Feng J, Li H, Yan X. Controlled synthesis of large scale continuous monolayer WS2 film by atmospheric pressure chemical vapor deposition. Chemical Physics Letters. 2020;739:136945. Available from: <URL>.
  • 35. Ghiasi TS, Quereda J, Van Wees BJ. Bilayer h-BN barriers for tunneling contacts in fully-encapsulated monolayer MoSe2 field-effect transistors. 2D Materials. 2018;6(1):015002. Available from: <URL>.
  • 36. Han G, Kaniselvan M, Yoon Y. Photoresponse of MoSe2 transistors: A fully numerical quantum transport simulation study. ACS Applied Electronic Materials. 2020;2(11):3765-72. Available from: <URL>.
  • 37. Xiong R, Hu R, Zhang Y, Yang X, Lin P, Wen C, et al. Computational discovery of PtS 2/GaSe van der Waals heterostructure for solar energy applications. Physical Chemistry Chemical Physics. 2021;23(36):20163-73. Available from: <URL>.
  • 38. Chen C, Cao J, Yin W, Zhang Q, Yao Y, Wei X. Single transition metal atom modified MoSe2 as a promising electrocatalyst for nitrogen Fixation: A first-principles study. Chemical Physics Letters. 2021;780:138939. Available from: <URL>.
  • 39. Liu G, Gan Y, Quhe R, Lu P. Strain dependent electronic and optical properties of PtS2 monolayer. Chemical Physics Letters. 2018;709:65-70. Available from: <URL>.
  • 40. Wasey AA, Chakrabarty S, Das G. Substrate induced modulation of electronic, magnetic and chemical properties of MoSe2 monolayer. AIP Advances. 2014;4(4):047107. Available from: <URL>.
  • 41. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MI, Refson K, et al. First principles methods using CASTEP. Zeitschrift für kristallographie-crystalline materials. 2005;220(5-6):567-70. Available from: <URL>.
  • 42. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical review letters. 1996;77(18):3865. Available from: <URL>. 43. Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical review B. 1990;41(11):7892. Available from: <URL>.
  • 44. Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Physical review B. 1976;13(12):5188. Available from: <URL>.
  • 45. Mir SH, Chakraborty S, Wärnå J, Narayan S, Jha PC, Jha PK, et al. A comparative study of hydrogen evolution reaction on pseudo-monolayer WS 2 and PtS 2: insights based on the density functional theory. Catalysis Science & Technology. 2017;7(3):687-92. Available from: <URL>.
  • 46. Yao W, Guan H, Zhang K, Wang G, Wu X, Jia Z. Nb-doped PtS2 monolayer for detection of C2H2 and C2H4 in on-load tap-changer of the oil-immersed transformers: A first-principles study. Chemical Physics Letters. 2022:139755. Available from: <URL>.
  • 47. Li Y, Feng Z, Sun Q, Ma Y, Tang Y, Dai X. Electronic, thermoelectric, transport and optical properties of MoSe2/BAs van der Waals heterostructures. Results in Physics. 2021;23:104010. Available from: <URL>.
  • 48. Hu X, Zhang Q, Yu S. Theoretical insight into the hydrogen adsorption on MoS2 (MoSe2) monolayer as a function of biaxial strain/external electric field. Applied Surface Science. 2019;478:857-65. Available from: <URL>.
  • 49. Wu Q, Fu X, Yang K, Wu H, Liu L, Zhang L, et al. Promoting a weak coupling of monolayer MoSe2 grown on (100)-faceted Au foil. ACS nano. 2021;15(3):4481-9. Available from: <URL>.
  • 50. Zhang Y, Chang T-R, Zhou B, Cui Y-T, Yan H, Liu Z, et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nature nanotechnology. 2014;9(2):111-5. Available from: <URL>.
  • 51. Yadav VK, Kumar PP, Singh V. Effect of different precursors on morphology of CVD synthesized MoSe2. Materials Today: Proceedings. 2022;56:3786-9. Available from: <URL>.
  • 52. Tao W-L, Mu Y, Hu C-E, Cheng Y, Ji G-F. Electronic structure, optical properties, and phonon transport in Janus monolayer PtSSe via first-principles study. Philosophical Magazine. 2019;99(8):1025-40. Available from: <URL>.
Year 2024, Volume: 11 Issue: 2, 405 - 414, 15.05.2024
https://doi.org/10.18596/jotcsa.1295960

Abstract

References

  • 1. Nandi P, Rawat A, Ahammed R, Jena N, De Sarkar A. Group-IV (A) Janus dichalcogenide monolayers and their interfaces straddle gigantic shear and in-plane piezoelectricity. Nanoscale. 2021;13(10):5460-78. Available from: <URL>.
  • 2. Nguyen HT, Vu TV, Binh NT, Hoat D, Hieu NV, Anh NT, et al. Strain-tunable electronic and optical properties of monolayer GeSe: promising for photocatalytic water splitting applications. Chemical Physics. 2020;529:110543. Available from: <URL>.
  • 3. Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. 25th anniversary article: MXenes: a new family of two‐dimensional materials. Advanced materials. 2014;26(7):992-1005. Available from: <URL>.
  • 4. Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio MC, et al. Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Physical review letters. 2012;108(15):155501. Available from: <URL>.
  • 5. Zhang Y, Ye H, Yu Z, Liu Y, Li Y. First-principles study of square phase MX2 and Janus MXY (M= Mo, W; X, Y= S, Se, Te) transition metal dichalcogenide monolayers under biaxial strain. Physica E: Low-dimensional Systems and Nanostructures. 2019;110:134-9. Available from: <URL>.
  • 6. Liu C-C, Feng W, Yao Y. Quantum spin Hall effect in silicene and two-dimensional germanium. Physical review letters. 2011;107(7):076802. Available from: <URL>.
  • 7. Li P, Appelbaum I. Symmetry, distorted band structure, and spin-orbit coupling of group-III metal-monochalcogenide monolayers. Physical Review B. 2015;92(19):195129. Available from: <URL>.
  • 8. Ren C, Wang S, Tian H, Luo Y, Yu J, Xu Y, et al. First-principles investigation on electronic properties and band alignment of group III monochalcogenides. Scientific Reports. 2019;9(1):1-6. Available from: <URL>.
  • 9. Koenig SP, Doganov RA, Schmidt H, Castro Neto A, Özyilmaz B. Electric field effect in ultrathin black phosphorus. Applied Physics Letters. 2014;104(10):103106. Available from: <URL>.
  • 10. Zhu F-f, Chen W-j, Xu Y, Gao C-l, Guan D-d, Liu C-h, et al. Epitaxial growth of two-dimensional stanene. Nature materials. 2015;14(10):1020-5. Available from: <URL>.
  • 11. Bassman L, Rajak P, Kalia RK, Nakano A, Sha F, Aykol M, et al. Efficient discovery of optimal N-layered TMDC hetero-structures. Mrs Advances. 2018;3(6-7):397-402. Available from: <URL>.
  • 12. Flöry N, Jain A, Bharadwaj P, Parzefall M, Taniguchi T, Watanabe K, et al. A WSe2/MoSe2 heterostructure photovoltaic device. Applied Physics Letters. 2015;107(12):123106. Available from: <URL>.
  • 13. Bastonero L, Cicero G, Palummo M, Re Fiorentin M. Boosted Solar Light Absorbance in PdS2/PtS2 Vertical Heterostructures for Ultrathin Photovoltaic Devices. ACS applied materials & interfaces. 2021;13(36):43615-21. Available from: <URL>.
  • 14. Wu D, Li W, Rai A, Wu X, Movva HC, Yogeesh MN, et al. Visualization of local conductance in MoS2/WSe2 heterostructure transistors. Nano letters. 2019;19(3):1976-81. Available from: <URL>.
  • 15. Soares DM, Mukherjee S, Singh G. TMDs beyond MoS2 for electrochemical energy storage. Chemistry–A European Journal. 2020;26(29):6320-41. Available from: <URL>.
  • 16. Prabhu P, Jose V, Lee J-M. Design strategies for development of TMD-based heterostructures in electrochemical energy systems. Matter. 2020;2(3):526-53. Available from: <URL>.
  • 17. Fan X, Li X, Zhao Z, Yue Z, Feng P, Ma X, et al. Heterostructured rGO/MoS2 nanocomposites toward enhancing lubrication function of industrial gear oils. Carbon. 2022;191:84-97. Available from: <URL>.
  • 18. Feng P, Ren Y, Li Y, He J, Zhao Z, Ma X, et al. Synergistic lubrication of few-layer Ti3C2Tx/MoS2 heterojunction as a lubricant additive. Friction. 2022:1-15. Available from: <URL>.
  • 19. Liu H, Huang Z, Wu G, Wu Y, Yuan G, He C, et al. A novel WS 2/NbSe 2 vdW heterostructure as an ultrafast charging and discharging anode material for lithium-ion batteries. Journal of Materials Chemistry A. 2018;6(35):17040-8. Available from: <URL>.
  • 20. Pham KD, Hieu NN, Bui LM, Phuc HV, Hoi BD, Tu LT, et al. Vertical strain and electric field tunable electronic properties of type-II band alignment C2N/InSe van der Waals heterostructure. Chemical Physics Letters. 2019;716:155-61. Available from: <URL>.
  • 21. Zhao X, Tang G, Li Y, Zhang M, Nie Y. Biaxial strain improving the thermoelectric performance of a two-dimensional MoS2/WS2 heterostructure. ACS Applied Electronic Materials. 2021;3(7):2995-3004. Available from: <URL>.
  • 22. Xia C, Xiong W, Du J, Wang T, Peng Y, Li J. Universality of electronic characteristics and photocatalyst applications in the two-dimensional Janus transition metal dichalcogenides. Physical Review B. 2018;98(16):165424. Available from: <URL>.
  • 23. Mak KF, Lee C, Hone J, Shan J, Heinz TF. Atomically thin MoS 2: a new direct-gap semiconductor. Physical review letters. 2010;105(13):136805. Available from: <URL>.
  • 24. Imani Yengejeh S, Wen W, Wang Y. Mechanical properties of lateral transition metal dichalcogenide heterostructures. Frontiers of Physics. 2021;16(1):1-7. Available from: <URL>.
  • 25. Dong R, Kuljanishvili I. Progress in fabrication of transition metal dichalcogenides heterostructure systems. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena. 2017;35(3):030803. Available from: <URL>.
  • 26. Datta K, Shadman A, Rahman E, Khosru QD. Trilayer TMDC heterostructures for MOSFETs and nanobiosensors. Journal of Electronic Materials. 2017;46(2):1248-60. Available from: <URL>.
  • 27. Jin C, Ma EY, Karni O, Regan EC, Wang F, Heinz TF. Ultrafast dynamics in van der Waals heterostructures. Nature nanotechnology. 2018;13(11):994-1003. Available from: <URL>.
  • 28. Naseri M. First-principles prediction of a novel cadmium disulfide monolayer (penta-CdS2): Indirect to direct band gap transition by strain engineering. Chemical Physics Letters. 2017;685:310-5. Available from: <URL>.
  • 29. Lee YH, Zhang XQ, Zhang W, Chang MT, Lin CT, Chang KD, et al. Synthesis of large‐area MoS2 atomic layers with chemical vapor deposition. Advanced materials. 2012;24(17):2320-5. Available from: <URL>.
  • 30. Wang X, Gong Y, Shi G, Chow WL, Keyshar K, Ye G, et al. Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS nano. 2014;8(5):5125-31. Available from: <URL>.
  • 31. Yumigeta K, Brayfield C, Cai H, Hajra D, Blei M, Yang S, et al. The synthesis of competing phase GeSe and GeSe 2 2D layered materials. RSC advances. 2020;10(63):38227-32. Available from: <URL>.
  • 32. Zhao D, Xie S, Wang Y, Zhu H, Chen L, Sun Q, et al. Synthesis of large-scale few-layer PtS2 films by chemical vapor deposition. AIP Advances. 2019;9(2):025225. Available from: <URL>.
  • 33. Meng L, Xu C, Li H, Wang X, Yan X. Controlled synthesis and frictional properties of 2D MoTe2 via chemical vapor deposition. Chemical Physics Letters. 2019;728:156-9. Available from: <URL>.
  • 34. Meng L, Hu S, Yan W, Feng J, Li H, Yan X. Controlled synthesis of large scale continuous monolayer WS2 film by atmospheric pressure chemical vapor deposition. Chemical Physics Letters. 2020;739:136945. Available from: <URL>.
  • 35. Ghiasi TS, Quereda J, Van Wees BJ. Bilayer h-BN barriers for tunneling contacts in fully-encapsulated monolayer MoSe2 field-effect transistors. 2D Materials. 2018;6(1):015002. Available from: <URL>.
  • 36. Han G, Kaniselvan M, Yoon Y. Photoresponse of MoSe2 transistors: A fully numerical quantum transport simulation study. ACS Applied Electronic Materials. 2020;2(11):3765-72. Available from: <URL>.
  • 37. Xiong R, Hu R, Zhang Y, Yang X, Lin P, Wen C, et al. Computational discovery of PtS 2/GaSe van der Waals heterostructure for solar energy applications. Physical Chemistry Chemical Physics. 2021;23(36):20163-73. Available from: <URL>.
  • 38. Chen C, Cao J, Yin W, Zhang Q, Yao Y, Wei X. Single transition metal atom modified MoSe2 as a promising electrocatalyst for nitrogen Fixation: A first-principles study. Chemical Physics Letters. 2021;780:138939. Available from: <URL>.
  • 39. Liu G, Gan Y, Quhe R, Lu P. Strain dependent electronic and optical properties of PtS2 monolayer. Chemical Physics Letters. 2018;709:65-70. Available from: <URL>.
  • 40. Wasey AA, Chakrabarty S, Das G. Substrate induced modulation of electronic, magnetic and chemical properties of MoSe2 monolayer. AIP Advances. 2014;4(4):047107. Available from: <URL>.
  • 41. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MI, Refson K, et al. First principles methods using CASTEP. Zeitschrift für kristallographie-crystalline materials. 2005;220(5-6):567-70. Available from: <URL>.
  • 42. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical review letters. 1996;77(18):3865. Available from: <URL>. 43. Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical review B. 1990;41(11):7892. Available from: <URL>.
  • 44. Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Physical review B. 1976;13(12):5188. Available from: <URL>.
  • 45. Mir SH, Chakraborty S, Wärnå J, Narayan S, Jha PC, Jha PK, et al. A comparative study of hydrogen evolution reaction on pseudo-monolayer WS 2 and PtS 2: insights based on the density functional theory. Catalysis Science & Technology. 2017;7(3):687-92. Available from: <URL>.
  • 46. Yao W, Guan H, Zhang K, Wang G, Wu X, Jia Z. Nb-doped PtS2 monolayer for detection of C2H2 and C2H4 in on-load tap-changer of the oil-immersed transformers: A first-principles study. Chemical Physics Letters. 2022:139755. Available from: <URL>.
  • 47. Li Y, Feng Z, Sun Q, Ma Y, Tang Y, Dai X. Electronic, thermoelectric, transport and optical properties of MoSe2/BAs van der Waals heterostructures. Results in Physics. 2021;23:104010. Available from: <URL>.
  • 48. Hu X, Zhang Q, Yu S. Theoretical insight into the hydrogen adsorption on MoS2 (MoSe2) monolayer as a function of biaxial strain/external electric field. Applied Surface Science. 2019;478:857-65. Available from: <URL>.
  • 49. Wu Q, Fu X, Yang K, Wu H, Liu L, Zhang L, et al. Promoting a weak coupling of monolayer MoSe2 grown on (100)-faceted Au foil. ACS nano. 2021;15(3):4481-9. Available from: <URL>.
  • 50. Zhang Y, Chang T-R, Zhou B, Cui Y-T, Yan H, Liu Z, et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nature nanotechnology. 2014;9(2):111-5. Available from: <URL>.
  • 51. Yadav VK, Kumar PP, Singh V. Effect of different precursors on morphology of CVD synthesized MoSe2. Materials Today: Proceedings. 2022;56:3786-9. Available from: <URL>.
  • 52. Tao W-L, Mu Y, Hu C-E, Cheng Y, Ji G-F. Electronic structure, optical properties, and phonon transport in Janus monolayer PtSSe via first-principles study. Philosophical Magazine. 2019;99(8):1025-40. Available from: <URL>.
There are 51 citations in total.

Details

Primary Language English
Subjects Computational Chemistry, Chemical Engineering
Journal Section RESEARCH ARTICLES
Authors

Jassim M. Al-ıssawe 0000-0002-6160-9421

Idrees Oreibi 0000-0002-9773-8188

Publication Date May 15, 2024
Submission Date May 11, 2023
Acceptance Date December 26, 2023
Published in Issue Year 2024 Volume: 11 Issue: 2

Cite

Vancouver M. Al-ıssawe J, Oreibi I. DFT Calculations of Trilayer Heterostructures from MoSe2, PtS2 Monolayers in Different Orders with Promising Optoelectronic Properties. JOTCSA. 2024;11(2):405-14.